
Invitation to
Combinatorial Reconfiguration

Takehiro ITO
Tohoku University, Japan

CoRe 2017 --- January 23, 2017



Combinatorial Reconfiguration
asks the “reachability”/“connectivity” of the solution space.

solution space

exist?

solution space

path?

given

given

solution space

enumerate?

Search Problem
asks the existence of 
a feasible solution.

Reconfiguration Problem
asks the reachability
between two given 
feasible solutions

Enumeration Problem
asks to output 

ALL feasible solutions

4

The concept of reconfiguration problems is located “between” 
standard search problems and enumeration problems. 



Search problem

solution space

exist?

Search Problem
asks the existence of 
a feasible solution.

5

110 111

101

000

010
011

001

( ) ( ) ( )zyzyxyxf ∨∧∨∨∧∨=ex) SAT formula: 

Check if there exists at least one feasible solution 
(i.e., satisfiable truth assignment of 𝑓𝑓)
from 2𝑛𝑛 candidates of solutions for 𝑛𝑛 variables.

001



Enumeration problem

solution space

enumerate?

Enumeration Problem
asks to output 

ALL feasible solutions

6

111

010
011

110

101

001000

( ) ( ) ( )zyzyxyxf ∨∧∨∨∧∨=ex) SAT formula: 

output all feasible solutions
from 2𝑛𝑛 candidates of solutions for 𝑛𝑛 variables.

110

101

001000



Combinatorial Reconfiguration
asks the “reachability”/“connectivity” of the solution space.

solution space

path?

given

given

Reconfiguration Problem
asks the reachability
between two given 
feasible solutions

7

( ) ( ) ( )zyzyxyxf ∨∧∨∨∧∨=ex) SAT formula: 
110 111

010
011

001
given

given

introduce an 
adjacency relation
on feasible solutions

two feasible 
solutions are 
given as an input

Hamming distance one
(i.e., flip of a single variable)

& 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 = 0,0,0
= 1,0,1

satisfiable!

Find a sequence of adjacent feasible solutions
among 2𝑛𝑛 candidates of solutions for 𝑛𝑛 variables.
(We do NOT know the feasibility of the other 2𝑛𝑛 − 2 candidates.) 

101

000

101

000 001



8Combinatorial Reconfiguration
Reconfiguration is a decision problem:

• simply output Yes/No
• actual reconfiguration sequence is 

not required

Challenge!!
• solution space can be exponential size w.r.t. the input size
• but, evaluate the running time of algorithm w.r.t. the input size!

Indeed, there are examples such that 
a shortest reconfiguration sequence 
requires super-polynomial length!

solution space

path?

given

given

Reconfiguration Problem
asks the reachability
between two given 
feasible solutions

Output the answer without
constructing the solution space



Motivations 10

[Puzzles]
• Sliding block puzzle
• Rubik cube
• 15 puzzle

feederswitch

by operating switches,  
reconfigurable without 
causing any blackout?

?
[Power-supply network]

[The Potts model in physics]
= Graph coloring reconfiguration (under Kempe change rule)

R.A. Hearn, E.D. Demaine. Games, Puzzles, and Computation. A K Peters (2009)

2
A

A

O

O

O A
2

2

2

2

2 1

1
1



Adjacency relation 11

110 111

101

001000

010
011

Reconfiguration
problem

feasible solutions
for a search problem instance

adjacency relation= +

( ) ( ) ( )zyzyxyxf ∨∧∨∨∧∨=

Solution space for SAT formula

[SAT reconfiguration]
• feasible solutions: satisfiable truth assignments of 𝑓𝑓
• adjacency relation:  flip of a single variable (Hamming distance one)

defined by
• application
• most elementary change to solution

(But, there is no clearly-stated rule.)   
Example:



Independent set reconfiguration 12

initial 𝐼𝐼0 target 𝐼𝐼𝑟𝑟

[Independent set reconfiguration (Token Jumping)]
• feasible solutions:  independent sets of size exactly 𝑘𝑘
• adjacency relation:  move a single token

Independent set of a graph:
a vertex subset such that no two vertices are adjacent. 
(We regard a token is placed on each vertex in an independent set.)



Independent set reconfiguration 13

initial 𝐼𝐼0 target 𝐼𝐼𝑟𝑟

TJ：ok
TS：ok

TJ：ok
TS：ok

TJ：ok
TS：×

[Independent set reconfiguration (Token Jumping)]
• feasible solutions:  independent sets of size exactly 𝑘𝑘
• adjacency relation:  move a single token

[Independent set reconfiguration (Token Sliding)]
• feasible solutions:  independent sets of size exactly 𝑘𝑘
• adjacency relation:  slide a single token to its neighbor along an edge

Reachability depends on the choice of adjacency relations. 
(= the structure of the solution space)

* The figure above is a no-instance for Token Sliding.



𝑘𝑘-coloring reconfiguration 14

4-coloring 𝑓𝑓𝑟𝑟

𝑘𝑘 = 4

4-coloring 𝑓𝑓0 4-coloring 𝑓𝑓1 4-coloring 𝑓𝑓2

[𝒌𝒌-coloring reconfiguration]
• feasible solutions:  𝑘𝑘-colorings of a graph 𝐺𝐺
• adjacency relation:  recoloring a single vertex

𝒌𝒌-coloring of a graph:
using at most 𝑘𝑘 colors, color the vertices of a graph so that 
any two adjacent vertices receive different colors. 

Coloring reconfiguration is one of the most well-studied problems.



𝑘𝑘-coloring reconfiguration 15

2-coloring 𝑓𝑓𝑟𝑟

𝑘𝑘 = 2

2-coloring 𝑓𝑓0

[𝒌𝒌-coloring reconfiguration]
• feasible solutions:  𝑘𝑘-colorings of a graph 𝐺𝐺
• adjacency relation:  recoloring a single vertex

? NO

[𝒌𝒌-coloring reconfiguration (Kempe change)]
• feasible solutions:  𝑘𝑘-colorings of a graph 𝐺𝐺
• adjacency relation:  swapping “connected” two color classes

* The figure above is a yes-instance under the Kempe change relation.



Adjacency relation 16

Reconfiguration
problem

feasible solutions
for a search problem instance

adjacency relation= +

defined by
• application
• most elementary change to solution

(But, there is no clearly-stated rule.)   

Relationship between some adjacency relations are clarified: 
• For independent set reconfiguration, TJ and TAR are equivalent

• For clique reconfiguration, TJ, TAR and TS are all equivalent
T. Ito, H. Ono, Y. Otachi. Reconfiguration of cliques in a graph. 
Proc. TAMC 2015, LNCS 9076, pp. 212-223 (2015)

M. Kamiński, P. Medvedev, M. Milanič. 
Complexity of independent set reconfigurability problems. 
Theoretical Computer Science 439, pp. 9-15 (2012)



History of combinatorial reconfiguration (from my viewpoint …)
17

We now have techniques/results for both negative & positive sides!

[2013 – now]
• Broader algorithmic techniques are starting to emerge

These three years, ≥ 20 papers have been published ＠ arXiv
 later presented at ICALP, STACS, ISAAC, SWAT, WADS, etc.

• Algorithm methods capturing the solution space
 Dynamic programming
 Fixed-parameter tractability (FPT)

[2002 – 2012]
• Negative results (PSPACE-completeness)
• Sufficient conditions for yes-instances
• Algorithms obtained using mostly greedy methods

In this talk: I will give an overview of these techniques/results quickly! 
… without proofs/details



18

[From the viewpoint of algorithm designer]
If a reconfiguration problem is PSPACE-complete, then

1. no polynomial-time algorithm under P ≠ NP; and
2. exists a yes-instance whose shortest reconfiguration sequence 

requires super-polynomial length under NP ≠ PSPACE.

PSPACE

NP

PSPACE-complete

NP-
complete

Solvable in polynomial space

Note: PSPACE includes NP. 

PSPACE-completeness



Reconfiguration problems in PSPACE 19

Sufficient Condition
for reconfiguration problems being in Class PSPACE:

a. Search problem finding a feasible solution is in Class NP; and
b. Given two feasible solution, there is a polynomial-time

algorithm to determine whether they are adjacent or not in 
the solution space.

(All reconfiguration problems in this talk belong to PSPACE.）

[Theorem 1] T. Ito, E.D. Demaine, N.J.A. Harvey, C.H. Papadimitriou, M. Sideri, 
R. Uehara, Y. Uno. On the complexity of reconfiguration problems. Theoretical 
Computer Science 412, pp. 1054-1065 (2011)



PSPACE-hardness 20

3SAT

Clique

Independent Set

Set CoverInteger Programming

flow of NP-hardness proofs 

Vertex Cover



PSPACE-hardness 21

For many NP-complete search problems, we can show the PSPACE-
hardness of their reconfigurations by following the “flow” of NP-
hardness reductions 

3SAT

Clique

Independent Set

Set CoverInteger Programming

PSPACE-complete
[GKMP09]

[GKMP09] P. Gopalan, P.G. Kolaitis, E.N. Maneva, C.H. Papadimitriou.
The connectivity of Boolean satisfiability: computational and structural dichotomies. 
SIAM J. Computing 38, pp. 2330-2355 (2009)  

flow of PSPACE-hardness proofs   

Reconf.

Vertex Cover

Reconf.

Reconf.Reconf.

Reconf.Reconf.

(with noting that they preserve the reachability). 



Reduction for preserving the reachability 22

110 111

101

001000

010
011

𝑓𝑓 = 𝑥𝑥 ∨ �𝑦𝑦 ∧ 𝑥̅𝑥 ∨ 𝑦𝑦 ∨ 𝑧𝑧 ∧ �𝑦𝑦 ∨ ̅𝑧𝑧

Solution space
for SAT formula 𝑓𝑓

This reduction is correct for NP-hardness, 
but does not preserve the connectivity (reachability) of solution space.

𝑥𝑥 �𝑦𝑦 �𝑦𝑦 ̅𝑧𝑧

𝑥̅𝑥

𝑦𝑦

𝑧𝑧

000

3SAT Independent set
reduction for NP-hardness

𝑥𝑥 �𝑦𝑦 �𝑦𝑦 ̅𝑧𝑧

𝑥̅𝑥

𝑦𝑦

𝑧𝑧

𝑥𝑥 �𝑦𝑦 �𝑦𝑦 ̅𝑧𝑧

𝑥̅𝑥

𝑦𝑦

𝑧𝑧

adjacent in 
solution space
for IS

001

101 001

𝑧𝑧: don’t care

𝑥𝑥: don’t care

preserve 
consistency 
of variables

NOT adjacent in 
solution space
for SAT

000

101



Reduction for preserving the reachability 23

𝑓𝑓 = 𝑥𝑥 ∨ �𝑦𝑦 ∧ 𝑥̅𝑥 ∨ 𝑦𝑦 ∨ 𝑧𝑧 ∧ �𝑦𝑦 ∨ ̅𝑧𝑧

𝑥𝑥 �𝑦𝑦 �𝑦𝑦 ̅𝑧𝑧

𝑥̅𝑥

𝑦𝑦 𝑧𝑧

3SAT Independent set
reduction for NP-hardness

preserve 
consistency 
of variables

𝑥𝑥𝑥̅𝑥 𝑦𝑦�𝑦𝑦 𝑧𝑧̅𝑧𝑧

No “don’t care” variable
110 111

101

001000

010
011

Solution space
for SAT formula 𝑓𝑓

• Every independent set corresponds to 
exactly one satisfiable truth assignment of 𝑓𝑓

• This reduction preserves the reachability of 
solutions spaces. (Details omitted) 



Reduction for preserving the reachability 24

Reduction from Problem P to Problem Q:
reachable on P reachable on Q

Solution 
space 𝐺𝐺𝑃𝑃 of P

Solution 
space 𝐺𝐺𝑄𝑄 of Q

Suffice to construct
1. each feasible solution in 𝐺𝐺𝑃𝑃

corresponds to distinct & 
connected component in 𝐺𝐺𝑄𝑄.

2. every 𝑝𝑝1𝑝𝑝2 ∈ 𝐸𝐸 𝐺𝐺𝑃𝑃 
there exist two feasible solutions 
𝑞𝑞1 in 𝐺𝐺𝑄𝑄 𝑝𝑝1 and 𝑞𝑞2 in 𝐺𝐺𝑄𝑄 𝑝𝑝2
such that 𝑞𝑞1𝑞𝑞2 ∈ 𝐸𝐸 𝐺𝐺𝑄𝑄 ．

𝑝𝑝1
𝐺𝐺𝑄𝑄 𝑝𝑝1

connected

𝑝𝑝2
𝐺𝐺𝑄𝑄 𝑝𝑝2

connected

𝑝𝑝3
𝐺𝐺𝑄𝑄 𝑝𝑝3

connected

no edge



PSPACE-hardness 25

For many NP-complete search problems, we can show the PSPACE-
hardness of their reconfigurations by following the “flow” of NP-
hardness reductions (with noting that they preserve the reachability). 

3SAT

Clique

Independent Set

Set CoverInteger Programming

PSPACE-complete
[GKMP09]

[GKMP09] P. Gopalan, P.G. Kolaitis, E.N. Maneva, C.H. Papadimitriou.
The connectivity of Boolean satisfiability: computational and structural dichotomies. 
SIAM J. Computing 38, pp. 2330-2355 (2009)  

flow of PSPACE-hardness proofs   

Reconf.

Vertex Cover

Reconf.

Reconf.Reconf.

Reconf.Reconf.



Hardness results for graph classes 26

A.E. Mouawad, N. Nishimura, V. Raman, M. Wrochna. Reconfiguration over 
tree decompositions. Proc. IPEC 2014, LNCS 8894, pp. 246-257 (2014)

Theorem: The following problems remain PSPACE-complete even for 
bounded bandwidth graphs.

• independent set reconfiguration
• feedback vertex set reconfiguration
• coloring reconfiguration
• shortest path reconfiguration, etc.

Note that treewidth 𝐺𝐺 ≤ pathwidth 𝐺𝐺 ≤ bandwidth 𝐺𝐺 .
(But, the constants are big for many problems, so they may be solvable in 
polynomial time for small constant width.)

T.C. van der Zanden. Parameterized complexity of graph constraint logic.
Proc. of IPEC 2015, LIPIcs 9076, pp. 282-293 (2015)

Recently, the PSPACE-hardness of NCL was strengthened, and this 
yields that several reconfiguration problems remain PSPACE-
complete for planar AND bounded bandwidth graphs. 



Complexity of 𝑘𝑘-coloring reconfiguration 27

𝑘𝑘 = 4

[𝒌𝒌-coloring reconfiguration]
• feasible solutions:  𝑘𝑘-colorings of a graph
• adjacency relation:  recoloring a single vertex

Theorem: 𝑘𝑘-coloring reconfiguration is PSPACE-complete for 𝑘𝑘 ≥ 4.

Theorem: 𝑘𝑘-coloring reconfiguration is solvable poly time for 𝑘𝑘 ≤ 3.

P. Bonsma, L. Cereceda. Finding paths between graph colourings: 
PSPACE-completeness and superpolynomial distances. Theoretical 
Computer Science 410, pp. 5215-5226 (2009) 

L. Cereceda, J. van den Heuvel, M. Johnson. Finding paths between 3-colorings. Journal of 
Graph Theory 67, pp. 69-82 (2011)

[This dichotomy has been generalized to “circular coloring”]
R.C. Brewster, S. McGuinness, B. Moore, J.A. Noel. A dichotomy theorem for circular 
colouring reconfiguration. Theoretical Computer Science 639, pp. 1-13 (2016)



We now have techniques/results for both negative & positive sides!

[2013 – now]
• Broader algorithmic techniques are starting to emerge

These three years, ≥ 20 papers have been published ＠ arXiv
 later presented at ICALP, STACS, ISAAC, SWAT, WADS, etc.

• Algorithm methods capturing the solution space
 Dynamic programming
 Fixed-parameter tractability (FPT)

[2002 – 2012]
• Negative results (PSPACE-completeness)
• Sufficient conditions for yes-instances
• Algorithms obtained using mostly greedy methods

In this talk: I will give an overview of these techniques/results quickly! 
… without proofs/details

History of combinatorial reconfiguration (from my viewpoint …)
28



Sufficient condition for 𝑘𝑘-coloring reconfiguration 29

[𝒌𝒌-coloring reconfiguration]
• feasible solutions:  𝑘𝑘-colorings of a graph 𝐺𝐺
• adjacency relation:  recoloring a single vertex

Theorem: For an instance of 𝑘𝑘-coloring reconfiguration, 
if 𝑘𝑘 ≥ degeneracy 𝐺𝐺 + 2, then it is a yes-instance.

degeneracy ＝ coloring number

ex) Every planar graph 𝐺𝐺 satisfies degeneracy 𝐺𝐺 ≤ 5, and hence
𝑘𝑘 ≥ 5 + 2 ≥ degeneracy 𝐺𝐺 + 2.

Thus, any two 7-colorings of a planar graph is a yes-instance.

P. Bonsma, L. Cereceda. Finding paths between graph colourings: PSPACE-completeness 
and superpolynomial distances. Theoretical Computer Science 410, pp. 5215-5226 (2009) 

Note: there are graphs 𝐺𝐺 whose chromatic # is degeneracy 𝐺𝐺 + 1.
In this sense, (roughly speaking) this theorem says that only one 
additional color is sufficient to connect all colorings of 𝐺𝐺.

Showing when the solution space consists of a single connected component



Sufficient condition: Other examples 30

[𝒌𝒌-coloring reconfiguration]
Several sufficient conditions on # of colors are given when restricted 
to graph classes. In particular, the diameters of solution spaces can 
be bounded by a polynomial length (quadratic) 

[BJLPP14] M. Bonamy, M. Johnson, I. Lignos, V. Patel, D. Paulusma. Reconfiguration graphs 
for vertex colourings of chordal and chordal bipartite graphs. J. Combinatorial 
Optimization 27, pp. 132-143 (2014)

[BB13] M. Bonamy, N. Bousquet. Recoloring bounded treewidth graphs. Electronic Notes 
in Discrete Mathematics 44, pp. 257-262 (2013)

[𝒌𝒌-edge-coloring reconfiguration]
• feasible solutions:  𝑘𝑘-edge-colorings of a graph 𝐺𝐺
• adjacency relation:  recoloring a single edge

For trees, 
• constant # of additional colors
• polynomial diameter

[IKD12] T. Ito, M. Kamiński, E.D. Demaine. Reconfiguration of list edge-colorings in a graph.
Discrete Applied Mathematics 160, pp. 2199-2207 (2012)



Sufficient condition: Other examples 31

[𝒌𝒌-dominating set reconfiguration]
• feasible solutions:  dominating sets of a graph 𝐺𝐺 with size ≤ 𝑘𝑘
• adjacency relation:  add or remove a single token

[SMN16] A. Suzuki, A.E. Mouawad, N. Nishimura. Reconfiguration of dominating sets. 
Journal of Combinatorial Optimization 32, pp. 1182-1195 (2016)

[HS14] R. Haas, K. Seyffarth. The k-dominating graph. Graphs and Combinatorics 30, pp. 
609–617  (2014)

Sufficient conditions for 𝑘𝑘 from the viewpoint of matching size of 𝐺𝐺.
 [HS14] gives a better sufficient condition when restricted to 

bipartite and chordal graphs.

size
threshold
𝑘𝑘 = 4

initial 𝐷𝐷0 target 𝐷𝐷𝑡𝑡

3 2

4

3

2

3



We now have techniques/results for both negative & positive sides!

[2013 – now]
• Broader algorithmic techniques are starting to emerge

These three years, ≥ 20 papers have been published ＠ arXiv
 later presented at ICALP, STACS, ISAAC, SWAT, WADS, etc.

• Algorithm methods capturing the solution space
 Dynamic programming
 Fixed-parameter tractability (FPT)

[2002 – 2012]
• Negative results (PSPACE-completeness)
• Sufficient conditions for yes-instances
• Algorithms obtained using mostly greedy methods

In this talk: I will give an overview of these techniques/results quickly! 
… without proofs/details

History of combinatorial reconfiguration (from my viewpoint …)
32



Greedy algorithm 33

Idea: Take the symmetric difference between two given solutions, 
and transform the difference one by one.

Ensure: • the feasibility of intermediate solutions
• “no” if we cannot obtain a reconfiguration by this way

Matching 𝑀𝑀0 Matching 𝑀𝑀𝑟𝑟

[Matching reconfiguration]
• feasible solutions:  matchings of a graph with cardinality exactly 𝑘𝑘
• adjacency relation:  exchange a single edge (edge-jump)

Symmetric difference 
𝑀𝑀0 △𝑀𝑀𝑟𝑟 = 𝑀𝑀0 ∖ 𝑀𝑀𝑟𝑟 ∪ 𝑀𝑀𝑟𝑟 ∖ 𝑀𝑀0



34

？

NO

Greedy algorithm for matching reconfiguration
[Matching reconfiguration]
• feasible solutions:  matchings of a graph with cardinality exactly 𝑘𝑘
• adjacency relation:  exchange a single edge (edge-jump)

Matching 𝑀𝑀0 Matching 𝑀𝑀𝑟𝑟

T. Ito, E.D. Demaine, N.J.A. Harvey, C.H. Papadimitriou, M. Sideri, R. Uehara, Y. Uno. 
On the complexity of reconfiguration problems. 
Theoretical Computer Science 412, pp. 1054-1065 (2011)

We can characterize the no-instances
using the Edmonds–Gallai decomposition, 
and solve the problem in polynomial time. 



35Greedy algorithm: Other examples

[Minimum spanning tree reconfiguration]
• feasible solutions: minimum spanning trees of a weighted graph
• adjacency relation:  exchange a single edge (edge-jump)

Theorem: Minimum spanning tree reconfiguration is solvable in 
polynomial time for any graph.

Theorem: Token Jumping is solvable in linear time for even-hole-
free graphs.

M. Kamiński, P. Medvedev, M. Milanič. 
Complexity of independent set reconfigurability problems. 
Theoretical Computer Science 439, pp. 9-15 (2012)

T. Ito, E.D. Demaine, N.J.A. Harvey, C.H. Papadimitriou, M. Sideri, 
R. Uehara, Y. Uno. On the complexity of reconfiguration problems. 
Theoretical Computer Science 412, pp. 1054-1065 (2011)

[Independent set reconfiguration (Token Jumping)]
• feasible solutions:  independent sets of size exactly 𝑘𝑘
• adjacency relation:  move a single token



We now have techniques/results for both negative & positive sides!

[2013 – now]
• Broader algorithmic techniques are starting to emerge

These three years, ≥ 20 papers have been published ＠ arXiv
 later presented at ICALP, STACS, ISAAC, SWAT, WADS, etc.

• Algorithm methods capturing the solution space
 Dynamic programming
 Fixed-parameter tractability (FPT)

[2002 – 2012]
• Negative results (PSPACE-completeness)
• Sufficient conditions for yes-instances
• Algorithms obtained using mostly greedy methods

In this talk: I will give an overview of these techniques/results quickly! 
… without proofs/details

History of combinatorial reconfiguration (from my viewpoint …)
36



Dynamic Programming 37

It is a natural idea to try the DP method for reconfiguration.
However, only a few positive results are known based on DP method. 

𝑣𝑣

Ex:  𝑘𝑘-coloring of a tree
(as a search problem)

Only store 𝒌𝒌 types of colorings:
The min # of colors under the 
assumption that 𝑣𝑣 is colored with 𝑐𝑐𝑖𝑖

min # min # min #
…

How to store the 
information about 

“reachability” within 
a polynomial size??

Design concept
Store information only required to solve 
the problem, and delete the other 
information so as to bound the size of DP 
tables within polynomial size. 



DP algorithm for list coloring reconfiguration 38

[List coloring reconfiguration]
• feasible solutions:  list colorings of a graph 𝐺𝐺
• adjacency relation:  recoloring a single vertex

𝑤𝑤

Subtree 𝑇𝑇𝑤𝑤 Solution space for 𝑇𝑇𝑤𝑤



39

𝑤𝑤

Focus on the color assigned to the vertex 𝑤𝑤
which is adjacent to the outside 𝑇𝑇𝑤𝑤 … 

All four colorings assign blue to 𝑤𝑤, 
but they belong to two different 
components in the solution space. 

Need to store such a 
reachability information 
within a polynomial size

[List coloring reconfiguration]
• feasible solutions:  list colorings of a graph 𝐺𝐺
• adjacency relation:  recoloring a single vertex

Subtree 𝑇𝑇𝑤𝑤 Solution space for 𝑇𝑇𝑤𝑤

DP algorithm for list coloring reconfiguration



40

𝑤𝑤

[List coloring reconfiguration]
• feasible solutions:  list colorings of a graph 𝐺𝐺
• adjacency relation:  recoloring a single vertex

Subtree 𝑇𝑇𝑤𝑤 Contracted solution space for 𝑇𝑇𝑤𝑤

DP algorithm for list coloring reconfiguration

Theorem: List coloring reconfiguration is solvable 
in polynomial time for caterpillars.

T.  Hatanaka, T. Ito, X. Zhou. The list coloring reconfiguration problem for bounded 
pathwidth graphs. IEICE Trans. on Fundamentals of Electronics, Communications and 
Computer Sciences E98-A, pp. 1168-1178 (2015)



41

[𝒌𝒌-coloring reconfiguration]
• feasible solutions:  𝑘𝑘-colorings of a graph 𝐺𝐺
• adjacency relation:  recoloring a single vertex

DP algorithm: Other examples

Theorem: 𝑘𝑘-coloring reconfiguration is solvable in polynomial time 
for 𝑘𝑘 − 2 -connected chordal graphs.

P. Bonsma, D. Paulusma. Using contracted solution graphs for solving 
reconfiguration problems. Proc. of MFCS 2016, LIPIcs 58, pp. 20:1-20:15 (2016)

[Shortest path reconfiguration]
• feasible solutions:  shortest paths of an unweighted graph 𝐺𝐺
• adjacency relation:  switch a single intermediate vertex

Theorem: Shortest path reconfiguration is solvable in polynomial 
time for unweighted planar graphs.

P. Bonsma. Rerouting shortest paths in planar graphs. 
Proc. FSTTCS 2012, LIPIcs 18, pp. 337-349 (2012)



We now have techniques/results for both negative & positive sides!

[2013 – now]
• Broader algorithmic techniques are starting to emerge

These three years, ≥ 20 papers have been published ＠ arXiv
 later presented at ICALP, STACS, ISAAC, SWAT, WADS, etc.

• Algorithm methods capturing the solution space
 Dynamic programming
 Fixed-parameter tractability (FPT)

[2002 – 2012]
• Negative results (PSPACE-completeness)
• Sufficient conditions for yes-instances
• Algorithms obtained using mostly greedy methods

In this talk: I will give an overview of these techniques/results quickly! 
… without proofs/details

History of combinatorial reconfiguration (from my viewpoint …)
42



FPT algorithms for reconfiguration problems 43

Previous polynomial-time algorithms: 
Difficult to characterize the no-instances. 

 In FPT algorithms, this can be done by the brute-force manner! 

Outline of FPT algorithms
1. Give a sufficient condition for a yes-instance; 
2. Based on the sufficient condition, kernelize a 

given instance into an FPT size; and  
3. Construct the solution space for the kernelized

instance by the brute-force manner, and 
determine whether the answer is yes/no. 

Solution space for the kernelized instance has an FPT size. 
We can enumerate all possible reconfiguration sequences.  

Note: Answering “no” happens only in this step. 

Solution space has exponential size

trivial part

characterizing  
yes-instances is 
non-trivial



44FPT algorithm for Token Jumping

initial 𝐼𝐼0 target 𝐼𝐼𝑟𝑟

[Independent set reconfiguration (Token Jumping)]
• feasible solutions:  independent sets of size exactly 𝑘𝑘
• adjacency relation:  move a single token

FPT algorithm for Token Jumping on general graphs
Parameter: 𝑘𝑘 + 𝑑𝑑

𝑘𝑘: bound on # of tokens 𝐼𝐼0 = 𝐼𝐼𝑟𝑟
𝑑𝑑: bound on maximum degree Δ 𝐺𝐺 of a graph 𝐺𝐺



45

1. Give a sufficient condition for a yes-instance
If 𝑉𝑉 𝐺𝐺 ≥ 3𝑘𝑘 𝑑𝑑 + 1 , then it is a yes-instance.

Parameter: 𝑘𝑘 + 𝑑𝑑 (# of tokens 𝐼𝐼0 = 𝐼𝐼𝑟𝑟 ≤ 𝑘𝑘 and max degree Δ 𝐺𝐺 ≤ 𝑑𝑑)

Graph 𝐺𝐺

𝐼𝐼0

Buffer space 𝐻𝐻

𝐼𝐼𝑟𝑟 𝑉𝑉 𝐺𝐺 ≥ 3𝑘𝑘 𝑑𝑑 + 1
𝑘𝑘 𝑑𝑑 + 1 ← 𝐼𝐼0 and its neighbors
𝑘𝑘 𝑑𝑑 + 1 ← 𝐼𝐼𝑟𝑟 and its neighborsー）

𝑉𝑉 𝐻𝐻 ≥ 𝑘𝑘 𝑑𝑑 + 1
𝐻𝐻 has an independent 
set 𝐼𝐼∗ of size ≥ 𝑘𝑘

FPT algorithm for Token Jumping

Delete all vertices in 𝐼𝐼0 ∪ 𝐼𝐼𝑟𝑟 and their 
neighbors from 𝐺𝐺. Then, the remaining 
graph 𝐻𝐻 is the “safe place” from 𝐼𝐼0 ∪ 𝐼𝐼𝑟𝑟.

Since 𝐻𝐻 has an independent set 𝐼𝐼∗ of size ≥ 𝑘𝑘, we can use it as a 
buffer space, that is, 𝐼𝐼0 and 𝐼𝐼𝑟𝑟 are reconfigurable via 𝐼𝐼∗.



46

1. Give a sufficient condition for a yes-instance
If 𝑉𝑉 𝐺𝐺 ≥ 3𝑘𝑘 𝑑𝑑 + 1 , then it is a yes-instance.

Parameter: 𝑘𝑘 + 𝑑𝑑 (# of tokens 𝐼𝐼0 = 𝐼𝐼𝑟𝑟 ≤ 𝑘𝑘 and max degree Δ 𝐺𝐺 ≤ 𝑑𝑑)

FPT algorithm for Token Jumping

 Output “yes” if 𝐺𝐺 satisfies the condition.

2. Kernelize a given instance into an FPT size
 This step is executed only when 𝑉𝑉 𝐺𝐺 < 3𝑘𝑘 𝑑𝑑 + 1
 Thus, 𝐺𝐺 is of an FPT size already

3. Construct the solution space by the brute-force manner
 # of independent sets in 𝐺𝐺 of size exactly 𝑘𝑘 can be bounded by

𝑂𝑂 𝑉𝑉 𝐺𝐺 𝑘𝑘 < 𝑂𝑂 3𝑘𝑘 𝑑𝑑 + 1 𝑘𝑘

 Solution space has an FPT size, and be constructed in FPT time. 
(We can check the reachability between 𝐼𝐼0 and 𝐼𝐼𝑟𝑟 by a breadth-first search.)



Parameterized complexity of Token Jumping 47

Parameter Graph class Result
# 𝑘𝑘 of tokens + 
max degree 𝑑𝑑

general FPT [IKOSUY14]

# 𝑘𝑘 of tokens only general W[1]-hard 
[IKOSUY14]

nowhere dense, 
bounded degeneracy
(includes planar, bounded treewidth)

FPT [LMPRS15]

[IKO14] also shows 
FPT for planar

[LMPRS15] D. Lokshtanov, A.E. Mouawad, F. Panolan, M.S. Ramanujan, S. Saurabh. 
Reconfiguration on sparse graphs. Proc. WADS 2015, LNCS 9214, pp. 398-409 (2015)

[IKOSUY14] T. Ito, M. Kamiński, H. Ono, A. Suzuki, R. Uehara, K. Yamanaka. On the parameterized 
complexity for token jumping on graphs. Proc. TAMC 2014, LNCS 8402, pp. 341-351 (2014)

[IKO14] T. Ito, M. Kamiński, H. Ono. Fixed-parameter tractability of token jumping on planar 
graphs. Proc. ISAAC 2014, LNCS 8889, pp. 208-219 (2014)

[Independent set reconfiguration (Token Jumping)]
• feasible solutions:  independent sets of size exactly 𝑘𝑘
• adjacency relation:  move a single token



FPT algorithms with length parameter 48

A.E. Mouawad, N. Nishimura, V. Raman, M. Wrochna. Reconfiguration over tree 
decompositions. Proc. IPEC 2014, LNCS 8894, pp. 246-257 (2014)

𝑣𝑣

Token Jumping for trees
(solvable in P, though)

Store what happens at the 𝒊𝒊-th step, 𝑖𝑖 ∈
1,2, … , ℓ , of a reconfiguration sequence 

by distinguishing the following three:
• touched token on the separator 𝑣𝑣
• touched token on a vertex inside 𝑇𝑇𝑣𝑣
• touched token on a vertex outside 𝑇𝑇𝑣𝑣
all possible patterns can be bounded 

by 𝟑𝟑ℓ, and hence the size of DP tables 
can be bounded by an FPT size. 

DP methods work nicely when the length ℓ of a sequence is taken 
as the parameter. 

𝑇𝑇𝑣𝑣

Thm: For every search problem expressible by the Monadic Second-
Order Logic, its reconfiguration is in FPT when parameterized 
by treewidth and the length ℓ of a reconfiguration sequence.

1 2 3 4 … ℓ

In Out 𝒗𝒗 In … 𝒗𝒗



Future work (from my viewpoint …)
49

[2002 – 2012]
• Negative results (PSPACE-completeness)
• Sufficient conditions for yes-instances
• Algorithms obtained using mostly greedy methods

[2013 – now]
• Algorithm methods capturing the solution space

 Dynamic programming
 Fixed-parameter tractability (FPT)

We now have techniques/results for both negative & positive sides!

• Clarify relationships on complexity between search problems
and their reconfiguration problems?

[General Question]



Search problem vs its reconfiguration problem 50

For many NP-complete search problems, 
their reconfiguration problems are PSPACE-complete. But, …

Search Reconfiguration
3-coloring NP-complete P

L(2,1)-labeling with 5 colors NP-complete P

path?

given
given

Difficult to find one solution Easy to check the reachability

Our advantage: initial & target solutions are given as an input
check only polynomial number of solutions around them! 

There are exponentially many solutions, 
but each connected component of the 
solution space is of polynomial size. 



51

For several search problems in P, 
their reconfiguration problems are also in P. But, …

Search Reconfiguration
4-coloring for bipartite graphs P PSPACE-complete

shortest path P PSPACE-complete

path?

given
given

Easy to find one solution Difficult to check the reachability

So far, I don’t have intuitive explanations to what 
makes these problems difficult in reconfiguration… 

Search problem vs its reconfiguration problem



Future work (from my viewpoint …)
52

[2002 – 2012]
• Negative results (PSPACE-completeness)
• Sufficient conditions for yes-instances
• Algorithms obtained using mostly greedy methods

[2013 – now]
• Algorithm methods capturing the solution space

 Dynamic programming
 Fixed-parameter tractability (FPT)

We now have techniques/results for both negative & positive sides!

[General Question]
• Clarify relationships on complexity between search problems 

and their reconfiguration problems?  
• Give a (sufficient) condition for which the DP method yields 

a polynomial-time algorithm?
• Shortest variant?



Shortest variant 53

[2015 – now]
• Algorithms for shortest variant, capturing “detours”

 SAT reconfiguration [MNPR15]
 Independent set reconfiguration (Token Sliding) for caterpillars [YU16]

asks for the length of a shortest reconfiguration sequence.

110 111

101

001000

010 011

Solution space
for a SAT formula

[Difficult point]
Even though 𝑧𝑧 = 0 in both initial & target, 
we need to flip 𝑧𝑧 once for the feasibility.  
Almost all previously known algorithms for shortest 
variants touch only the symmetric difference
 no detour. 

[MNPR15] A.E. Mouawad, N. Nishimura, V. Pathak, V. Raman. Shortest reconfiguration paths 
in the solution space of Boolean formulas. Proc. ICALP 2015, LNCS 9134, pp. 985-996 (2015)
[YU16] T. Yamada, R. Uehara. Shortest reconfiguration of sliding tokens on a caterpillar. Proc. 
WALCOM 2016, LNCS 9627,  pp. 236-248 (2016)



Conclusion 54

[2002 – 2012]
• Negative results (PSPACE-completeness)
• Sufficient conditions for yes-instances
• Algorithms obtained using mostly greedy methods

[2013 – now]
• Algorithm methods capturing the solution space

 Dynamic programming
 Fixed-parameter tractability (FPT)

[2015 – now]
• Algorithms for shortest variant, capturing “detours”

 SAT reconfiguration
 Independent set reconfiguration (Token Sliding) for caterpillars

We now have techniques/results for both negative & positive sides!

… but, we still have several interesting open problems!
Let’s collaborate!!


	Invitation to �Combinatorial Reconfiguration
	Self-introduction again
	Self-introduction again
	Combinatorial Reconfiguration
	Search problem
	Enumeration problem
	Combinatorial Reconfiguration
	Combinatorial Reconfiguration
	Motivations
	Motivations
	Adjacency relation
	Independent set reconfiguration
	Independent set reconfiguration
	𝑘-coloring reconfiguration
	𝑘-coloring reconfiguration
	Adjacency relation
	History of combinatorial reconfiguration (from my viewpoint …)
	PSPACE-completeness
	Reconfiguration problems in PSPACE
	PSPACE-hardness
	PSPACE-hardness
	Reduction for preserving the reachability
	Reduction for preserving the reachability
	Reduction for preserving the reachability
	PSPACE-hardness
	Hardness results for graph classes
	Complexity of 𝑘-coloring reconfiguration
	History of combinatorial reconfiguration (from my viewpoint …)
	Sufficient condition for 𝑘-coloring reconfiguration
	Sufficient condition: Other examples
	Sufficient condition: Other examples
	History of combinatorial reconfiguration (from my viewpoint …)
	Greedy algorithm
	Greedy algorithm for matching reconfiguration
	Greedy algorithm: Other examples
	History of combinatorial reconfiguration (from my viewpoint …)
	Dynamic Programming
	DP algorithm for list coloring reconfiguration
	DP algorithm for list coloring reconfiguration
	DP algorithm for list coloring reconfiguration
	DP algorithm: Other examples
	History of combinatorial reconfiguration (from my viewpoint …)
	FPT algorithms for reconfiguration problems
	FPT algorithm for Token Jumping
	FPT algorithm for Token Jumping
	FPT algorithm for Token Jumping
	Parameterized complexity of Token Jumping
	FPT algorithms with length parameter
	Future work (from my viewpoint …)
	Search problem vs its reconfiguration problem
	Search problem vs its reconfiguration problem
	Future work (from my viewpoint …)
	Shortest variant
	Conclusion
	スライド番号 55
	スライド番号 56
	Combinatorial Reconfiguration
	スライド番号 58
	History of combinatorial reconfiguration (from my viewpoint …)
	Greedy algorithm
	Greedy algorithm for matching reconfiguration
	Greedy algorithm for matching reconfiguration
	Greedy algorithm for matching reconfiguration
	Greedy algorithm for matching reconfiguration
	Greedy algorithm for matching reconfiguration
	𝑘-coloring reconfiguration and its generalization



