ALGORITHMS FOR EDGE-COLORING GRAPHS

.N. Gabow
Nishizeki
Kariv
Leven
Terada

oo xI

TECHNICAL REPORT 41/85
September1985

Algorithms for Edge-Coloring Graphs

Harold N. Gabow !
Takao Nishizeki?
Oded Kariv 3
Daniel [even
Osamu Terada ®

4

ABSTRACT

In this paper we present some algorithms for edge-coloring
simple graphs. Three algorithms for edge-coloring a general graph
by d+1 (or d) colors have complexities of O(|£]||V]).
O(|E|.d.log | V]) and O(|E|V]V]log[V]) respectively (all of them
use O(|E|) space). The first algorithm can also find d-coloring for
the following families of graphs: (1) all the planar graphs with
d > 8; (2) all the series-parallel graphs with d > 4; and (3) almost
all random graphs. We also show that every series-parallel graph
except odd cycles has an edge-coloring with d colors and present
some NP-completeness results related to the edge-coloring prob-
lemn.

1. Computler Science Dept., University of Colorado, Boulder, Colorado 80309, U.S.A.

2. Department of Electrical Communications, Tohoku University, Sendai 880, Japen.

3. Partially affiliated with the Computer Science Dept, Tel-Aviv University, Israel. (part of this
work was done while affiliated with the Comp. Sci. Dept. of the Technion, Haifa, [srael).

4, Computer Science Dept., School of Math. Sciences, Tel-Aviv University, Tel-Aviv, [srael.

5. Sapporo Power Office, The Hokkaido Electric Power Co. Inc. Sapporo, Hokkaido 065, Japan.

AT ST A A B AT TR

Mou 37 Ceut 3 S IRTo R Sors SR ELRY R LR U T R e M N e R

Algorithms for Edge-Coloring Graphs

Harold N. Gabow !
Takao Nishizeki?
Oded Kariv 3
Daniel Leven *

Osamu Terada ®

1. Introduction

The edge-coloring problem is simply stated: Color the edges of a given sim-
ple graph G using as few colors as possible, so that no two adjacent edges
receive the same color. The problem arises in many applications, including per-
‘mutation networks [LPV], preemptive scheduling of an open shop [Go].[GS].
preemptive scheduling of unrelated parallel processors [LL] and the class-
teacher timetable problem [Gt]. In view of the potential applications, it would
be useful to have an efficient algorithm capable of coloring any graph G with this

minimurmn number of colors (called the chromatic indez of G and denoted by

g*(G)). Unfortunately no such efficient algorithm is currently known for the
general case. Moreover, recent work has shown that the edge-coloring problem
belongs to the class of "NP-complete” problems [H], therefore it seems unlikely

that any such polynomial-time algorithm exists [AHU], [GJ].

1. Computer Science Dept., University of Colorado, Boulder, Colorado 80309, U.S.A.

2. Department of Electrical Communications, Tohoku University, Sendai 980, Japan.

3. Partially affiliated with the Computer Science Dept, Tel-Aviv University, Israel. (part of this
work was done while affiliated with the Comp. Sci. Dept. of the Technion, Haifa, Israel).

4. Computer Science Dept., School of Math. Sciences, Tel-Aviv University, Tel-Aviv, Israel.

5. Sapporo Power Office, The Hokkaido Electric Power Co. Inc. Sapporo, Hokkaido 065, Japan.

-2-

Vizing proved that in simple graphs, either ¢*(G) = d or ¢*(G) = d +1 where
d is the maximum vertex degree of G ([FW],[V64]). Special cases which can be
colored with d colors are bipartite graphs (for which eflicient algorithms exist:
[GK1]. [GK2], [CH]). cubic bridgeless planar graphs (whose edge-coloring in
three colors is equivalent to the four color problem) and planar graphs with
d = 8 [FW]. For the case of planar graphs of degree d = 8 or 9, the algorithm

presented in this paper is the first to be published.

Extension of the edge-coloring problem is the problem of edge—coior"mg
multigraphs. Vizing's Theorem [V65a], [FW] gives bounds on the minimum
number of colors which are required for that case and efficient algorithms are
present in [GS], [GK2] and in [NS]. Another direction of generalization of the

edge-coloring problem is presented in [HK].

In this paper we present several algorithms for edge-coloring simple
graphs. In Section 2 we introduce some of the terminology and definitions used
throughout the paper. A basic algorithm, COLOR, which is not new, but is an
implementation of the standard proof of Vizing's Theorem, is introduced in Sec-
tion 3. This algorithm colors the edges of an uncolored simple graph with d+1
(or d) colors and requires O(|E||V]|) time and O(|£|) space. Although this
algorithm is fairly well known, it is formulated and included in this paper
because it serves as a subprocedure and is used io define some basic data struc-
tures used by all the (new) algorithms that we introduce in this paper. A new and
eflicient algorithm PARALLEL-COLOR that colors the edges of a simple graph wilh
d+1 (or d) colors in O(|EF|.d log|V]|) time and O(|E|) space is described in
Section 4, and another new and efficient algorithm that does the same job in -
O(|E|VTV]log TV]) time and O(]E|) space is described in Section 5. In Sections
8 and 7 we deal with special families of graphs for which d-coloring exists. First,

an elgorithm ALCOLOR that edge-colors an arbitrary graph G with d+1 (or d)

-3-

colors in O(|E]|V]|) time and O(|E|) space is introduced. Although in general
this algorithm has worse complexity than the previous algorithms, yet it consti-
tutes a significant contribution to the field: In Section 7, it is shown that
ALCOLOR edge-colors with d-colors a large class of graphs, including: (1) all
planar graphs with 4> 8: (2) all series-parallel graphs with @ > 4; and (3) almost
all random graphs. (note that on planar graphs the complexity of that algorithm
is 0(|V|?). 1t is also shown that every series-parallel graph, except odd cycles,
can be edge-colored with d colors (a generalization of Fiorini's result on outer-
planar graphs [F]). Although for some of those classes of graphs (e.g. planar
graphs of degree B or 9) it was dlready known for some time that they are edge-
colorable by d colors, to the best of our knowledge no formal algorithm for that
purpose was ever published. We conclude by presenting in Section 8 some NP-
completeness results concerning edge-coloring of regular graphs and res-
tricted edge-coloring problems. Some of the results presented in this paper
were previously mentioned in [GK3].

We refer the reader to a comment‘ appearing at the end of the paper in
which a comperison of this paper with a similar paper by E. Arjomandi [A] is

given.

2. Terminology and Definitions

In this section we introduce some of the terminology and definitions that we
use throughout this paper.

Throughout the paper G = G(V,E) denotes a given simple graph with vertex
set V and edge set £, having no multiple or self-loop edges. We denote by d{v)
the degree of vertex v€V. The maximum degree of G is denoted by d(G) or sim-
ply d. A vertex adjacent with vertex v is called a neighbor of v. An edge joining
vertices u and v is denoted by uv. The graph obtained from G by deleting

(resp. adding) edge uv is denoted by G-uv (resp. G+uv). For ScV, G-S

- 4 -

denotes the graph obtained from G by deleting all the vertices in S and the
edges adjacent to them. An edge-coloring of G with at most k colors is called a
k-coloTing of G. Suppose that the edges of G are colored with a given set of
colors. If color & in the set is not used for any of the edges incident with vertex
v, then we say that a is missing at v. We denote by M(v) the set of all the
colors missing at v (later we shall define a specific data structure to implement
M(v)). Denote by G[a,f] the subgraph of G induced by the edges colored with
colors a and §. Clearly each component of G[a,f8] is a path or cycle, in which
edges are colored alternately with a and #. We call such a path (resp. cycle) an
af-path (resp. aB-cycle). A vertex v is an end-point of such an af-path if and
only if either a€M(v) or peM(v). Interchanging colors a and # in a component

P of G[a,B] yields another coloring of G with the same set of colors and is called

a f_iig of P.

Suppose that all the edges of G except vw have been colored with a set of
d+1 colors. Clearly both v and w have at least two missing colors, and each of
the other vertices have at least one. We associate with each vertex v_one of the
missing colors of v, denoted by m (v) and called the missing color of v (actually,
m{v) will be the first color in the list which implements M(v)). A fan sequence
F at w starting with wv is a sequence of distinct edges wv = wzgwz,, .. ., wr,
such that for each 1 €1 <5 wz; is colored with m(z;_,). We say that w is the
center of the fan and that the z;'s are its leaves. If F' is a maximal fan sequence
at w, then one of the following must occur:

Case (1): the missing color of z, is also missing at w, that is, m(x,)eM (w); or

Case (2): an edge wz;4; (0 < j <s—1) of F is colored with m (zy) (thus
m (z;) = m.(z,).

Note that F’ consists of a single uncolored edge wv if m(v)eM(w).

-5 -

A shift of a fan F’ from z; means to circularly shift the colors of the edges
WL oW ,...... ,wz;. That is, for 0< j <1 wz; gets color m(z;) and wz; becomes

uncolored. This gives another k-coloring of G.

3. Algorithm COLOR

On the basis of a constructive proof of Vizing's theorem ([Bo], [FW]) it is
rather easy to give a polynomial-time (say, O(|F [?)) algorithm for coloring a
graph with d or d+1 colors. However it is less trivial to give more efficient algo-
rithms. In this section we present an algorithm COLOR whose time complexity is
O(|E||V|) and whose main significance is in the fact that it serves as a basic
subprocedure in all the algorithms presented in this paper and it is used to
define some basic data structures that are applied by all the (new) algorithms

which are introduced in this work.

Procedure COLOR (G) :
{G is a graph of maximum degree d; The edges of ¢ may all be uncolored
or some of them may be colored. The algorithm completes the coloring
of the edges of G in d+1 colors]
_while there exists an uncolored edge vw in G do
RECOLOR(vw)
end COLOR;
The procedure RECOLOR(vw) colors an uncolored edge of G in one of the
d+1 colors.
Procedure RECOLOR(vw)
1. let F=[wv = wzgwz,, ..., wz,] be a maximal fan sequence F at w

starting with the uncolored edge wv; Let a = m{w) and g = m.(z,).

PRI I ST O LD 2 LU TSRS I SN P DT M T M SR TR VR W T A N PR N KA NN A LT DT T A

R._if feM(w)
then begin {Case(1)]
3. shift F from z,; {now z, is uncolored]
4. color wz, by 8.
end_
else begin {Case (2): f% M (w)]
5. let P be the af-path that starts at z,; {7 may be empty]
8. if P does not reach (and thus terminate at) w
_then begin
7. shift F from zg; {now wz, is uncolored]
8. flip P; {now m(zg) = aj
9. color wzg by a;
end_
10.letx, ,0<t < s—1 be the vertex for which
m(z;) = B = m(x,); {namely, wz;,, has color B
and it is the last edge of P{
11. let P’ be the af-path that starts at z;;
12. shift F' from z;; {now wz; is uncolored]
13. flip P'; tnow m(z,) = al

14. color wz, by a;

end
end
end RECOLOR.

We have the following theorem on COLOR.

Theorem 3.1 Algorithm COLOR edge-colors an arbitrary uncolored graph

G=(V.E) withd or d+1 colors in O(|£||V|) time, using O({ £ |) space.

Proof:

(a) Correctness: omitted since it follows the proof of Vizing's theorem ([Bo].
[FW]).

(b) Space: We use the following main data structures.

(1) Adjacency Lists: G is represented by adjacency lists, each containing the

edges incident with a certain vertex v. These use O(|£'|) space.

() An Array of Missing Colofs: The function m(.) is represented by an array
m[.] of length | V].

' (8) Color Lists: Each list is a doubly-linked list and contains the edges colored

" with the same color. It is convenient also to keep one more list of the

uncolored edges. Thus these d+2 lists use in total O(|E'|) space.

(4) An Array of Pointers: This is an array of |E | entries, each of them consists
of 3 pointers: The entry which corresponds to the edge e = uv of G contains
2 pointers to the entries in the adjacency lists of v and v where edge e

resides, and a third pointer to the appropriate entry in the color lists.

An edge uv colored with a appears in the adjacency lists for u and v and
also in the color list for a. These three elements are linked to each other by the
uv-th entry in the array of pointers so that each can be directly accessed from

another. Clearly these devices use O(|£|) space in total.

(c) Time: Clearly one can initialize the color lists and the array m[.] for a given
graph (including an uncolored one) in O0f | £]) time. Thus, it suffices to show that
one execution of RECOLOR can be done in 0(|V]|) time, since (for an initially

uncolored graph) COLOR repeats RECOLOR |E | times.

We first show that the fan sequence F at w can be found and shifted in
0(d(w)) time as follows: Before entering RECOLOR{vw) construct an array W of

length d+1 such that for each color 7 incident at w, W[y] contains the edge

-8 -

incident at w and has color y; and if ye M (w) then W[y] is undefined). Explor-
ing the adjacency list of w, one can construct # in 0(d(w)) time. Then one can
decide in 0(1) time whether a given color ¥ is missing at w, and also find the
edge colored with y if y# M(w). Using arrays m[.] and #[.], one can easily find
F and also shift it in 0(d(w)) time. Note, that Arjomandi [A] uses for this pur-
pose a vertex-color incidence matrix which results in an O(|V|d) term both in
the time complexity of the algorithm and in the space it needs (see comment at
the end of the paper).

Using the color lists, one can easily constructs the af-subgraph G[a.8] in
0(| V|) time, since it contains at most | V| edges. Furthermore, one can also
construct in O(| V|) time an af-path P and flip it.

Thus we have shown that one execution of RECOLOR can be done in 0(|V])
time. and the whole procedure COLOR (on an uncolored graph) requires
O(|E||V]) time.

QE.D.
Since RECOLOR is a basic procedure that serves as a subprocedure in all the

algorithms presented in this paper, we emphasize the following fact.

Corollary 3.1: RECOLOR(vw) colors an edge vw in O(|V|) time, using O(|£])

space (provided the color lists and m[.] are initialized).

4. Algorithm PARALLEL-COLOR

In this section we present the first of the two new efficient algorithms which

color the edges of a (general) graph by d+1 colors. This algorithm, PARALLEL-

(+) If at the beginning of COLOR we define the vector W and assigntoell d +1 entriesof ¥ a
value indicating that their corresponding color is missing, and each time we return from
RECOLOR(UW) we reassign this special value to all d(w) entries which were used in ¥,
then W [v] would also indicate if ¥ is missing at w. Otherwise, the value of #[7] may be
undefined and thus one more check is necessary to find whether color 7 is missing at W or
not. -

-9-

COLOR (which is an extension of COLOR), colors edges in "parallel” and has com-
plexity of O(|E|.d.log | V|). The second algorithm EULER-COLOR is presented in

the next section.

We start by defining a new type of fan sequence, an "uncolored fan" (or "u-
fan"). In order to distinguish a u-fan from the fan which was defined and used in
the previous sections, we shall refer in this section to the latter as "colored fan"

(or "c-fan"). For convenience we restate here the definition of a c-fan:

() An af-c-fan is a sequence of edges wzgwz,,. wzr,, such that wz, is
" uncolored and each wz; (for 1 <1 <s) has color m(z;_,). We also assume
that m (w) = a while for each z; (0<i<s) a¥g M(z;). Also, m(z,) = B and
either feM (w) (that is, case (1) in RECOLOR) or for some t (0 <t <s—1)
geM(z,) (that is, case (2) in RECOLOR). We refer to w as the center of the

fan and to the z;'s as the fan's leaves. A shift of a c-fan from z; means that

every edge wz; (for 1<j <1i) gets color m(z;) while wz; itself becomes

uncolored.

(b) An_af-u-fan consists of a central vertex (roét) w and peripheral vertices
(leaves) z,,x5,....7zs, where s > 2, such that all edges wz; (1 <1 <s) are
uncolored and for each z; (1<1 <s) acM(z;) but ag M(w) (that is, an
edge colored a is incident to w). 8 is an arbitrary color of the (at least) s +1
colors missing at w: BE{Y 1. Y2, - . . . Ys+1] C M{(w).

The idea behind the definition of the af-u-fan is to use RECOLOR in order to
augment a large number of af-c-fans "in parallel”. Namely, to compute a large
number of af-c-fans and then to augment all of them. For this to work, the [ans
must be vertex disjoint, for otherwise the augmenting of one fan can destroy (an
arbitrary number of) other fans, forcing fans to be recomputed and thus losing
the advantage of parallelism (see in this context the comment at the end of the

paper regarding Arjomandi's paper [A]). So we need a mechanism to allow the

-10 -

creation of a large number of vertex disjoint c-fans: This is the u-fan. We see
below (procedure MAKE-S) that when c-fans intersect, they can be converted

into a u-fan that allows the uncolored edges to be augmented as follows:

Procedure U-AUGMENT(U,ag)
{U is an aB-u-fan wz |, wz,,...., wz, where f is some color missing at w|{.
1. let P be the af-path that starts at w. {P starts with an edge of color aj.
2. flip P;
3.__11’ does not end at z,
4. then color edge wz, with a
S. else color edge wzx, with a.

end U-AUGMENT,

We now outline the algorithm which consists of stages each of which is
characterized by a certain color a. Each stage is further divided into ag-
substages , one substage for each pair of colors af. In an af-substage the algo-
rithm simultaneously augments as many af-fans (c-fans and u-fans) as possible.
The algorithm executes a stage for each color and then repeats itself until all

edges are colored.

Procedure PARALLEL-COLOR

fthis algorithm finds a (d +1)-coloring on a graph].
begin

1. awhile there are uncolored edges do

2. for each color a do_
_begin {lines 3-6 below are a's stage]
3. color by a a maximal number of edges missing a at both
ends;

4. MAKE —-S; {MAKE-S constructs a collection S of vertex-

_11-

disjoint c-fans and u-fans of type af (where B ranges
over all colors B#a). S contains an uncolored edge
incident to each vertex in G thal misses a and is on an
uncolored edge. Notice that the coloring may change
while constructing S§.
5. for each color g (f#a) do
fline 6 below is af's substage}.
6. augment as many af-fans of S as possible;

end

end PARALLEL-COLOR;

We show that PARALLEL-COLOR can be implemented in time

O(|E|.d.log | V]|). For this, we implement a “set” of stages (lines 2-6) to color
> -é—-of the remaining uncolored edges, with one stage (lines 3-8) taking O(|£!)

time. This implies that there are O(log | £|) "sets" of stages and since each such

set contains d +1 stages (one stage per color) the total time is O(| £ |.d.log | V|).

The basic data-structures that we use for PARALLEL-COLOR are the same as
those used in COLOR, namely, color lists and an array m/[.] of missing colors
such that for each veV, m(v) is one of the colors missing at v. As mentioned we
also maintain a list of all the uncolored edges (this list may be regarded as one
of the color lists except that its size is O(|£|) rather than O(|V])). More data-
structures will be described later.

Using the list of edges colored by a, we can find in O(|V}) time all the ver
tices missing that color. Thus, step 3 in PARALLEL-COLOR can be done in O(|£'|)

time (including Lhe updaling ol lhe dala structures).

The crucial steps are, of course, lines 4 and 8 which we now discuss: Step 4
is a procedure MAKE-S that constructs the set S of vertex-disjoint fans. It forms

c-fans one by one, converting intersecting c-fans into u-fans, so that fans stay

et Lt E R R N A

4P b s o e e T o TR MRS B L R T T S b P e e B e a e e L L m ek e e ama e e

P T A RTINS S S A S

-12 -

vertex-disjoint (see comment at the end of the paper regarding the algorithm in
(AD).
Procedure MAKE-S
4185 « ¢,
4.2 for each vertex w, such that w does not belong to any fanin S,
w misses a and w is incident to an uncolored edge e do
4.3 let F be an aB-c-fan with wry=e (where g is any color that
comes up during the construction of the fan);
4.4 if no leaf of Fisina fanof S
4.5 then S « SULFY;
4.6 let z; be the first leaf of F" which belongs to
another fan F' in S whose center isw';
4.7 if F'is an ay-c-fan
4.8 then begin {by the definition of an ay-c-fan z;
must be a leaf of F'{
4.9 shift F from zy;
4.10 shift F' from z;;
4.11 let T be a new u-fan with center
z; and leaves w and w',
fag M(z;) ., acM{w), aeM(w")}:
412 S « SUIT}—{F}={FY.

end

4.13 else begin { ' is an ay-u-fan and by its definition

z; must be its center}.

AL a3 R 8T AT N AV 2 Tt e T et T S AT T

B T e LY = Y R B L RIS I Lk

_13-

4.14 shift F from z;;

4.15S « S={FY;

4.16 enlarge F' by including z;w in it
(withw as a leaf)

end

end

end

end MAKE-S;

We now prove that MAKE-S fulfills the specifications of line 4 of PARALLEL-~

COLOR:

Lemma 4.1: After the loop of line 4.2 is executed for w = w; , 1 <1 < k for some
k., S is a collection of vertex-disjoint af-fans (for g ranging over colors other

than a), containing an uncolored edge incident to each w;.
Proof:
By induction (note that because of line 3 of PARALLEL-COLOR, the only pos-

sible intersections between F and another fan F' of S are those described in

lines 4.8 and 4.13 of MAKE-S).
Q.E.D.

Before we proceed to prove that MAKE-S has time complexity O(|E|), we
describe more data-structures needed to implement MAKE-S. Each fan in S can
be maintained as an ordered list of its edges plus its center and its type (c- or u-
fan). The ordered list is implemented as a doubly linked list so that it can be
traversed forward and backwards and so that insertions and deletions from it
take 0(1) time. Since the fans are vertex-disjoint it is convenient to maintain a
vector of length | V], such that its v-th entry, which corresponds to a vertex v,
indicates the following: (a) Whether the vertex belongs to a fan in S or not, (b) If

the vertex belongs %o a fan in S then whether it is a center or a leaf, (c) If it is a

N N A A DR TGN AL T AN DY L TSI ek by T s NN T @ e e e R TG B e i

-14 -

leaf then which vertex is the center of the fan, and (d) If it is a center of the fan
then it points to the ordered list in which the fan is maintained. Finally, S itself
is maintained as a doubly linked list of the centers of its fans, such that inser-

tions and deletions can be done in O(1) time.
Lemma 4.2: MAKE-S has time complexity O(| £ |) and requires O(| E|) space.

Proof:

Step 4.1 (the initialization of the data structure) requires O(|V]) time. We
already saw that Step 4.2 can be done in O(|E|) time (see implementation of
line 3 of PARALLEL-COLOR). Step 4.3 can be implemented in O(d(w)) time for
each vertex w (see the implementation of RECOLOR), and thus the total time of
Step 4.3 in MAKE-S is O(|E |). The construction of a ¢-fan in Step 4.3 need not be
completed but can be stopped the first time we reach a leaf x; which belongs to
another fan F' in S. Thus, Steps 4.4, 4.5 and 4.6 take O(1) Lime per fan or
O(]V|) time in total. The shifts of Steps 4.9, 4.10 and 4.14 take O(d(w)) time per
fan whose center is w. Since such a shift can be done around a certain vertex w
only once (for after the shift w becomes a leaf of a u-fan) the total time for
those shifts during the whole execution of MAKE-S is O(|£|). Steps 4.12 and
4.15 may also require O(d(w)) time per fan, that is a total of O(|E|) time. The
other steps of MAKE-S (lines 4.7, 4.8, 4.11, 4.13 and 4.16) require O(!) time per

fan or O(] V|) time in total.

The space bound follows from the discussion of the data-structures above.

Q.E.D.

We now turn to lines 5-6 of PARALLEL-COLOR: In line 6 (which we call "a sub-
stage" for af) we want to augment "in parallel” as many af-fans as possible.
However, in order to reach the desired complexity for PARALLEL-COLOR lines 5-6
must be done in O(|£|) time. Unfortunately, we have not found a way to aug-

ment in line 5 all af-fans "in parallel”. The problem is that when we augment an

e T AR A TN PRI TN LA M ONTRY I TR D S U AN VMO IR £ LA B A N A e

- 15 -

af-fan F', we usually flip the colors of some aBf-path which starts at F'. However,
the other end-point of this path might belong to another fan F', and thus when
we later augment F', we shall traverse that same path again, thus violating our
time constraints. Moreover, the flip of the af-path and the coloring of an
uncolored edge, can cause 3 af-paths to be concatenated into one af-path
which thus may be traversed many times (if the process of concatenation of that

path would repeat itself). So we must give up the augmentation of_all ag-fans,
and we settle instead for a fixed fraction (é—-). The approach is to repeatedly aug-

mént a fan F and remove from S all other fans that are invalidated by the

change in coloring and the flip of an af-path that starts at F'.

Now, before we describe the implementation of an af-substage (line 8), we
have to prepare some data structures to enable an efficient implementation.
Whal we need are d lists, such that for each color 8 (8 # a) we shall have a list
which contains all ag-fans in S. There is no problem to build such lists for all
aB-c-fans in S. However, since each u-fan may belong to more than one such list,
more careful treatment is required in order not to violate the O(|E|) complex-
ity.

Procedure PRE-SUBSTAGE
begin
5.1 for each vertexv eV do
5.2 let ALPHA(v) be the edge of color a incident at v if such an
edge exists;
5.3 Arrange all colors g such that f#a in some arbitrary order: §,.8z2....-Bq4-
5.4 for each vertex w, which is the center of some u-fan in S_do
open an empty list CLR(w); {CLR(w) will contain all colors #a
incident at w arranged according to the order of step 5.3}

5.5 for i=1step 1 until d do

VTN e ke el

-16-

begin
5.8 for each edge (u,v) of color 8, do
5.7 u [resp. v] is the central vertex of a u-fan in S

5.8 then add g, at the end of CLR(u) [resp. CLR(v)];

end

5.9 for each vertex w,which is the center of some u-fan in Sio_

begin

5.10 let d'(w) be the number of uncolored edges incident at w.
5.11 open an empty list MISS(w); {MISS(w) will contain the first
d'(w) colors missing at w

5.12 for i=1 step 1 until d while MISS(w) has less than

d'(w) colors do -
5.134f B is the first color in CLR(w)
5.14 then CLR(w) « CLR(w) - {8,}
5.15 else MISS(w) « MISS(w) U {8}
{B. is inserted at the end of MISS(w)]
end

end

5.16 for i=1 step 1 until d do open an empty list Sap,:

{Sap, will contain the af;-fans of S}
5.17 for each fan Fin S do_

5.18__12f__F is an af-c-fan

5.19 then Sap « Sap ULFY

_else begin
5.20 let w be the center of F;

- preve O B B a2 T R L B R e e A ST T

-17-

5.21 let 8 be the first color of MISS(w);
5.22 S‘,p - SaﬁU{F;;
5.23 MISS(w) « MISS(w) - {81;

end

end

end PRE-SUBSTAGE;

Lemma 4.3: PRE-SUBSTAGE requires O(|E|) space and has time complexity
O(|E1).

Proof:

For each vertex w such that w is a central vertex of some u-fan in S,
|CLE(w)| + |MISS(w)]| = d(w), and thus the total space that all lists CLR(.)
and MISS(.) require is O(|E|). The total space that the lists S,p require is
O(|V]). The vector ALPHA[.] also needs O(|V|) space. Thus, PRE-SUBSTAGE
requires a total of O(|E|) space.

Steps 5.1 and 5.2 can be accomplished in O(| V) time using the list of edges
colored a. Step 5.3 requires O(d) time and Step 5.4 requires O(|V}]) time. The
loop of Steps 5.5 - 5.8 can be done in O(|E|) time (using the color lists men-
tioned in the previous section). For each w the execution of the loop in Steps
5.10 - 6.15 requires O(d(w)) time, and thus the whole execution of Steps 5.9 -
5.15 requires O(|FE]) time. Step 5.16 takes O(d) time and finally the loop of
Steps 5.17 - 5.23 requires O(|V]) time. Thus, the total lime complexity of PRE-

SUBSTAGE is O(|E 1).
Q.E.D.
In view of PRE-SUBSTAGE we now reformulate PARALLEL-COLOR as follows:

Procedure PARALLEL-COLOR;

{this algorithm finds a (d +1)-coloring on a graphj.

-18-

begin
1. awhile there are uncolored edges do
2. Jor each color a do
begin {lines 3-8 below are a's stage}
3. color by @ a maximal number of edges missing « at both
ends;

4. MAKE-S;

5.a PRE-SUBSTAGE;

5.b for i = 1 step 1 until d do

6. SUBSTAGE(ap:);

{SUBSTAGE(aB;) augrhent.s as many af; fans of
S as possible and updates the necessary data

structures)

end
end PARALLEL-COLOR;

Before we give a detailed description of SUBSTAGE we define (for each given
pair of colors a,B;) the following subgraphs: Let Hp be the subgraph which con-

sists of all edges and vertices of fans in Sap, Let Hap, be the subgraph which

consists of all edges {and thcir endpoints) that lie on af;-paths which start at

vertices of Hp (however, we exclude from Hgp, those edges which belong to Hp
itself). Hap, isin fact a union of disjoint af;-palhs. We can further partition Hag,
into two subgraphs: Let H, be the set of all af;-paths in Hgp, that consists of one
single edge of color a, and let Hg = Hap, — Hgy (e, Hg, is the set of all af;-

paths in Hap, that contain at least one edge of color £;).

As we shall see, only the subgraph of G which consists of Hp, H, and Hg, is

needed for the execution of SUBSTAGE. However there is no need to explicitly

-19 -

construct all those three subgraphs but only the explicit construction of Hg, is

required.

Procedure SUBSTAGE(ag,)
8.0 construct the subgraph Heg,:
6.1 for each fan F€S,p do
62 Sap, « Sap,—F
6.3 if Fis a u-fan and has more than 2 edges
6.4 let w be the center of F;
6.5 let B; be the first color of MISS(w);
6.6 MISS(w) « MISS(w) - {8;4;
6.7 Sap, « Sap, ULF} |

end,

6.8 if Fis a c-fan

6.9 then RECOLOR(F'); {ALPHA[v] must be updated]

6.10 else U-AUGMENT(F"); {ALPHA[v] must be updated]

6.11 let e = (w,z) be the edge of F that was colored by RECOLOR
(after the shift was done) or by U-AUGMENT; {except for
case (1) of RECOLOR, ¢ has now color a}

6.12 let P, and Pz be the af;-paths that start at w and z

(where if one of those paths ends at a leaf of an af;-u-
fan then denote that path by P,;).
6.13 REMOVE(P,,F,afy).

6.14 REMOVE(P,, F.a8,);

A R AR

a3 e R PORT 135 TS 88T AT e e e e e

L N e

- 20 -

{REMOVE(P, F,af) removes or amends the fan that lies
on the other end of the af-path P|

_end

_end SUBSTAGE;
REMOVE(P.F,af;) is the following procedure:
Procedure REMOVE(P,F,af8;)
R.1 if both end-points of P belong to F'
R.2 then return.
R.3 let v be the end-point of P which does not belong to F;
R.4 if v does not belong to any fan in Sap, (for some k)
{tk =1, since S,,pj for 7 <1 are already empty)
R.5 then return
_else begin
R.6 let F' be the fan in Sap, to which v belongs;
R.7if F'is a u-fan having exactly two edges or
F'is ac-fan
R.Bthen S, ¢« Sap, — {F'] {see comment below]
R.9 else begin
{F' is a u-fan which has more than 2 edges]
R.103f v is a leaf of F"
R.11_ then remove from F' the edge wv
{where w is the center of F'{
R.12 else begin

fv is the center of F' and in this

case k =1}

DR T N A PR 2 TR e e T AN T B N S S e A e g Y B e PR T, P P ST LI WL e (MO A £ LA A 1 Lt i Tae e s e et e

-21-

R.13 Sap, « Sag, — 1F':
R.14 let B; be the first color of
MISS(v);
R.15 MISS(v) « MISS(v) - {8;1:
R.16 Sap, < Sap, ULF:
R.17 let P' be the af;-path that
starts at the first leaf z, of F”;
{by the notation of 6.12 v
itself is not on P'}
R.18 if the edge of P which is
incident at v has color §;
R.19 then color VI, by a and
update ALPHA[.]
R.20 flip P' and
update ALPHA[.];
R.21 color vz, by #;

end

R.22 REMOVE(P'.F'.af;)

_end
_end
end
end
end REMOVE;

{COMMENT: Actually in line R.8 of REMOVE(P,F,af;) it is not always necessary to

remove F' from Sap,. In fact if F'is a c-fan it is only necessary to remove F

from Sgg, in the following two cases: (i) when v is the center of F' and either the

SPTENTORS S e] v 3 B & NN L e R e,

-22-

last edge of P has color a or k = i; (ii) when v is a leaf of F', 7= = k and either
the last edge of P has color 8; or v is z; or z,. Also, when F' is a u-fan and v is
the center of F' it is possible to apply Steps R.12-R.22 of REMOVE rather than
execute R.8j.

lLemmma 4.4: The total time SUBSTAGE requires for the execution of one
stage (that is, the execution of lines 3-6 of PARALLEL-COLOR) is O(]£]). The

space required is also O(|E|).
Proof:

The only additional data-structure which is required for the execution of
SUBSTAGE (and REMOVE) is the data-structure which is needed for the construc-

tion of Hpy . Clearly, this data-structure requires at most O(| £ |) space.

In order to analyze the time complexity of SUBSTAGE(ag,;) we distinguish
between operations done on edges of the fans (edges of Hyp) and operations done

on af;-paths.

Consider, first, the operations done on the edges of fans (edges of Hr) and
on the fans themselves: First we note that whenever an af;-c-fan is referred to
in the procedures SUBSTAGE and REMOVE, it is immediately removed from S,
(lines 8.2 and R.B). Thus, the operation of shifting a c-fan (which may be done in
line 6.9) is executed at most once on each edge. The other operations on edges
of c-fans (for example, coloring an uncolored edge) are also done at most once
per edge and thus the total complexity of these operations during one stage of
PARALLEL-COLOR is O(|E|).

U-fans may be referred to more than once during the execution of
SUBSTAGE(ag;) in one stage of PARALLEL-COLOR (line R.11). Moreover, a u-fan

which is removed from Sog may be inserted into S,y (lines 6.7 and R.16). How-

ever, each time a u-fan is approached in SUBSTAGE and in REMOVE it loses at

_23-

least one of its uncolored edges (lines 6.10, R.8, R.11, R.19, R.21). Thus, during
one stage of PARALLEL-COLOR, the total time of operations done on u-fans

(except for operations done on af,-paths) is O(| £).

In order to compute the time required for operations on afy-paths we first
observe that any ag;-path that may be used in line 6.9 (execution of RECOLOR)
or in line 6.10 (execution of U-AUGMENT) is later computed explicitly in line
6.12. Thus, at most two af;-paths are constructed during SUBSTAGE for each fan
of Sap, and another afi-path P’ may also be constructed in line R.17 (but we
attribute the construction of P' to fan F' rather than to £). It follows from the
discussion in the previous paragraphs that during the whole execution of one
stage of PARALLEL-COLOR at most O(|£|) aB;-paths are computed.

Now, each of those af;-paths should be constructed (lines 6.9, 6.10, 6.12,
R.17), should be traversed (lines 6.9, 6.10, R.1, R.3, R.18) and may bc flipped
(lines 6.9, 6.10, R.20). Once Hpg, is constructed, and with the help of the vector
ALPHA[.], each of those operations requires time proportional to the length of
the path. An af;-path may also cause a call to REMOVE, where (except for
traversing the path in steps R.1, R.3 and R.18) only fixed number of additional
operations are done (recall that lines R.17 and R.20 are attributed to P’ rather
than to P). Thus the total number of operations done on the af;-paths is propor-
tional to their total length.

To proceed we shall now distinguish between af;-paths that belong to H,
and those that belong to Hg: The af;-paths that belong to H, are of length 1
and since there are at most O(]E|) of them, their total length, and therefore
the total complexity of operations done on them during one stage of PARALLEL-
COLORis O(|£]).

To compute the time required for operations on af;-paths that belong to

Hg,. let us denote by cg the number of edges having color g; when MAKE-S ends.

PR VO % XM AW I T 7 L ATACN B I 1 T ST e s b

Ao s S PO AR e 1 Bt e Iy ey e e s s

-24 -

Clearly, this number does not change until the beginning of SUBSTAGE(afy)
(although the edges themselves may be changed whenever a shift of a c-fan is
done). Now, using the list of edges of color §;, and the vector ALPHA[], the sub-
graph Hp can be constructed in step 6.0 in O(cg,) time and it does not change
during the whole execution of SUBSTAGE(ag,). Moreover, once a path of H,,‘ is
traversed, the fan at its first end-point is removed (in line 8.2 for P, and P; of
line 6.12, and in line R.13 for P' of line R.17) while if there exists a fan on its
other end-point it is either removed (in line 6.2 for the case of line R.1, in line
R.B for the case of line R.7, and in line R.13 for the case of line R.12) or the edge

at its other end-point which belongs to the fan is removed from the fan (in line

R.11 for the case of line R.10). Therefore, no path of Hg (or any part of it) is

processed more than once during SUBSTAGE(ag;), and the total number of

operations done on apf;-paths of Hg is proportional to the total length of Hg,
namely 0(03‘).

Summing up over all colors #; (1 < < d) we obtain
d d
Y 0(cp) = 0(Ycp) = 0(IE])
i=] i=1
which concludes the proof of lemma 4.4

Q.E.D.
Theorem 4.1:° PARALLEL-COLOR colors all the edges of G(V,E) in
O(|E|.d.log | V|) time and O(|£'|) space.
Proof:
The space bound follows immediately from Lemmas 4.2, 4.3 and 4.4.
The execution of PARALLEL-COLOR (lines 3-6) takes O(|£]) time (Lemmas

42 4.3, 4.4). If we could color in one stage « all uncolored edges that are

incident at vertices which miss color a (these are exactly all the uncolored

T E LT L N R N R SROLE T b RS AR

P B e N e KA SRR AR S

- 25 -

edges that belong to those fans which are constructed by MAKE-S) then we would
color all edges of G(V,E) during one execution of lines 2-6 of PARALLEL-COLOR,
that is in time O(]|E|.d). However, not all the uncolored edges of the fans in S
are colored in steps 2-6. In fact, each time a fan F is treated in SUBSTAGE(ag8;)
(in line 8.1 or R.12), one uncolored edge is colored (in lines 6.9, 6.10, and in lines
R.19, or R.21) but up to 5 uncolored edges may be removed from the fans of S
without getting colored: One edge in line 6.2 in the case when F is a u-fan having

only two edges, and two edges for each of the af;-paths P, and P, in line R.8
when F' is a u-fan of exactly two edges. Thus, in the worst case only é—of the

uncolored edges of fans in S are colored in one execution of lines 2-6 of

PARALLEL-COLOR, and we must repeat the loop log | E | = log | V| times.

To this we must add two remarks: First, if an af;-u-fan has more than two
edges then when it is removed from S,p, it is inserted into some Sa,’ (lines 6.7,
R.16), and its uncolored edges still belong to the fans of S. Second, a shift of the
edges of a c-fan does not cause. any uncolored edge to be removed from the fans
of S: Let z; be a leaf of a c-fan and assume that there are k uncolored edges
incident to z;. If ¥ = m(z;) then there are other k colors ¥, 7. . . . , 7, missing
at z,. When the c-fan to which z; belongs is shifted, only m (z;) changes but not
Yoo 7. Thus, the k uncolored edges of z; will get colors in the stages that
correspond to ¥,.....7, and the possibility that color 7, would be changed to
some olher color g belore lhe y¢-slage is executed bul aller the yo-stage has
already been executed is therefore irrelevant to the uncolored edges incident at

z; because they would be treated at the y;-stages (1 € j < k).

Thus, lines 2-6 o! PARALLEL-COLOR are repeated-at most log|[V| times and

the total complexity of PARALLEL-COLOR is O(|£'|.d.log [V]).

QED.

- 26 -

5. Algorithm EULER-COLOR

In this section we present another efficient algorithm for coloring general
graphs with d +1 colors. This algorithm use;s a divide-and-conquer method that
combines COLOR and PARALLEL-COLOR and has time complexity of
O(|E|VTVTlog V) (a similar algorithm is presented in [A]; see comment at the
end of the paper).

In [GK1] the following algorithm for edge coloring by d colors a bipartite

graph whose maximum degree is d was presented:

Procedure EULER-COLOR(G);
1. let d be the maximum degree in G,
R.ifd =1
3. then color all edges of G with a new color

else begin
4. use EULER-PARTITION to divide G into two edge-disjoint

subgraphs G, and G, with maximum degrees d, and d,
d d..
such that]_5—‘{ <d,dy< fé-:]

5. EULER-COLOR(G,):
6. EULER-COLOR(Gy);
7. if Gis (d+1)-colored

then begin
8. let ¥ be the color with fewest edges in G and

let E, be the set of all edges colored by 7.
E
t1E,1< 2Ly

o i a=/ 2T

10. then for each edge e €E, do AUGMENT(e)

A o aevn Ay L LR AN P AT w T DT AT AL TN SV " I P

TGN D R G R Y BN A YRR e

- 27 -

11. else TYPED-RECOLOR(G.E,)

end

end

end EULER-COLOR;
Where:

(1) EULER-PARTITION is a procedure that partitions the edges of any graph
(bipartite or not) into (possibly non-simple) open and closed paths such
that: (i) no closed path intersects another {closed or open) path. (ii) a ver-
tex of odd (resp. even) degree in G is the end-point of exactly one (resp.
zero) open path. EULER-PARTITION runs in O(|E£|) time and it can be used

to divide G into two subgraphs G, and G; with maximum degrees d, and d,

where d, 4_% and for bipartite graphs d; =|—%:l while for other graphs

dy = ,.d;l . This is done by placing alternate edges of each path in alternate

subgraphs, always starting with G, (see [B], [G]).
(2) AUGMENT(e) is a procedure that colors an uncolored edge e in one of the

possible d colors in O(| V|) time.

(3) TYPED-RECOLOR(G.F,) is a procedure that colors a set £, of edges in d

colors, where £, constitutes a matching of G.

EULER-COLOR(G) is based on the fact that for a bipartite graph G, in Step §
(resp. 6). the (bipartite) subgraphs G, (resp. Gg) is recursively colored by d,
(resp. d;) colors, and thus at the end of Step 6, the whole graph G is colored by
d, + d, colors, namely, by d or d+1 colors. In the latter case, the color ¥ with

the fewest edges in G is uncolored, and we obtain a set (matching) £, of at most

-%"—I—-uncolored edges in G. If we denote dg = \/;—o.ng.lf/[— then for all recursive

calls such that d = do, AUGMENT is repeatedly used to cqlor the edges of £, and

W, 7 RIS, OG0 A0, 0.5 5 (RS TE AT TS RN R TR TR S M3 R T R S I 75 8 BT T T T

37T Y YT NS L ST N e T e AT e e

-28_

it is shown in [GK1] that the total time AUGMENT requires is O(J—LL—L%Ed 7y =
0

O(|E|VTV]log [V]). For all recursive calls such that d < dy TYPED-RECOLOR is
used to color the edges of £, and the total time it consumes is O(|E|.do.log | V])

= O(|E|V[V[lag [V]) (see Theorm 1 in [GK1]). Thus, the time EULER-COLOR

needs is O(| £ |VTV]lag TVT]).

When we turn to the non-bipartite case we can clearly replace AUGMENT by
RECOLOR (both color an edge in time O(|V]|)) and we can replace TYPED-
RECOLOR by PARALLEL-COLOR (for both color the edges of £, in time
O(|E|.d.log | V]). The only problem is that when G is not a bipartite graph. the
recursive call for G, (resp. G) returns d,+1 (resp. dp+1) coloring, and thus at
the end of Step 6 the whole graph G might be colored by (d;+1) + (dz+1) < d+3
colors. Therefore, in Steps B-11 edges of two colors (rather than one) should be

recolored. This however constitutes no problem, since the total number of those

edges is < Eldil_ that is of the same order of magnitude as in the bipartite case.

Also, PARALLEL-COLOR would color those edges in the same time (that is,

O(|E|.d.log |V|)), and in fact, when d < \/%-V-I-]W no recursive calls are

required at all but PARALLEL-COLOR can be used directly to color G, (resp. Gs)
in'd,+1 (resp. dy+1) colors. |

Thus, EULER-COLOR for the non-bipartite case is as follows:
Procedure EULER-COLOR(G);

{this procedure colors by d +1 colors the edges of a (general) graph G whose

maximum degree is d}

begin

1. let d be the maximum degree of G;

e~/

713 (N S o SO TSR AR 040 SR S ete gt S (R RRTS & A B S N b S p S

[S NI TR ST RIS S PR T R R S i S e A S iat D

- 29 -
3. then PARALLEL-COLOR(G)

else begin
4. use EULER-PARTITION to divide G into two edge-disjoint

subgraphs G, of degree d, < Ldgl_[and Gp of degree

d+1
dzzr 2 .]'

5. EULER-COLOR(G,);
8. EULER-COLOR(Gy);
7. if G has more than d+1 colors

o

then begin

B. let 77, be the color with fewest edges in & and
let £, be the set of all edges colored by ;.
9. if G has more than d+2 colors
10. then begin {G has d+3 colors]
11. let 72 be the color with fewest

edges in G—F, and let £, be
the set of all edges colored by

7.
12. B, « E,UE,,

end

13. for each edge e €&, do RECOLOR(e)

end

end

end EULER-COLOR;
Theorm 5.1: EULER-COLOR(G) colors the edges of a general graph G by d+1
colors in O(| £ | V]V Tlog | V) time and uses O(|E | +| V) space.

Proof:

- 30 -

The detailed proof that EULER-COLOR(G) runs in O(|E |VTV[log [V]) time

follows the proof in [GK1].

6. Algorithm ALCOLOR

In this section we give algorithm ALCOLOR which edge-colors with d colors a
large class of graphs (and with d+1 colors all other graphs). -

ALCOLOR is based on the proof of Vizing's “Adjacency Lemma" ([FW], [V65a],

[ve5b]) and on the following definition: Denote by d*(w) the number of vertices

adjacent with w and having degree d. Then an edge vw is defined to be elim-

inatable if w has at most d — d(v) adjacent vertices of degree d other than v:

i.e. edge vw is eliminatable when

dv) +d*(w)=<d (ifd(v) <d)
d*(w) = 1 (if d(v)=a)

(notice that the definition is not symmetric with v and w)
In other words, the edges that are not permitted in a “critical” graph by the
adjacency lemma are eliminatable. |

ALCOLOR is outlined as follows. It repeatedly deletes eliminatable edges
from G until they all disappear or the maximum degree of G decreases. An edge
that was not eliminatable in the original graph G may become eliminatable when
éome edges are deleted. On the other hand, once an edge becomes eliminat-
able, it remains so thereafter. Let G' be the resulting graph. There are two
cases: d(G')=d(G)—1;, or d(G')=d(G). In the lucky case, namely when
d(G') = d(G)—1, we first color G' with d(=d(G')+1) colors by algorithm COLOR.
We then update the d-coloring of G' to a d-coloring of G’ plus the last deleted
edge, using a procedure called ALRECOLOR and we repeat this procedure for;
each of the deleted edges in reverse order to their deletion until a d-coloring of
G is obtained. In the second case, when d(G') = d(G), we simply color G itself

with d +1 colors by COLOR.

MR T (SO AS B T LW Lty

FPEN RN EH4 R (9P E IV 00 g T TP T RO T T P ERVIY IR RN LT R s g MW LTS o S, Tt

W e

_31..

Procedure ALCOLOR (G):
{ALCOLOR finds a d- or d +1- coloring based on eliminatable edges]
1.d « d(G):
2. G« G,
3. while G' has an eliminatable edge vw and d(G')=d do_
4. G' « G'—vw; {delete vw from G}
5. push vw on the top of a stack S
end
8. if d(G)=d — 1
_then begin {the lucky case]
7. COLOR (G'); {G'is now colored with d colorsi‘
8. while stack S is not empty do
9. pop up an edge, say vw, from S;
10. ALRECOLOR (G',vw);
faugments the d-coloring of G' to G' + vw]
11. G« G'+vw
_end

end

12. else funlucky case: G' has no eliminatable edges and d(G') = d}
COLOR (G)
i?}iALCOLOR;
We now explain procedure ALRECOLOR. Suppose that edge vw is eliminat-
able in G and that G—vw is colored with a set of d colors. Each vertex u(#v,w)

has at least one missing color m(u) if d(u)<d and has no missing color if

RN » A T Y AR g e M A T TN P PBAPY P A P T T T B R 8 PR M SN e et WS SR sy

-32-

d(u)=d. In the d-coloring of G—vw, vertex v has d—d{v)+1(=1) missing colors;
For each color 7 of the d —d(v)+1 missing colors of v, there exists a maximal
fan sequence F=[wv = wzowz,, ..., wz;] at w in which edge wz, is colored
with y if s = 1. One of the following must occur:

(a) m(z;)eM(w);

(b) an edge of F is colored with m (z);

(¢) d(z,)=d (and hence z, has no missing color).
Since vw is eliminatable, w has at most d—d(v) adjacent vertices of degree d
other than v. Therefore one of the following must occur:
Case (1): there exists a maximal fan sequence F=[wzowz,, ..., wzg] such
that m(z,)eM(w), |
Case (2): there exists a maximal fan sequence F=[wzowz,, . .. ,wrg] such
that an edge of F is colored with m(z,);
Case (3): there exist two fan sequences, not necessarily maximal,
Fil={wz,wz,.... wz,] and FR=[wyowy,, wy;] which meet exactly at
v(=z¢=y,) and at z,(=y). (If neither of the d — d(v) + 1 fans that start at wv
belong to cases (1) or (2), then at least two of the fans must coincide from cer-
tain edge wz, = wy; on; we may assume without loss of generality that s > ¢ and
thus s = 2).

We are now ready to present ALRECOLOR.

Procedure ALRECOLOR (G'vw) :

{ALRECOLOR augments the d coloring of G' to G' + vw]

begin {vw is eliminatable in G'+vw)

1. if Case (1) or case (2) occurs

2. then extend a d-coloring of G'into a d-coloring of G'+vw in a similar

way to Case (1) or (2) of RECOLOR

SECEOOGTIN ¢ PN T SV PO L TP Skt L S vl

ORI SR

SETNED = il AN IT P T AL A

U N Y

gt

-33 -

3. else begin {Case (3) occurs}
4. let a =m(w) and g = m(z;-1) = m(ye-1);
5. let P be an af path which starts at w;
8. if P does not end at z, _;
7. shift F'1 from z,_,;{now wz,_, is uncolored}
8. flip P;fnow gem (w)]}
9. color wzg -, with 8;

end

else begin { P does not end at y;,}
10. shift F2 from y; -;;{now wy, _, is uncolored}
11. flip P:{now ﬁe'm(w)j
12. color wy,; , with 8,
_‘ﬁf

end

_end ALRECOLOR;

We have the following lemma on ALRECOLOR:
Lemma 6.1 Suppose that all the edges of G=G'+vw except vw are colored with
d colors and that vw is eliminatable in G. Then ALRECOLOR edge-colors G in
0(|V|) time, using O(| £ |) space.
Proof:

One can easily establish the correctness of ALRECOLOR in a similar way to the

proof of Vizing's adjacency lemma [FW, pp.72-74]. The claims on time and space

are also easily verified.
Now we have the following theorem:.

Theorem 8.1: Algorithm ALCOLOR edge-colors an arbitrary graph G with d or

d+1 colors in O(| £ || V|) time, using O(| £ |) space.

R SA] N A Y L R VA P SN YO N EATC TP K PR I, T R O Y) AT S R

VDN [IET vt AR BTN T 8T T T v e A e

-34-

Proof:

Since one can easily prove the correctness of ALCOLOR, we shall establish
the claims on time and space. As for the space, in addition to the data used by
COLOR, ALCOLOR needs a stack S to store the deleted edges, which clearly uses
0(|E|) space and two arrays d[.] and d*[.]. each of length | V|, representing
d(u) or d*(u) for ueV. We also need an O(|E'|) space for a (temporary) list of
eliminatable edges which were found but not yet deleted. Thus ALCOLOR uses
O(|E|) space.

By lemma 6.1 one execution of ALRECOLOR cen be done in o(| V]) time, and
since ALRECOLOR is executed at most [E | times the total cost of ALRECOLOR is
0(|E]|V]) time. Since one can delete an edge in 0(1) time using our data
structure, the deletion of edges costs O(|£|) time. Thus, what remains to be
proved is that the total cost of finding eliminatable edges is O(|E||V]) time.
Since one can compute d(u) and d*(u) for allu€V in 0(|£]) time, one can find
all the edges eliminatable in the original graph G in O(|E£|) time. Hence, it
suffices to show that the newly eliminatable edges can be found in o(|E|V])

time in total.

Suppose that edge zy is deleted in graph G', then we must update both d[.]
and d*[.]. We update d[.] by decreasing both d[z] and d[y] by one. Some of the
edges incident with z or y may become eliminatable. Therefore, we check for
each of the edges incident with z or y whether it becomes eliminatable, which
clearly can be done in 0(]|V|) time. Since ALCOLOR deletes at most |£| edges.
this checking can be done in O(|£ || V]) time in total.

However, the procedure above does not find all the edges that become
newly eliminatable. Suppose that d(z)=d or d(y) =d, say d(z) =d. Then
d*(z) decreases for each neighbor z of z, and so an edge incident with z may

also become eliminatable. Therefore, we must check for every edge incident

" et 0T S A R S B RSP R IR QA QRS WO AT Ll i e TSR TS RS AT SN

-835-

with 2z whether it becomes eliminatable. This check can be done in
0(d(z)+Xd(z))=0(]| £) time, where z runs in the summation over all the neigh-
bors of z. Of course, the arrays d{.] and d*[.] can be updated in this time. The
case in which an end of a deleted edge has degree d (the maximum degree of
the graph) occurs at most | V| times, because the deletion of edges ends as soon
as the maximum degree decreases. Hence the checking above can be done in
O(|E||V|) time in total, This completes the proof showing that the newly elim-

inatable edges can be found in O(|E || V|) time in total.

Q.E.D.
7. Special Graphs which are d -Colorable

7.1. Planar Graphs

Vizing [V65b] has proved that ¢*(G) = d if G is a planar graph with d>8.
There exists a planar graph G with ¢*(G) = d+1 for each d, 3<d =5. It is con-
jectured that ¢*(G) = d for a planar graph G with d = 6or 7 [FW]

We shall show that ALCOLOR colors a planar graph of degree d =B by d

colors. A direct implementation of Vizing's proofs yields algorithms for the case

d > 10. But for the cases d = B or 9 ALCOLOR is the first algorithm to be pub-
lished.

We first have a lemma.
Lemma 7.1: Any planar graph whose maximum degree is d > 8 has an eliminat-
able edge.
Proof:

Vizing showed that for d=8 and for d = 10 this condition is required by the

planarity of the graph (see [FW, pp. 106-108] or [Y. p. 295]). We show in the

Appendix that the condition must hold whenever d = 8.

AN SPTH S D AR 1T U S A TH D A TN AR IS L TN T T N

LA D (NI AN OF BRI NTR N MR &L T N T I AN EVATH, VT,

- 36 -

The following is an immediate consequence:

Theorem 7.1: Algorithm ALCOLOR edge-colors a planar graph G with d colors if

d = B.

7.2. Series-Parallel Graphs

A simple graph G is said to be_series-parallel if G contains no K, as a sub-

contraction, that is, K4 cannot be obtained from G by repeating the deletion or
contraction of edges (see [D] or [TNS] for constructive definitions of a series-
parallel graph). The class of series-parallel graphs is a subclass of planar graphs,
but large enough to include the class of outerplanar graphs. We have the follow-
ing lemma. w

Lemma 7.2: Any series-parallel graph G whose maximum degree d > 4 has an
eliminatable edge.

Proof:

Since G is series-par‘allel. G has a vertex of degree at most two [O]. Let S
be the set of such vertices. Clearly G' = G — S is also series-parallel. Therefore
G' has a vertex w of degree at most two. Since the degree of w was at least
three in G, a vertex v€S was adjacent with w in G. But in G d*(w) <2, so

d(v) + d*(w) < 4. Hence edge vw is eliminatable.
Q.E.D.

The following is an immediate consequence:
Theorem 7.2: Algorithm ALCOLOR edge-colors a series-parallel graph G with d
colors if d = 4.

A series-parallel graph G does nol always conlain an eliminatable edge if 4
d = 3. Therefore the direct application of ALCOLOR does not always produce a

g *(G)-coloring for the case d = 3. However we have the following lemma:

PG IET N ¥ . vt ST T LA NS s

D

i s

.87 -

Lemma 7.3: If a series-parallel graph G with d = 3 has no eliminatable edge,

then G has a triangle uvw such that d(v)=2 and d(u)=d(w)=38.
Proof:

G may not have a vertex of degree one (for the edge adjacent to such a ver-
tex is eliminatable). Thus by [0] G must have a vertex of degree two. Let v be
any vertex of degree two, and let © and w be the neighbors of v. Since none of
the edges wu,vw,uv, and wv is eliminatable, we have d(v)+d*(u) =4,
dw)+d*(w)=4, or d*(u)=2,d%*(w)=2. Hence d(u)=d(w)=3 and
d*(u)=d*(w)=2. We shall show that v, v and w constitute a triangle, that is, »
is adjacent with w. Suppose, contrary to the claim, that u is not adjacent with
w for every vertex v of degree two. Then contrat one of the two edges incident
with v for every vertex v of degree two. The resulting graph G' has neither mul-
tiple edges nor vertices of degree two, so is a simple graph with maximum
degree three. Since G is series-parallel, G' is also series-parallel and hence G’

must contain a vertex of degree at most two, a contradiction.

Q.E.D.

Let G' be the graph obtained from G by contracting the triangle specified
by Lemma 7.2 into a single vertex. G'is also series-parallel and has two vertices
fewer than G. Clearly any 3-coloring of G' can be extended into a 3-coloring of
G. Thus we have shown that ¢*(G)=3 for any series- parallel graph G with d=3.
Obviously ¢*(G)=d if d < 2 and G is not an odd cycle. These facts together with
Theorem 7.2 imply the following theorem:

Theorem 7.3: If a series-parallel graph G is not a simple odd cycle, then
7*(G)=d.

Using Lemma 7.3, one can easily modify algorithm ALCOLOR so that it would
color any series-parallel graph G with q*(G) colors. Theorem 7.3 is a generaliza-

tion of Fiorini's result that every outerplanar graph except odd cycles has an

bl SR Lo TR e h L AR BT B g g e Y e R i E o B BRI R

-38 -
edge-coloring with d colors [F].

7.3. Random Graphs

Start with | V| distinguished (labeled) vertices, and choose every edge with
a fixed probability p, 0<p <1, independently of the choices of the other edges.
The resulting graph is called a random graph. Almost every random graph has
exactly one vertex w of maxirnum degree (see [Bo, Theorem 9, pp. 135-136]).
Let v be any neighbor of w, the;n d{v)+d*(w) <d. Thus vw is eliminatable,
and moreover G—vw has maximum degree one less than d. Hence, algorithm

ALCOLOR colors almost every random graph G with d colors.
4

.

8. Some NP-Completeness Results (on Matching and Regular Craphs)

As stated in the introduction, the problem of finding a minimum edge-
coloring in a general graph is NP-complete [H]. Moreover, even the problem of
finding a minimum edge-coloring in a general (regular) graph of degree k is NP-
complete for any given k [LG]. We conclude this paper by indicating two (addi-
tional) sets of NP-completeness results which are implied by the NP-complete
nature of the general Edge-Coloring problem. No detailed proofs are given but

only their outlines are sketched.
(1) The first set of results deals with regular graphs:

Claim B.1: The general edge-coloring problem (on a non-regular graph) reduces

to the edge coloring problem on a regular graph of the same degree.

Outlines of proof:

Given a graph G of maximum degree d. For each vertex v in G add to G a
subgraph G, = Kg g-1. Denote the d vertices of degree d—1 in G, by v,.vz,....Vg.
then add the following edges: For each edge vu in the original graph G, add an
edge which connects some vertex v; (which still has degree d—1) to some vertex

u;j of G, Let d(v) be the degree of v. Then connect each of the d —d{v)

L Xty

-39 -

vertices of G, which still have degree d—1 to the vertex v itself.

The resulting graph is a regular graph that has a d-coloring of its edges if

and only if the original graph G has such a coloring.

Corollary B.1: The general edgé-coloring problem reduces to the problem of
finding whether a regular graph G of degree d with even number of vertices and
no cut-vertex has a d-coloring of its edges (follows from [FW, Corollary 6.3 and
Exercise 6b]).

Corollary B.2: The problem of finding whether a general graph G has k disjoint
perfect matchings for some integer k is NP-complete (follows from Claim 8.1
when G is regular and k = d).

Comment: The problem of Corollary 8.2 reduces to the case where G has max-
imum degree k+2 (for k=1 the result was first observed by Adi Shamir : Each
vertex v 1n the original graph is réplaced by a path of length 2(d (v)—1) and the

edges incident to v are made incident to alternate vertices of that path).

() The second set of results deals with finding a restricted edge-coloring on a
(bipartite) graph.

Theorem B.1: The following problem is NP-complete: Given a (bipartite) graph G
with an even number of vertices and an integer s, find whether there exist in G

two disjoint matchings M, which is perfect (| Mq| = -%/L) and M, of cardinality

s.

Comment: The Theorem remains correct even when the degree of G is 3.

Outlines of proof:

In [EIS] the following problem, denoted by RTT (Restricted Time-Table) was
proved to be NP-complete: Given a bipartite graph G with vertex sets T end C,
where the maximum degree of the graph is 3 and each vertex t € T has degree 3

or 2, and where in the latter case t has a "forbidden-color” i, 1 <1 < 3. Find

- 40 -

whether there exists an edge-coloring of G with colors 4, 1 <1 <3 such that i

misses every vertex with a "forbidden-color" .

Let RRTT (Regular Restricted Time-Table) be the problem RTT where each
color i is forbidden the same number of times and each vertex ¢ € C has degree
3. RTT reduces to RRTT as follows: Let G be an instance of RRT. Make 3 copies of
G. Cyclically permute the "forbidden-colors" on each copy, so that each color is
forbidden the same number of times. For a vertex c €C with degree 2 add a new
vertex joined to all & copies of c¢. Also, identify all 3 copies of a vertex ¢ €C with
degree 1.

Now RRTT reduces to the problem of Theorem B.1 as follows: Let t €T have
"forbidden-color” 1. If i = 2 add two edges tvc, and c,t,. If 1 = 3 add an edge tcy
(where ¢, , t; . cg are new vertices). Finally, takes = |T|.

The new graph is bipartite and both vertex sels have the same number of
vertices. A perfect matching M, includes all edges fcg and ¢tz and so can be

used for color no. 3. Similarly, M, can be used for color no. 2.
Corollary B.3: The following problem is NP-complete: Given a (bipartite) graph G,
find two disjoint matchings My and M, such that the pair (|Mol.[M]) is lexico-

graphically maximum (this is the Lexicographical Matching Problem).

Corollary B.4: The following problem is NP-complete: Given a (bipartite) graph G
and integers c;, 1 = 1.2, ..., d. Is there a d-coloring of the edges of G with
exactly ¢; edges colored i? (Theorem 8.1 with G of degree 3is a special case of

the problem of Corollary 8.4).

-41-

Comment: Comparison with the paper of Arjomandi [A].

Before submitting the revised version of our paper for publication, we have
learned about the paper of Eshrat Arjomandi which was independently published
in INFORMATION [A]. Comparison of the two papers shows that they are very
much in similarity. In fact, the algorithm EULER-COLOR presented in [A] is as
much the same as the algorithm EULER-COLOR presented in Section 5 of this
article (both algorithms are based on the procedure EULER-COLOR which was
presented in [GK1]); also algorithm RECOLOR-ONE of Arjomandi is in fact the
same as algorithm COLOR which appears in Section 3 of our paper - both algo-
rithms consist of running over the uncolored edges procedures which are direct
implementations of Vizing's proof [V64], that is, PAINT and AUGMENT of

Arjomandi and RECOLOR (cases 1 and 2 respectively) in our work.

Moreover, both EULER-COLOR of Arjomandi and our EULER-COLOR contain
as subprocedure an algorithm which colors in parallel as many edges as possi-
ble, using af-paths: These are RECOLOR-TWO in [A] and PARALLEL-COLOR in Sec-
tion 4 of this work. However, at this point the similarity breaks. Our PARALLEL-
COLOR algorithm employs a special routine, MAKE-S, which takes care that the
basic elements of Vizing's proof (i.e. the colored "fans”) on which our procedure
SUBSTAGE works will be vertex-disjoint, and for that purpose special data struc-
ture (the u-fans of Section 4) are defined. Contrary to this, the procedure
RECOLOR-TWO of Arjomandi lacks a similar mechanism and thus the fans created
by PAINT(e) in Slep 5.2 may share common leaves. In particular, it may happen
that the colors of the last fan created by PAINT are shifted (if that fan has
parameter t = 0) and thus destroy all fans that share with it a common leaf. It
seems to us that such a case would prevent COLOR-ALL (the analog in [A] of our
SUBSTAGE) from completing its job in the expected time, or that it would force

the loop of Step 3 of RECOLOR-TWO to be executed more than O(log | V|) times.

-42_

Another (minor) difference between the papers of Arjomandi and ours is
that in [A] a vertex-color incidence matrix is maintained, resulting in an addi-
tional term of O(|V]|d) both in the time complexity of the algorithm and in the
space it needs, whereas in our algorithm we use instead an array W (see Section

3) and thus avoid that term.

Acknowledgement.

We thank Nobuji Saito and Norishige Chiba for their stimulating suggestions.

- 43 -
References

(A] E. Arjomandi, "An Efficient Algorithm for Coloring the Edges of a Graph
with d +1 Colors”, INFORMATION, 20, 2 (1982), pp. B2-101.

[AHU] AV. Aho, J.E. Hopcroft, and J.D. Ullman, "The Design and Analysis of Com-
puter Algorithms", Addison-Wesley, Reading, Mass., 1974.

[B] C.Berge, "Graphs and Hypergraphs", North-Holland, Amsterdam, 1973.

[Bo] B. Bollob&s, "Graph Theory”, An Introductory Course, Springer-Verlag,
Berlin, 1979.

[CH] R.Cole and J.Hopcroft, "On Edge Coloring Bipartite Graphs"”, SIAM J. on
Comp., 11 (Aug. 1982), pp. 540-546.

(D] R.J. Duffin, "Topology of Series-Parallel Networks”, J. Math. Applic., 10
(1965), pp. 303-318.

(EIS] S.Even, A.ltai, and A.Shamir, “On the Complexity of Timetable and Mul-
ticomodity Flow", Siam J. on Computing, 5 (Dec. 1976), pp. 691-703.

[F] S. Fiorini, "On the Chromatic Index of Outerplanar Graphs", J. Combina-
torial Theory (Ser. B), 18 (1975), pp. 35-38.

[FW] S. Fiorini and R.J. Wilson, "Edge-Coloring of Graphs”, Pitman, London,
1977.

(G] H.Gabow, "Using Euler Partitions to Edge-Color Bipartite Multigraphs”,
Internl. J. of Computer and Information Sciences, 5 (Dec. 1978), pp. 345-

3558.

[GJ] M.R.Garey and D.S.Johnson, "Computers and Intractability: A Guide to

the Theory of NP-completeness”, W.H.Freeman and Co., San-Francisco,
Calif., 1978.

[GK1] H.Gabow and O.Kariv, "Algorithms for Edge-Coloring Bipartite Graphs",

Proc. 10th Annual ACM Symp. on Theory of Computat‘ion (STOC), San-

T RO YIRS U ST £ € R T T M T AN 2 1,

e A A TR L S8 I ST T NTEg S S e

3P RIS PO RN . L ik et Ao SSRGS SV s+l SODRVTES

- 44 -

Diego, Calif., 1978, pp. 184-192.

[GKR] H.Gabow and 0.Kariv, "Algorithms for Edge-Coloring Bipartite Craphs and
Multigraphs", SIAM J. on Comp., 11 (Feb. 1982), pp. 117-129.

[GK3] H.Gabow and O.Kariv, "On the Edge-Coloring Problem for General
Graphs', Unpublished Extended Abstract, 1978.

[Go] T.Gonzalez, "A Note on Open Shop Preemptive Schedules”, IEEE Trans.
Comp., C-28 (1979), pp. 782-786.

[GS] T.Gonzalez and S.Sahni, "Open Shop Scheduling to Minimize Finish Time",
J. ACM, 23 (Oct. 1976), pp. 665-679.

[Gt] C.C.Gotlieb, "The Construction of Class-Teacher Timetable", Proc. IFIP

Congress 62, Munich, North-Holland, Amsterdam, 1963, pp. 73-77.

[H] I.J. Holyer, "The NP-Completeness of Coloring”, SIAM J. on Computing, 10
(1981), pp. 718-720.

[HK] S.L.Hekimi and O.Kariv, "On a Generalization of Edge-Coloring in Graphs",
Technical Report, EECS Dept., Northwestern Univ., Ill., Sept. 1983, to be
published in the J. of Graph Theory.

[LG] D.Leven and Z.Galil, "NP Completeness of Finding the Chromatic Index of
Regular Graphs", J. of Algorithms, 4 (1983), pp. 35-44.

[LL] EL.Lawler and J.Lebetoulle, "On Preemptive Scheduling of Unrelated
Parallel Processors by Linear Programming”, J. ACM, 25 (1978), pp. 612-
819.

[LVP] G.Lev, N.Pippenger and G.Valiant, "A Fast Algorithm for Routing in Per-
mutation Networks", IEEE Trans. Comput., C-30 (1981), pp. 93-110.

[NS] T.Nishizeki and M.Sato, "An Approximation Algorithm for Edge-Coloring
Multigraphs", Technical Report TRECIS-83003, Tohoku University, Japan,

July 1983.

RT3 VRIS 1O A MRS RN F IR R LD 1 R P IR b A KR 53T

[0]

[TNS]

[ve4]

[Ve5a]

[VeS5b]

-45-

0. Ore, "Theory of Graphs"”, Amer. Math. Soc., Colloq. Publ., 38, Provi-
dence, R.I., 1962.

K. Takamizawa, T. Nishizeki, N. Saito, "Linear-Time Computability of Com-
binatorial Problems on Series-Parallel Graphs", J. ACM, 29, 3 (July 1982),
pp. 623-641.

V.G. Vizing, "On an Estimate of the Chromatic Class of a p-Graph" (in Rus-
sian), Diskret. Analiz., 3 (1964), pp. 23-30.

V.G. Vizing, "The Chromatic Class of a Multigraph"”, Cybernetics, 3 (1965),
pp. 32-41 [Kibernetika 1 (1965) pp. 29-39].

V.G. Vizing, “Critical Graphs with a Given Chromatic Class” (in Russian),
Diskret. Analiz., 5 (1965), pp. 9-17.

H.P. Yap, "On Graphs Critical with Respect to Edge-Colorings"”, Discrete

Math., 37 (1981), pp. 289-296.

- 48 -

Appendix: Proof of Lemma 7.1
Lemma 7.1: Any planar graph whose maximum degree is d = 8 has an eliminat-
able edge.
Proof:

Suppose that a planar graph G with d > 8 has no eliminatable edges. Let
7; be the number of vertices of degree i in G. Clearly n,=0. Since G is planar,

we have from Euler's equation.

12+n,+2ng+ -+ (d—6)ng <4n,y + 3ng + 2n, + ng (1)

Let ny(izig,i7) be the number of vertices of degree d which have i,
neighbors of degree 2, i3 neighbors of degree 3, . . . , i, of degree 7. Since each

edge vw of G is not eliminatable,

d(v) + d*(w)=d+1 ifd(v)<d;
d*(w) =2 ifd(v)=d-

Thus, d*(w) > 2 for every weV. Let j be2<j <7< d—1. Counting the number
of edges with one end of degree j and the other end of degree d, we have

2n; < T4 nglizis, ir), (?)

where the summation is over all possible i3ig, . . ., 1q.

Equation (2) can be further refined if j = 3 or 4 in particular. Firstletv be
any vertex of degree 3, and consider, in detail, the degrees of neighbors of v.
For any neighbor w of v, we have d*(w)=d -2 and hence d(w)=d or d-1.
Since d*(v) = 2, the following must occur:

() One of the neighbors of v has degree d—1 and the other two have

degree d; or

(b) The three neighbors have degree d.

Let 7 be the number of vertices of degree 3 satisfying (a). Then equation (2) is

- 47 -
refined for j =3 as follows:
27' + S(ns - T) < 21:3 nd(iglis, PR ,7:7). (3)

Next let v be any vertex of degree 4. lLet w, w, wy and w, be the neigh-
bors of v. Since vw; is not eliminatable, d*(w;) = d -3 and hence d{w;)>d—2
for i=1,2,3,4. If d(w;) = d—2 for some i, then d*(v) = 3, and hence d(w;)=d
for all j#i. Therefore, the following must occur (note that in any case
d*(v) = 2):
(a) One of the neighbors of v has degree d~2, and the other three have degree

d;
(b) One has degree d—1 and the other three have degree d;
(¢) Two have degree d—1 and the other two have degree d; or
(d) All the four have degree d.

Let s, ¢, and u be the numbers of vertices of degree 4 satisfying (a), (b) and (c),

respectively. Then Equation (R) is refined for j =4 as follows:

3s + 3t +2u + 4(nyg~s—t—u)<Lizng(izgis 19). (4)

Thus, from (2), (3) and (4) we have

2n, + §2r + 3(ny—7)}/2 + {3s + 3t + 2u + 4(ny—s—t-u)}/3

+2ns/4+2ng/ 5+ 2n,/6

7
<)§2 2 'Lj ’nd(’ig'is, RN ,1:7)/ (J—l)
. . 1] 7 . . -
= E nd(1,2'1,3 ,,,,, 1,7) jgz ‘Lj / (] ""1)» (b)
We next show that if ng(izis, . . ., i,) # 0 then
7
i/ (j-1)<1. ' (6)

- 48 -

Let w be any vertex of degree d which has iz neighbors of degree 2, ig neighbors

of degree 3, ... , i, neighbors of degree 7. Let ¢ be the minimum degree of the

>

neighbors of w, then i; # 0 implies¢<j. Let v be a neighbor of w with d(v)=¢,

then d*(w) > d —#+1 since edge vw is not.eliminatable. Therefore, we have

;ée ij<e—1,
which implies (8). |
By the definition we have
v ng = I ngligig,13). . (7)

Combining (5), (8) and (7), we have

ng = 2ny + {2r+3(ng-7)}/ 2+{3s +3t +2u +4(ny~s—t-u)}/3

+2ns/4 + 2ng/ 5 + 2n,/ 6,
which immediately yields the following.

(d=7)ng-, + 2ng = 4ny + 3ng + 2ny + np
+2(n,-s —t)/3+ (g, —T —-u)
+ §2n,/3 + (d—B)ng_y — ﬁ/ 3. (8)
The definition ér s and ¢t implies that

if a vertex w of degree d—1 is adjacent with a vertex v of degree 3, then all the

neighbors of w except v have degree d. Therefore, among mg4., vertices of
degree d—1 at most ng_, — 7 are adjacent with a vertex of degree 4, and furth-
ermore each of these vertices is adjacent with at most two vertices of degree 4.

Therelore, we have t + 2u < 2{ng_, —7), which implies,

ng, -7 —u=20 (10)

- 49 -

We now show that

Rn,/3 + (d—-B)ng_, —u/3=0. (11)
Suf)pose first that d =B. Then, noting that n,=ng_; and using (10), one can easily
verify (11). Suppose next that d = 9. Then from (10), we easily obtain
(d-B)ng_, —u/ 3= 0, implying (11).

Thus, from (8) - (11) we have
(d=7)ng_y + (d=B)ng = 4ny + 3ng + 2n, + n;,

which contradicts (1).

QED

Number

1/84
2/84

3/84

4/84
5/84

6/84
7/84

8/84
9/84

10/84
11/84

12/84

13/84

14/84

Author

M. Sharir
A. Schorr

S. Hart
M. Sharir

J.E. Hopcroft
J.T. Schwrtz
M. Sharir

B.A. Trakhtenbrot

N.Alon
M. Tarsi

.Y. Halpern
.R. Meyer
A

(oo]

. Halpern
. Meyer

> aw
o

I. Bar-On
U. Vishkin

M. Atallah
U. Vishkin

N. Rishe

S. Hart
M. Sharir

R.E. Tarjan
U. Vishkin

U. Vishkin

D. Leven
M. Sharir

. Trakhtenbrot

. Trakhtenbrot

Technical Reports

Title

On Shortest Paths in Polyhedral Spaces
Probabilistic Propositional Temporal Logics

On The Complexity of Motion Planning For
Multiple Independent Objects; Pspace
Hardness Of The "Warehouseman's Problem"

A Survey of Russian Approaches To
"PEREBOR": Brute Force Search

Covering Multigraphs By Simple Circuits

The Semantics of Local Storage, Or
What Makes The Free List - Free ?

From Denotatonal To Operational And
Axiomatic Semantics For Algol- Like
LLanguages: An Overview

Optimal Parallel Generation of
A Computation Tree Form

Finding Euler Tours In Parallel

Semantics of Universal Languages
and Information Structures In Data
Bases

Nonlinearity of Davenport-Schinzel
Sequences And Of Generalized Path
Compression Schemes

An Efficient Parallel Biconnectivity
Algorithm

Optimal Parallel Pattern Matching In
Strings

An Efficient And Simple Motion Planning
Algorithm For A Ladder Moving In Two-
Dimensional Space Amidst Polygonal Barriers

* The reports are available upon request.
Please write to Mrs. Dorit Barak,Eskenasy Institute of Computer Science
School of Math. Sci. Tel-Aviv University,

Ramat-Aviv,

ISRAEL 69978.

L3

Number

15/84
16/84
17/84
18/84

19/84
20/84

21/84
22/84
23/85

24/85

25/85

26/85
27/85

28/85

29/85

Author

J. Gal-Ezer
G. Zwas

M. Jeger
0. Kariv

E. Gabber
A. Yehudai

D. Levin
D. Gottlieb
E. Tadmor

U. Vishkin

Y. Maon

Y. Maon

S. Abarbanel
D. Gottlieb

K. Kedem
M. Sharir

A. Tamir

H. Tal-Ezer

I.M. Longman

D. Leven
M. Sharir

M. Sharir

Title

Convergence Acceleration As A Computational
Assignment

Algorithms For Finding P-Centers On A Weighted
Tree

Deducing Type Information From Context In Ada
Based PDLs (see report number 35/85)

Multidimensional Reconstruction By Set-Valued
Approximations

Recovering Pointwise Values Of Discontinuous
Data Within Spectral Accuracy

An Optimal Parallel Algorithm For Selection

On The Equivalence Problem Of Composition Of
Morphisms And Inverse Morphisms On Context-free
Languages

On The Equivalence Of Some Transductions
Involving Letter To Letter Morphisms On

Regular Languages

Information Content In Spectral Calculations

An Efficient Algorithm For Planning Collision-
free Translational Motion of a Convex Polygonal
Object in 2-dimensional Space Amidst Polygonal
Obstacles

On The Solution Value 0Of The Continuous p-Center
Location Problem On A Graph

Spectral Methods In Time For Parabolic Problems

The Summation Of Power Series And Fourier Series

On Voronoi Diagrams for a Set of Discs

Almost Linear Upper Bounds on The Length of
General Davenport-Schinzel Sequences

Number

30/85
31/85
32/85

33/85

34/85

35/85
36/85

37/85
38/85

39/85

40/85

41/85

Author

Y. Maon
A. Yehudai

G.M. Landau
U. Vishkin

‘Y. Maon

J. Gal-Ezer
G. Zwas

D. Leven
M. Sharir

E. Gabber
A. Yehudai

G.M. Landau
U. Vishkin

G.M. Landau
U. Vishkin
R. Nussinov

E. Gabber

J. Reif
M. Sharir

S. Sifrony
M. Sharir

.N. Gabow

. Nishizeki
. Kariv

. Leven

H
T
0
D
0. Terada

Title

Balance of Many-valued Transductions and
Equivalence Problems

Efficient String Matching With k Mismatches

Decision Problems Concerning Equivalence Of
Transductions On Languages

The Computational Potential Of Rational
Approximations

Planning A Purely Translational Motion
For A Convex Object In Two-Dimensional
Space Using Generalized Voronoi Diagrams

Deducing Type Information from Context
in Ada Based PDLs-A Revised version

Efficient String Matching With k Differences

An Efficient String Matching Algorithm
with k Differences for nucleotide and
Amino Acid Sequences

The Implementation Of The Algorithm for
Deducing Type Information From Context
In Ada Based PDLs

Motion Planning In The Presence Of Moving
Obstacles

A New Efficient Motion-planning algorithm
For A Rod In Tow-dimensional Polygonal
Space

Algorithms for Edge-Coloring Graphs

