Canonical Decomposition, Realizer, Schnyder Labeling and Orderly Spanning Trees of Plane Graphs

Kazuyuki Miura, Machiko Azuma and Takao Nishizeki

Convex grid drawing

1:all vertices are put on grid points 2:all edges are drawn as straight line segments
3:all faces are drawn as convex polygons

Convex grid drawing

- drawing methods
 1. canonical decomposition
 2. realizer
 3. Schnyder labeling

How to construct a convex grid drawing

convex grid drawing
but not outer triangular convex grid drawing

How to construct a convex grid drawing

Realizer [DTV99]

outer triangular convex grid drawing

How to construct a convex grid drawing

Schnyder labeling [Sc90,Fe01]
outer triangular convex grid drawing

Question 1 V_{6} Are there any relations between these concepts?

Canonical Decomposition

Convex Grid Drawing

Known results

Known results

Known results

Applications of a canonical decomposition a realizer a Schnyder labeling an orderly spanning tree

- convex grid drawing
- floor-planning
- graph encoding
- 2-visibility drawing
etc.

Our results

Our results

Our results

(a) - (f) are equivalent with each other.
(a) G has a canonical decomposition.
(b) G has a realizer.
(c) G has a Schnyder labeling.
(d) G has an outer triangular convex grid drawing.
(e) G has an orderly spanning tree.
(f) necessary and sufficient condition

- G is internally 3 -connected.
- G has no separation pair $\{u, v\}$ such that both u and v are on the same $P_{i}(1 \leq i \leq 3)$.

(f) Our necessary and sufficient condition

- G is internally 3-connected.
- G has no separation pair $\{u, V\}$ s.t. both u and v are on the same path $P_{i}(1 \leq i \leq 3)$.

(f) Our necessary and sufficient condition

- G is internally 3-connected,
- G has no aration pair $\{u, v\}$ ct hat
each degree ≥ 3

For any separation pair $\{u, v\}$ of G,

1) both u and v are outer vertices, and
2) each component of $G-\{u, v\}$ contains an outer vertex.

(f) Our necessary and sufficient condition

- G is internally 3-connected,
- G has no ration pair $\{u, v\}$ ct bat
For any separation pair $\{u, v\}$ of G,

1) both u and v are outer vertices, and
2) each component of $G-\{u, v\}$ contains an outer vertex.

(f) Our necessary and sufficient condition

- G is internally 3-connected,
- G has no ration pair $\{u, v\}$
ct hat
For any separation pair $\{u, v\}$ of G,

1) both u and v are outer vertices, and
2) each component of $G-\{u, v\}$ contains an outer vertex.

(f) Our necessary and sufficient condition

- G is internally 3-connected.
- G has no separation pair $\{u, v\}$ s.t. both u and v are on the same path $P_{i}(1 \leq i \leq 3)$.

(f) Our necessary and sufficient condition

- G is internally 3-connected.
- G has no separation pair $\{u, v\}$ s.t. both u and v are on the same path $P_{i}(1 \leq i \leq 3)$.

(f) Our necessary and sufficient condition

- G is internally 3-connected.
- G has no separation pair $\{u, v\}$ s.t. both u and v are on the same path $P_{i}(1 \leq i \leq 3)$.

(a) - (f) are equivalent with each other.
(a) G has a canonical decomposition.
(b) G has a realizer.
(c) G has a Schnyder labeling.
(d) G has an outer triangular convex grid drawing.
(e) G has an orderly spanning tree.
(f) necessary and sufficient condition
- G is internally 3 -connected.
- G has no separation pair $\{u, v\}$ such that both u and v are on the same $P_{i}(1 \leq i \leq 3)$.

Our results

necessary and sufficient condition
 - G is internally 3-connected. - G has no separation pair $\{u, v\}$ s.t. both u and v are On the same $P_{i}(1 \leq i \leq 3)$

Canonical Decomposition [BTV99]

Convex Grid Drawing
[Fe01]

Schnyder labeling
G has an outer triangular convex grid drawing

- G is internally 3-connected
- G has no separation pair $\{u, v\}$ s.t. both u and v are on the same $P_{i}(1 \leq i \leq 3)$
if $\cdot G$ is not internally 3-connected, or - G has a separation pair $\{u, v\}$ such that both u and v are on the same $P_{i}(1 \leq i \leq 3)$
G has no outer triangular convex grid drawing

These faces cannot be simultaneously drawn as convex polygons.

G has no convex drawing.

G has an outer triangular convex grid drawing

- G is internally 3-connected - G has no separation pair $\{u, v\}$ s.t. both u and v are on the same $P_{i}(1 \leq i \leq 3)$
if $\bullet G$ is not internally 3 -connected, or - G has a separation pair $\{u, v\}$ such that both u and v are on the same $P_{i}(1 \leq i \leq 3)$
G has no outer triangular convex grid drawing

This face cannot be drawn as a convex polygon.

G has no outer triangular convex grid drawing.

Our results

necessary and sufficient condition
 - G is internally 3-connected. - G has no separation pair $\{u, v\}$ s.t. both u and v are H the same $P_{i}(1 \leq i \leq 3)$

Canonical Decomposition
[[BTV99]

Convex Grid Drawing - [Fe01]

- G is internally 3-connected
- G has no separation pair $\{u, v\}$ s.t. both u and v are
G has
a canonical decomposition on the same $P_{i}(1 \leq i \leq 3)$

- G is internally 3 -connected
- G has no separation pair $\{u, b\}$ s.t. both u and v are G has a canonical decomposition

(cd1) V_{1} consists of all vertices on the inner face containing O and $V_{h}=\{\bigcirc\}$.
(cd2) Each $G_{k}(1 \leq k \leq h)$ is internally 3-connected.
(cd3) All the vertices in each $V_{k}(2 \leq k \leq h-1)$ are outer vertices of G_{k}, and either (a) or (b).
- G is internally 3-connected
- G has no separation pair $\{u, v\}$ s.t. both u and v are

```
\(G\) has
a canonical decomposition
``` on the same \(P_{i}(1 \leq i \leq 3)\)

(cd1) \(V_{1}\) consists of all vertices on the inner face containing \(\bigcirc\) and \(V_{h}=\{\bigcirc\}\).
(cd2) Each \(G_{k}(1 \leq k \leq h)\) is internally 3-connected.
(cd3) All the vertices in each \(V_{k}(2 \leq k \leq h-1)\) are outer vertices of \(G_{k}\), and either (a) or (b).
- \(G\) is internally 3 -connected
- \(G\) has no separation pair \(\{u, b\}\) s.t. both \(u\) and \(v\) are
\(G\) has
a canonical decomposition on the same \(P_{i}(1 \leq i \leq 3)\)

(cd1) \(V_{1}\) consists of all vertices on the inner face containing \(O\), and \(V_{h}=\{\bigcirc\}\).
(cd2) Each \(G_{k}(1 \leq k \leq h)\) is internally 3-connected.
(cd3) All the vertices in each \(V_{k}(2 \leq k \leq h-1)\) are outer vertices of \(G_{k}\), and either (a) or (b).
- \(G\) is internally 3-connected
- \(G\) has no separation pair \(\{u, v\}\) s.t. both \(u\) and \(v\) are
a canonical decomposition on the same \(P_{i}(1 \leq i \leq 3)\)
(cd1) \(V_{1}\) consists of all vertices on the inner face containing \(\bigcirc\) and \(V_{h}=\{\bigcirc\}\).
(cd2) Each \(G_{k}(1 \leq k \leq h)\) is internally 3-connected.
(cd3) All the vertices in each \(V_{k}(2 \leq k \leq h-1)\) are outer vertices of \(G_{k}\), and either (a) or (b).
- \(G\) is internally 3-connected
- \(G\) has no separation pair \(\{u, v\}\) s.t. both \(u\) and \(v\) are \(G\) has a canonical decomposition
(cd1) \(V_{1}\) consists of all vertices on the inner face containing - , and \(V_{h}=\{\bigcirc\}\).
(cd2) Each \(G_{k}(1 \leq k \leq h)\) is internally 3-connected.
(cd3) All the vertices in each \(V_{k}(2 \leq k \leq h-1)\) are outer vertices of \(G_{k}\), and either (a) or (b).
- \(G\) is internally 3-connected
- \(G\) has no separation pair \(\{u, v\}\) s.t. both \(u\) and \(v\) are
a canonical decomposition on the same \(P_{i}(1 \leq i \leq 3)\)
(cd1) \(V_{1}\) consists of all vertices on the inner face containing \(O\), and \(V_{h}=\{\bigcirc\}\).
(cd2) Each \(G_{k}(1 \leq k \leq h)\) is internally 3-connected.
(cd3) All the vertices in each \(V_{k}(2 \leq k \leq h-1)\) are outer vertices of \(G_{k}\), and either (a) or (b).
- \(G\) is internally 3-connected
- \(G\) has no separation pair \(\{u, v\}\) s.t. both \(u\) and \(v\) are
a canonical decomposition on the same \(P_{i}(1 \leq i \leq 3)\)
(cd1) \(V_{1}\) consists of all vertices on the inner face containing \(O\), and \(V_{h}=\{\bigcirc\}\).
(cd2) Each \(G_{k}(1 \leq k \leq h)\) is internally 3-connected.
(cd3) All the vertices in each \(V_{k}(2 \leq k \leq h-1)\) are outer vertices of \(G_{k}\), and either (a) or (b).
- \(G\) is internally 3-connected
- \(G\) has no separation pair \(\{u, v\}\) s.t. both \(u\) and \(v\) are \(\leftrightarrows \begin{aligned} & G \text { has } \\ & \text { a canonical decomposition }\end{aligned}\) on the same \(P_{i}(1 \leq i \leq 3)\)

(cd2) Each \(G_{k}(1 \leq k \leq h)\) is internally 3-connected.
(cd3) All the vertices in each \(V_{k}(2 \leq k \leq h-1)\) are outer vertices of \(G_{k}\), and either (a) or (b).

(a)

(b)
- \(G\) is internally 3-connected
- \(G\) has no separation pair \(\{u, v\}\) s.t. both \(u\) and \(v\) are \(\leftrightarrows \begin{aligned} & G \text { has } \\ & \text { a canonical decomposition }\end{aligned}\) on the same \(P_{i}(1 \leq i \leq 3)\)
\((\mathrm{cd} 2)\) Each \(G_{k}(1 \leq k \leq h)\) is internally 3-connected.
\(G_{h-1}\)

(cd3) All the vertices in each \(V_{k}(2 \leq k \leq h-1)\) are outer vertices of \(G_{k}\), and either (a) or (b).

(a)

- \(G\) is internally 3-connected
- \(G\) has no separation pair \(\{u, v\}\) s.t. both \(u\) and \(v\) are \(\triangleleft \begin{aligned} & G \text { has } \\ & \text { a canonical decomposition }\end{aligned}\) on the same \(P_{i}(1 \leq i \leq 3)\)
\[
G_{h-2}
\]

\((\mathrm{cd} 2)\) Each \(G_{k}(1 \leq k \leq h)\) is internally 3-connected.
(cd3) All the vertices in each \(V_{k}(2 \leq k \leq h-1)\) are outer vertices of \(G_{k}\), and either (a) or (b).

(b)
- \(G\) is internally 3-connected
- \(G\) has no separation pair \(\{u, v\}\) s.t. both \(u\) and \(v\) are \(\triangleleft \begin{aligned} & G \text { has } \\ & \text { a canonical decomposition }\end{aligned}\) on the same \(P_{i}(1 \leq i \leq 3)\)
(cd2) Each \(G_{k}(1 \leq k \leq h)\) is internally 3-connected.

(cd3) All the vertices in each \(V_{k}(2 \leq k \leq h-1)\) are outer vertices of \(G_{k}\),

- \(G\) is internally 3-connected
- \(G\) has no separation pair \(\{u, v\}\) s.t. both \(u\) and \(v\) are \(\Rightarrow \begin{aligned} & G \text { has } \\ & \text { a canonical decomposition }\end{aligned}\) on the same \(P_{i}(1 \leq i \leq 3)\)
(cd2) Each \(G_{k}(1 \leq k \leq h)\) is
 internally 3-connected.
(cd3) All the vertices in each \(V_{k}(2 \leq k \leq h-1)\) are outer vertices of \(G_{k}\), and either (a) or (b).

(a)

(b)

\section*{Our results}
necessary and sufficient condition

Canonical Decomposition

Schnyder labeling

\section*{Our results}
necessary and sufficient condition

Canonical Decomposition
[BTV99]

Orderly Spanning Tree

Schnyder labeling

\section*{Orderly Spanning Tree}

\section*{Realizer}

for each vertex

\section*{Our results}
necessary and sufficient condition
 - \(G\) is internally 3-connected. - \(G\) has no separation pair \(\{u, v\}\) such that both \(u\) and \(v\) are on the same path \(P_{i}(1 \leq i /)\)

Canonical Decomposition
[BTV99]

Convex Grid Drawing - [Fe01]

\section*{Our results}
necessary and sufficient condition
 - \(G\) is internally 3-connected. - \(G\) has no separation pair \(\{u, v\}\) such that both \(u\) and \(v\) are on the same path \(P_{i}(1 \leq\)

Canonical Decomposition
[BTV99]

Orderly Spanning Tree

\section*{Conclusion necessary and sufficient condition}

Canonical Decomposition
[BTV99]

Convex Grid Drawing
- Fe 01\(]\) Orderly Spanning Tree

Schnyder labeling
(a) - (f) are equivalent with each other.
(a) \(G\) has a canonical decomposition.
(b) \(G\) has a realizer.
(c) \(G\) has a Schnyder labeling.
(d) \(G\) has an outer triangular convex grid drawing.
(e) \(G\) has an orderly spanning tree.
(f) necessary and sufficient condition
- \(G\) is internally 3-connected.
- \(G\) has no separation pair \(\{u, v\}\) such that both \(u\) and \(v\) are on the same \(P_{i}(1 \leq i \leq 3)\).

If a plane graph \(G\) satisfies
the necessary and sufficient condition,
then one can find the followings in linear time
(a) canonical decomposition,
(b) realizer,
(c) Schnyder labeling,
(d) orderly spanning tree, and
(e) outer triangular convex grid drawing of \(G\) having the size \((n-1) \times(n-1)\).

\section*{The remaining problem is}
to characterize the class of plane graphs having convex grid drawings such that the size is \((n-1) \times(n-1)\) and the outer face is not always a triangle.

triangle

END

\section*{Orderly Spanning Tree}

(each subset may be empty)
(ost1) For each edge not in the tree \(T\), none of the endpoints is an ancestor of the other in \(T\).
(ost2) For each leaf other than \(u_{\alpha}\) and \(u_{\beta}\), neither \(N_{2}\) nor \(N_{4}\) is empty.
- \(G\) is internally 3-connected
- \(G\) has no separation pair \(\{u, v\}\) s.t. both \(u\) and \(v\) are \(\leftrightarrows \begin{aligned} & G \text { has } \\ & \text { a canonical decomposition }\end{aligned}\) on the same \(P_{i}(1 \leq i \leq 3)\)
(cd2) Each \(G_{k}(1 \leq k \leq h)\) is internally 3-connected.
(cd3) All the vertices in each \(V_{k}(2 \leq k \leq h-1)\) are outer vertices of \(G_{k}\), and either (a) or (b).

(a)

(b)
- \(G\) is internally 3-connected
- \(G\) has no separation pair \(\{u, v\}\) s.t. both \(u\) and \(v\) are \(\Rightarrow \begin{aligned} & G \text { has } \\ & \text { a canonical decomposition }\end{aligned}\) on the same \(P_{i}(1 \leq i \leq 3)\)
(cd2) Each \(G_{k}(1 \leq k \leq h)\) is internally 3-connected.
(cd3) All the vertices in each \(V_{k}(2 \leq k \leq h-1)\) are outer vertices of \(G_{k}\),

(a)
(a) or (b).

(b)
- \(G\) is internally 3-connected
- \(G\) has no separation pair \(\{u, v\}\) s.t. both \(u\) and \(v\) are \(\Rightarrow \begin{aligned} & G \text { has } \\ & \text { a canonical decomposition }\end{aligned}\) on the same \(P_{i}(1 \leq i \leq 3)\)
(cd2) Each \(G_{k}(1 \leq k \leq h)\) is internally 3-connected.
(cd3) All the vertices in each \(V_{k}(2 \leq k \leq h-1)\) are outer vertices of \(G_{k}\),

(a)
(a) or (b).

(b)
- \(G\) is internally 3-connected
- \(G\) has no separation pair \(\{u, v\}\) s.t. both \(u\) and \(v\) are \(\triangleleft \begin{aligned} & G \text { has } \\ & \text { a canonical decomposition }\end{aligned}\) on the same \(P_{i}(1 \leq i \leq 3)\)
(cd2) Each \(G_{k}(1 \leq k \leq h)\) is
O internally 3 -connected.
(cd3) All the vertices in each \(V_{k}(2 \leq k \leq h-1)\) are outer vertices of \(G_{k}\),

(a)
(a) or (b).

(b)
- \(G\) is internally 3-connected
- \(G\) has no separation pair \(\{u, v\}\) s.t. both \(u\) and \(v\) are \(\Rightarrow \begin{aligned} & G \text { has } \\ & \text { a canonical decomposition }\end{aligned}\) on the same \(P_{i}(1 \leq i \leq 3)\)
(cd2) Each \(G_{k}(1 \leq k \leq h)\) is internally 3-connected.
(cd3) All the vertices in each \(V_{k}(2 \leq k \leq h-1)\) are outer vertices of \(G_{k}\),

(a)
(a) or (b).

(b)
- \(G\) is internally 3-connected
- \(G\) has no separation pair \(\{u, v\}\) s.t. both \(u\) and \(v\) are \(\triangleleft \begin{aligned} & G \text { has } \\ & \text { a canonical decomposition }\end{aligned}\) on the same \(P_{i}(1 \leq i \leq 3)\)
(cd2) Each \(G_{k}(1 \leq k \leq h)\) is internally 3-connected.
(cd3) All the vertices in each \(V_{k}(2 \leq k \leq h-1)\) are outer vertices of \(G_{k}\),

(a)
(a) or (b).

(b)
- \(G\) is internally 3-connected
- Ghas no separation pair \(\left\{4 t_{1}\right\}\) s.t. both Uand vare on the same \(P_{i}(1 \leq T \leq 3)\)
(cd2) Each \(G_{k}(1 \leq k \leq h)\) is
(cd2) Each \(G_{k}(1 \leq k \leq h)\) is
internally 3 -connected.
(cd3) All the vertices in each \(V_{k}(2 \leq k \leq h-1)\) are outer vertices of \(G_{k}\),
 and either (a) or (b).

(a)

(b)
\(G\) has
a canonical decomposition
- \(G\) is internally 3-connected
- \(G\) has no separation pair \(\{u, v\}\) s.t. both \(u\) and \(v\) are \(\Rightarrow \begin{aligned} & G \text { has } \\ & \text { a canonical decomposition }\end{aligned}\) on the same \(P_{i}(1 \leq i \leq 3)\)
(cd2) Each \(G_{k}(1 \leq k \leq h)\) is internally 3-connected.
(cd3) All the vertices in each \(V_{k}(2 \leq k \leq h-1)\) are outer vertices of \(G_{k}\), and either (a) or (b).

(a)

(b)
- \(G\) is internally 3-connected
- \(G\) has no separation pair \(\{u, v\}\) s.t. both \(u\) and \(v\) are \(\triangleleft \begin{aligned} & G \text { has } \\ & \text { a canonical decomposition }\end{aligned}\) on the same \(P_{i}(1 \leq i \leq 3)\)
(cd2) Each \(G_{k}(1 \leq k \leq h)\) is internally 3-connected.
(cd3) All the verticesin each \(V_{k}(2 \leq k \leq h-1)\) are outer vertices of \(G_{k}\),

(a) or (b).

(b)
- \(G\) is internally 3-connected
- \(G\) has no separation pair \(\{u, v\}\) s.t. both \(u\) and \(v\) are \(\triangleleft \begin{aligned} & G \text { has } \\ & \text { a canonical decomposition }\end{aligned}\) on the same \(P_{i}(1 \leq i \leq 3)\)
(cd2) Each \(G_{k}(1 \leq k \leq h)\) is
internally 3-connected.
(cd3) All the vertices in each \(V_{k}(2 \leq k \leq h-1)\) are outer vertices of \(G_{k}\),
 and either (a) or (b).

(a)

(b)
- \(G\) is internally 3-connected
\(\bullet\) G has no separation pair \(\{u, v\}\)
s.t. both \(u\) and \(v\) are
```

$G$ has
a canonical decomposition

``` on the same \(P_{i}(1 \leq i \leq 3)\)
1. \(P\) connects two outer vertices \(u\) and \(v\).
2. \(u, v\) is a separation pair of \(G\).
3. Plies on an inner face.
4. \(P\) does not pass through any outer edge and any outer vertex other than \(u\) and \(v\).
- \(G\) is internally 3-connected
\(\bullet\) G has no separation pair \(\{u, v\}\)
s.t. both \(u\) and \(v\) are
\(G\) has
a canonical decomposition on the same \(P_{i}(1 \leq i \leq 3)\)
1. P connects two outer vertices \(u\) and \(v\).
2. \(u, v\) is a separation pair of \(G\).
3. Plies on an inner face.
4. \(P\) does not pass through any outer edge and any outer vertex other than \(u\) and \(v\).
- \(G\) is internally 3 -connected \(\cdot\) G has no separation pair \(\{u, v\}\) s.t. both \(u\) and \(v\) are \(G\) has
a canonical decomposition on the same \(P_{i}(1 \leq i \leq 3)\)
1. \(P\) connects two outer vertices \(u\) and \(v\).
2. \(u, v\) is a separation pair of \(G\).
3. Plies on an inner face.
4. \(P\) does not pass through any outer edge and any outer vertex other than \(u\) and \(v\).
- \(G\) is internally 3-connected
\(\bullet\) G has no separation pair \(\{u, v\}\)
s.t. both \(u\) and \(v\) are
 on the same \(P_{i}(1 \leq i \leq 3)\)
1. P connects two outer vertices \(u\) and \(v\).
2. \(u, v\) is a separation pair of \(G\).
3. Plies on an inner face.
4. \(P\) does not pass through
any outer edge and any outer vertex other than \(u\) and \(v\).

\section*{plan of proof :}
find a minimal chord-path P , then choose such a vertex set.

\section*{3-connected plane graph}

3-connected plane graph

\(\bigcirc\)

\section*{3-connected plane graph}
```

