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A simple linear algorithm is presented for coloring planar graphs with at most five 
colors. The algorithm employs a recursive reduction of a graph involving the deletion 
of a vertex of degree 6 or less possibly together with the identification of its several 
neighbors. 

1. INTRODUCTION 

A coloring of a graph is an assignment of colors to the vertices in such a 
way that adjacent vertices have distinct colors. Although the problem of 
coloring a graph with the minimal number of colors has practical applica- 
tions in some schedulings [ 11, it is known to be NP-complete even for the 
class of planar graphs [3]. 

We present here a linear algorithm for finding a coloring of a planar 
graph with at most five colors, that is, koloring. We denote by n the 
number of vertices of a graph throughout this paper. On the basis of the 
well-known Kempschain argument, one can easily design an 0( n2) time 
algorithm for the purpose by employing a simple recursive reduction of a 
graph involving the deletion of a vertex of degree 5 or less possibly together 
with the interchange of colors in a 2-colored subgraph. Lipton and Miller [4] 
have given an O(n log n) algorithm for the problem by removing a “batch” 
of vertices rather than just a single vertex. Their algorithm and its proof are 
a little complicated. In this paper we give a simple linear algorithm for the 
purpose. The algorithm does not use the Kempe-chain argument, but uses a 
recursive reduction of a graph involving the deletion of a vertex of degree 6 
or less possibly together with the identification of several neighbors of the 
vertex. We prove that the algorithm runs in O(n) time. Hence the computa- 
tional complexity of our algorithm is optimal within a constant factor. 
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2. OUTLINEOFTHEALGOBITHM 

We first define some terms. Let G = (V, E) be a graph with vertex set V 
and edge set E. We consider only a simple graph G, that is, a graph with no 
multiple edges or loops. A graph G is planar if it is embeddable in the plane 
without edge crossing. The neighborhood N(u) of a vertex o is the set of all 
vertices which are adjacent to U. The degree d(u) of a vertex o of G is the 
number of vertices adjacent to 0. The deletion of a vertex v is an operation 
on G which deletes o together with all the edges incident to 0, and the 
resulting graph is denoted by G - o. Let u and o be two vertices of a graph 
G. A vertex identification (or simply identification) (u, v) is an operation on 
G which identifies u and V, that is, removes u and 0 and adds a new vertex 
adjacent to those vertices to which u or u was adjacent. Our algorithm 
frequently uses these operations in recursive reductions of graphs. 

The outline of the algorithm is as follows. Suppose that G is a given 
planar graph. We construct a new planar (simple) graph G’ from G by 
deleting a vertex u of degree 6 or less possibly together with some other 
modifications, and then color G’ with five colors by recursively applying the 
algorithm. We extend the koloring of G’ to a koloring of G by assigning 
to o a color not used for vertices in N(u). In order to guarantee that there 
remains such a color, we construct G’ so that G’ contains only four vertices 
in N(v), as follows. If 2, is of degree 4 or less, then we simply set 
G’ = G - o. If u is of degree 5, then we construct G’ from G - v by 
identifying a pair of nonadjacent vertices in N(u). Note that there exists 
such a pair of vertices since G is planar (see Lemma l), and that the 
resulting planar graph G’ has no loops. The pair of vertices of G will be 
assigned the same color as the vertex substituted for them in G’. Finally, if 
0 is of degree 6, then we construct a planar graph G’ from G - u by 
identifying either three pairwise nonadjacent vertices in ZV( v) or two pairs of 
nonadjacent vertices in N(u). Lemma 2 in Section 3 guarantees that there 
exist such vertices. Note that we must select two pairs of vertices ap- 
propriately so that G’ is planar. 

We use adjacency lists to represent a graph G. All the operations in the 
algorithm, other than vertex deletions or vertex identifications, require O(n) 
time in total. Clearly the deletion of a single vertex o requires 0 (d( u )) 
time. Therefore all the vertex deletions used in the algorithm require at most 
O(n) time in total, since Z,, V d(u) 5 6n. Hence we should implement the 
algorithm so that all the vertex identifications require O(n) time in total. 
One can easily execute the single identification of vertices u and u in 
O(d(u) + d(u)) t ime; that is, one can modify the adjacency lists of G in 
that amount of time so that the resulting lists represent a new graph 
obtained from G by identifying u and u. However, the same vertex may 
appear in identifications O(n) times, so a direct implementation of the 
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algorithm would require O(n2) time. As we describe the details in the 
following section, the algorithm runs in several stages, in each of which we 
repeat the recursive reductions insofar as no vertex is involved in more than 
two identifications, so that the stage requires at most O(n) time. An 
argument in Section 4 shows that the resulting graph G’ at the end of a 
stage has a positive fraction of vertices at the beginning of the stage. From 
these facts it is shown that the algorithm requires O(n) time in total. 

Remark. We have given a simple “on-line” algorithm to execute any 
sequence of vertex identifications of a graph G = (V, E) in O(l E Ilog VI) 
time, by using adjacency lists together with an adjacency matrix [2]. It yields 
an alternative simple 0( n log n) 5-coloring algorithm of planar graphs. 

3. ~XOL~RINGALGOI~THM 

In this section we present the linear algorithm for coloring planar graphs 
with at most five colors. We first have the following lemmas. 

LEMMA 1. Let a planar graph G = ( V, E ) contain a vertex v of degree 5 
with N(v) = {v,, v2, v3, v.,, us}. Then, for any specified vi EN(v), there 
exists a pair of nonadjacent vertices vj and vk, j, k # i. Furthermore one can 
find such a pair in O(MIN,,,,,-, d(v)) time if the planar embedding of G 
is given. 

ProojI We can assume without loss of generality that vi = v,, and that 
the vertices v,, v2, v3, v, and v5 in N(v) are labeled clockwise around v in 
the plane embedding of G. Consider the case in which d(v,) is minimum 
among d( v,), d(q), d( v~), and d(v5). Scanning all the elements in the 
adjacency list for v2, one can know whether ( v2, VJ E E or not. If ( v2, uJ 
E E, then (v,, vS) 6! E. Thus one can find a pair of nonadjacent vertices in 
0 (d( v2)) time. The proof for all the remaining cases is similar to above. 

Q.E.D. 

Lemma 1 implies that for a vertex v of degree 5 one can always find a 
pair of nonadjacent vertices VJ and ok in N(v) both of which have not been 
involved in vertex identifications if N(v) contains at most one vertex vi 
involved in a vertex identification so far. 

LEMMA 2. L.et a planar graph G = (V, E) contain a vertex u of degree 6 
with N(v) = {u,, v2,. . . , q}. Then N(v) contains either 

(i) three pairwise nonadjacent vertices, or 

(ii) two pairs of nonadjacent vertices vi, uj and ok, vI such that the 
identification (vi, vi) together with (vk, v,) does not destroy the planarity of 
G - v. 
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Furthermore one canfind these vertices in O(MIN,,,,,,5[d(n,) + d(q)]) 
time if the planar embedding of G is given. 

Proof. Assume that the vertices u t, u2, . . . , u, in N(u) are labeled clock- 
wise around u in the plane embedding of G. The identifications of two 
“crossover” pairs of vertices in ZV( u), such as I+, u5 and us, u,, may destroy 
the planarity of G - u, since us and o, possibly do not lie on the boundary 
of a common face when u2 is identified with u5 in G - u. However, the 
identifications of two “parallel” pairs, such as u2, u, and u3, u5, necessarily 
preserve the planarity of G - o. We establish our claim only for the case in 
which d( u,) + d(u,) is minimum among all the sums of degrees of two 
vertices in N(u), since the proof for all the remaining cases is similar. 
Scanning all the elements of the adjacency lists for u, and for u2, one can 
know whether the edges (ut, u5) and (u2, u4) exist or not. If exactly one of 
them, say (u,, u,), exists, then u2, u,, and u, are the required three pairwise 
nonadjacent vertices. Otherwise, 02, v, and us, u5 (if both (u ,, u5) and 
(a*, Us) exist) or c2, u, and u,, u5 (if neither exists) are the required two 
“parallel” pairs of nonadjacent vertices in N(u). Thus one can find the 
required vertices in 0 ( d ( u , ) + d ( u2 )) time. Q.E.D. 

As a data structure to represent a graph G, we use an adjacency list L[u] 
for each u E V. Each adjacency list is doubly linked. The two copies of each 
edge (u, u), one in L[u] and the other in L[u], are also doubly linked. In 
addition to L, we use four arrays FLAG, COUNT, DEG, and DP together 
with three queues Q[i], 4 5 i I 6. An element DEG[u] of array DEG 
contains the value of d(u), u E V. FLAG[u] has an initial value “false” at 
the begining of each stage of the algorithm, and will be set to “true” when u 
is identified with another vertex. COUNT[u] contains the number of 
vertices w  E N(u) with FLAG[w] = true, that is, the number of vertices in 
N(u) involved in vertex identifications in the current stage so far. The queue 
Q[ i], 4 5 i 5 6, contains all the vertices which are available for the recursive 
reduction of the stage, defined as follows: 

Q[4] = {u(DEG[u] 5 4); 

Q[5] = {u(DEG[u] = 5,COUNT[u] I l}; and 

Q[6] = {u]DEG[u] = 6, COUNT[u] = O}. 

That is, Q[4] is the set of all the vertices of degree 4 or less, Q[5] the set of 
all the vertices of degree 5 with at most one neighbor involved in an 
identification in the stage, and Q[6] the set of all the vertices of degree 6 
with no neighbors involved in any identification in the stage. DP[u] has a 
pointer to an element “u” in Q[iJ if u is contained in Q[i]. We are now 
ready to present the algorithm. 
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procedure FIVE; 
comment The procedures DELETE and IDENTIFY are for the vertex 
deletion and the vertex identification, respectively; 
procedure COLOR (G); 

begin 
if ) Y) I 5 then assign ] V] colors to ) V) vertices 
else 

begin 
if Q[4] # 0 

then begin 
take a top entry IJ from Q[4]; 
DELETE (u); 
let G’ be the reduced graph 
end 

else 
if Q[5] # 0 

then begin 
take a top entry u from Q[5]; 
choose two nonadjacent vertices X, y E N(U) such 
that 
FLAG [x] = FLAG [ y] = false; 
DELETE (u); 
IDENTIFY (x, y); 
let G’ be the reduced graph 
end 

else 
if Q[6] # 0 

then 
begin 

take a top entry 0 from Q[6]; 
comment By Lemma 2 either case (i) or case 
(ii) holds; 
for case (i) do 

k@ 
let x, y, and z be the three pairwise nonad- 
jacent vertices in N( 0); 
DELETE (0); 
IDENTIFY (y, x); 
IDENTIFY (z, x) 
end; 

for case (ii) do 
begin 
let ui, uj and uk, v, be the two “parallel” 
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pairs of nonadjacent vertices in N(u); 
DELETE (0); 
IDENTIFY (q, u,); 
IDENTIFY (ok, q) 
end; 

let G’ be the reduced graph 
end 
else 

begin 
comment Current stage is over. Reset FLAG and COUNT; 
for n E I/ do begInFLAG [u]: = false; 

COUNT [u]: = 0 end; 

COLOR (G) 
end; 

COLOR (G’); 
assign to o a color not used in the coloring of N(u), 
and to each identified vertex of G the color of the 
vertex substituted for it in G’; 
comment Note that the number of colors used in the 
coloring of N(u) is at most 4 

end 

end 
begin 

embed a given planar graph G in the plane; 
for u E T/do 

begin 
calculate DEG [u]; 
FLAG [u]: = false; 
COUNT [u]: = 0 

end 
COLOR (G) 

end 

procedure DELETE (u); 
begin 

for w  E L[u] do 
begin 

delete w  from L[u]; 
delete u from L[ w]; 
DEG[w]:= DEG[w] - 1; 
if FLAG[u] = true 



%OLORING OF PLANAR GRAPHS 323 

then COUN’YQw]:= COUNqw] - 1; 
end; 

delete L[u] from the adjacency lists and “0” from Q[i], i = 4, 5, or 
6, if any, and update appropriately the elements in Q[i] according to 
the modifications of DEG and COUNT above 

end 

procedure IDENTIFY (u, u); 
comment This procedure executes the identification (u, u) of two 
nonadjacent vertices u and u such that either FLAG[u] or FLAG[u] is 
“false.” We assume FLAG[u] = false without loss of generality. The 
vertex u will act as a new vertex substituted for u and old u; 
begin 

if FLAG[u] = false 
then begin 

FLAG[ u]: = true; 
for w  E L[o] do COUNqw]: = COUNT[w] + 1 
end; 

for w  E L[u] do mark w  with “u”; 
for w  E L[u] do 

begin 
delete w  from L[u]; delete u form L[w]; 
if w  has no mark “u” 

then begin 
comment w  is adjacent to u, but not to u; 
add w  to L[ u]; add u to L[ w]; 
DEG[u]:= DEG[u] + 1; 
COUNT[w]:= COUNT[w] + 1; 
if FLAG[w] = true 

then COUNT[u]: = COUN’Qu] + 1 
end 

else begin 

end; 

comment w  is adjacent to both u and u; 
DEG[w]: = DEG[w] - 1 
end 

delete L[u] from the adjacency lists and “u” from Q[i], i = 4, 5, or 
6, if any, and update appropriately the elements in Q[i], i = 4,5,6, 
according to the above modifications of DEG and COUNT 

end 

In the algorithm above we omit the detail of the method for obtaining the 
planar embedding of G’ from that of G, since clearly the time required for 
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the purpose is proportional to that for the vertex deletions and identifica- 
tions. 

4. TIME COMPLEXITY 

In this section, we establish the following theorem. 

THEOREM. The procedure FIVE colors a planar graph G = (V, E) with at 
most five colors in O(n) time, where n = ( V (. 

We first present the following lemma before establishing the Theorem. 
The lemma implies that at the end of each stage of the algorithm a positive 
fraction, say l/12, of the remaining vertices have been involved in vertex 
identifications. 

LEMMA 3. Let G = (V, E) be a planar graph with minimum degree 5, and 
let S be a subset of V. If every vertex of degree 5 is adjacent to at least two 
vertices in S, and every vertex of degree 6 is adjacent to at least one vertex in 
S, then ISI 2 n/12. 

Proof: Define V, = {vld(v) = 5, v E V}, V, = {vld(v) = 6, v E V}, 
and V,={vld(v)r7,vEV} sothat V=V,UV,UV,,andletp,= 
IV,l, pe = IV,\, and p* = IV,l. Define S, = S f7 V,, S, = S fl V,, and 
S, = S tl V, so that S = S, U S, U Se, and let r, = ) S,(, t-6 = 1 Se\, and 
r* = (&I. 

By Euler’s formula ( E 1 5 3n, we have 

5P5 + @6 + k’* d(v) 5 6(~, +P6 + P*). 

Hence we have 

PS 1 &Eva (d(v) - 6) 2 P*- (1) 

Since n = ps + pe + p*, we have from (1) 

P5 +P6 r n/2. (2) 

We furthermore have from (1) 

p5 2 LS* d(v) - 6r,. (3) 

Since every vertex of degree 5 is adjacent to at least two vertices in S, and 
every vertex of degree 6 is adjacent to at least one vertex in S, we have 

Lsdb) 2 2P, + P6* (4) 
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On the other hand we have 

Combining (4) and (5), we have 

2p, + p6 5 6(5 + r6) + %ES* db). 

BY (31 and (619 

(5) 

(6) 

2p, +& 5 6(rs + r6) +Ps + 6r, = 61SJ + Ps, 

and hence 

Ist L (PS +P6)/6. 

Therefore we have 1 S I 1 n/12 by (2), as desired. 
We are now ready to prove the Theorem. 

Q.E.D. 

Proof of the Theorem. Noting that the reduced graph G’ of a planar 
graph G is a planar simple graph smaller than G, we can easily prove by 
induction on the number of vertices of a graph that the algorithm correctly 
colors a planar graph G with at most five colors. Hence we shall show that 
the algorithm runs in O(n) time. 

We first show that the first stage of the algorithm requires at most O(n) 
time. One can easily verify that the procedure DELETE executes the 
deletion of a vertex u in 0 (d( 0)) time, and that the procedure IDENTIFY 
does the identification of two nonadjacent vertices u and w  in 
O@(u) + d(w)) tim e since it simply scans the elements of L[u] and L[w]. 
The algorithm calls DELETE for a vertex in each reduction. Since every 
vertex appears in at most one vertex deletion, all the vertex deletions in the 
stage require O(n) time in total. Consider a reduction around a vertex u of 
degree 5 or 6, in which IDENTIFY is called in addition to DELETE. If u is 
in Q[5], the algorithm finds two neighbors ui and uj of u with FLAG[u,] = 
FLAG[uj] = false, and then calls IDENTIFY(u,, Us). The identification 
requires O(d(u,) + d(uj)) time. L emma 1 implies that one can find ui and 
Us in that amount of time. If u is in Q[6], the algorithm finds either three 
pairwise nonadjacent vertices x, y, and z or two pairs of nonadjacent 
vertices ui, cj and ok, u,, and then calls IDENTIFY(y, x) and 
IDENTIFY(z, x) or IDENTIFY(ui, uj) and IDENTIFY(u,, u,), respec- 
tively. These two identifications together require 0( d(x) + d(r) + d(z)) 
or 0( d(ui) f d( uj) -t d(uk) + d( u,)) time, respectively. Lemma 2 im- 
plies that one can find these vertices in that amount of time. Of course, 
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FLAGS for these vertices are all “false,” since COUNT]e] = 0. That is, all 
these vertices have not been involved in any vertex identification in the 
stage. Thus every vertex is involved in at most two identifications in the 
stage. (The vertex x above is possibly involved in two identifications.) 
Therefore all the identifications in the stage require O(n) time in total. 
Clearly the bookkeeping operations required for the four arrays and three 
queues need O(n) time in total. Note that one can directly access “0” via a 
pointer in DP[ u]. Hence we can conclude that the stage requires O(n) time. 

We next show that at the end of the first stage the reduced graph 
G’ = (V’, E’) contains at most 8n/9 vertices. Suppose that IV’/ = n’ # 0. 
Then the minimum degree of G’ is 5, and COUNTo] 2 2 for every vertex z) 
of degree 5, and COUNT[u] L 1 for every vertex of degree 6, since Q[4], 
Q[5], and Q[6] are all empty at the end of the stage. Let S = {ulFLAG[u] 
= true, u E V’} so that the subset S of V’ satisfies the requirement of 
Lemma 3, then we have 1 S 1 I n’/ 12. Clearly at least 1 S I vertices disappear 
from the graph G by vertex identifications. Since each reduction produces at 
most two vertices in S, there must occur at least I Sl/2 graph reductions 
around vertices of degree 5 or 6 in the stage. Therefore at least ISI/ 
vertices are deleted from G by vertex deletions in the stage. Hence at least 
31 S (/2 vertices disappear from G in the stage. Therefore we have 

n - n’ 13lSl/2. 

Since I S 1 L n’/ 12, we have 

n’ I 8n/9. 

Using the two facts above, we have the following equations on T(n) the 
number of steps (or time) needed to 5-color a planar graph G of n vertices: 

T(n) 5 c, ifn 55; 

T(n) I T(8n/9) + czn otherwise, 

where c, and c2 are constants. Solving these equations, we have T(n) = O(n). 
Q.E.D. 
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