
Discrete Applied Mathematics 5 (1983) 21 l-222 

North-Holland Publishing Company 

211 

AN APPROXIMATION ALGORITHM FOR THE HAMILTONIAN 
WALK PROBLEM ON MAXIMAL PLANAR GRAPHS 

Takao NISHIZEKI, Takao ASANO * and Takahiro WATANABE ** 

Department of Electrical Communications, Faculty of Engineering, Tohoku University, Sendai, 
Japan 980 

Received 24 November 1980 

Revised 30 October 1981 

A hamiltonian walk of a graph is a shortest closed walk that passes through every vertex at least 

once, and the length is the total number of traversed edges. The hamiltonian walk problem in 

which one would like to find a hamiltonian walk of a given graph is NP-complete. The problem is 

a generalized hamiltonian cycle problem and is a special case of the traveling salesman problem. 

Employing the techniques of divide-and-conquer and augmentation, we present an approxima- 

tion algorithm for the problem on maximal planar graphs. The algorithm finds, in Ow2) time, a 

closed spanning walk of a given arbitrary maximal planar graph, and the length of the obtained 

walk is at most i@ - 3) if the graph has p (Z 9) vertices. Hence the worst-case bound is i. 

1. Introduction 

A hamiltonian walk of a graph is a shortest closed walk that passes through every 
vertex at least once, and the length of a hamiltonian walk is the total number of 
edges traversed by the walk [7]. The hamiltonian walk problem in which one would 
like to find a hamiltonian walk of a given graph would arise in situations where it is 
necessary to periodically traverse a network or data structure in a way as to visit all 
vertices and minimize the length of the traversal. 

The hamiltonian walk problem is a generalization of the hamiltonian cycle 
problem in which one would like to determine if a given graph contains a hamilto- 
nian cycle. It is well known that the hamiltonian cycle problem is NP-complete. 
Furthermore Garey, Johnson and Tarjan [6] have shown that the hamiltonian cycle 
problem is NP-complete even when restricted to 3-connected, cubic, planar graphs. 
Hence the hamiltonian walk problem is also NP-complete even when restricted to 
the same class. On the other hand, Christfides [4] has developed a polynomial-time 
approximation algorithm with a worst-case bound of i for the traveling salesman 
problem in which the distance between vertices satisfies the triangle inequality. The 
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hamiltonian walk problem is a special case of the traveling salesman problem, in 
which the distances are the shortest path lengths in a graph. Therefore we can use 
the algorithm of Christofides to find in O(p3) time a closed spanning walk of a 
graph whose length is smaller than i times the length of a shortest one, where p 
denotes the number of vertices in a graph. 

In this paper we present a new approximation algorithm for the hamiltonian walk 
problem on maximal planar graphs. Our algorithm is more efficient than the 
method employing the Christofides’ algorithm, and is completely different from it. 
Given a maximal planar graph with p (19) vertices, our algorithm finds, in Ob2) 
time, a closed spanning walk of the graph whose length is at most i(p - 3). Hence it 
has a worst-case bound of i which is same as his. However it should be noted that 
the Christofides’ method does not always produce a closed spanning walk of length 
at most i(p - 3) if the given graph is not hamiltonian(, since in this case the shortest 
closed walk has length greater thanp). We will employ, in our algorithm, two tech- 
niques: divide-and-conquer and augmentation. The algorithm is based on two 
known results: one is our previous result that a maximal planar graph with p vertices 
always contains either a hamiltonian cycle or a closed spanning walk of length at 
most i(p - 3) [2]; the other is Whitney’s result that every 4-connected, maximal 
planar graph has a hamiltonian cycle [12]. We conjecture that the hamiltonian walk 
problem remains NP-complete even if we restrict ourselves to the class of maximal 
planar graphs. 

2. Terminology and basic results 

We proceed to some basic definitions. An (undirected simple) graph G = (V, E) 
consists of a set I/ of vertices and a set E of edges. Throughout this paper p denotes 
the number of vertices of G, i.e., p = 1 V 1. A walk of length k of G is a sequence 

O0el u1 e2 --.ekuk, whose term are alternately, vertices and edges, such that the end- 
vertices of edge e; are ui_i and u;, for each 1 sis k. The length of a walk W is 
denoted by f(W). The walk W is a closed spanning walk of G if uo= bk and every 
vertex of G appears in the sequence at least once. A hamiltonian walk of G is a 
closed spanning walk of minimum length. For a connected graph G, let h(G) denote 
the length of a hamiltonian walk of G. Clearly ps h(G)s2(p- 1). A cycle is a 
closed walk whose vertices are all distinct. A hamiltonian cycle of G is a closed 
spanning walk of length p, i.e., a cycle that passes through every vertex of G exactly 
once. A graph is hamiltonian if it contains a hamiltonian cycle. A maxima/planar 
graph is a planar graph to which no edge can be added without losing planarity. 
Note that every maximal planar graph G is connected and every face of G is a 
triangle. A triangle of a maximal planar graph is called a nonface triangle if it is not 
a boundary of a face. A maximal planar graph with p (~5) vertices has no nonface 
triangles if and only if it is 4-connected. For a graph G = (V, E) and a subset V’ of V, 
G - V’ denotes the graph obtained from G by deleting all vertices in v’. A singleton 
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set {u} is simply denoted by ‘u’. A multiset is a set with a function mapping the 
elements of the set into the positive integers, to indicate that an element may appear 
more than once. We sometimes represent a walk by the multiset of edges traversed 
by it. A walk I+“, i.e., a sequence of edges and vertices, can be easily constructed 
from the multiset of edges of a walk W, (possibly I+“# W). Note that this can be 
done by any algorithm for finding an eulerian walk of an eulerian graph. We refer 
to [l] or [9] for all undefined terms. 

We next present several lemmas. Generalizing Whitney’s result [12], Tutte has 
shown that every 4-connected planar graph has a hamiltonian cycle [ 111. Employing 
the proof technique used by Tutte, Gouyou-Beauchamps has given an O(p3) algo- 
rithm for finding a hamiltonian cycle in a 4-connected planar graph G [S]. If G is 
maximal planar, we can improve the time-complexity as follows. 

Lemma 1. There is a O@‘) time-algorithm for finding a hamiltonian cycle in a 4- 
connected maximal planar graph G with p vertices. 

Remark. It is not difficult to implement a recursive algorithm for finding a hamilto- 
nian cycle of a 4-connected maximal planar graph G in 0Q2) time, completely 
based on the inductive proof of Whitney [12] ensuring its existence. On the other 
hand, Asano, Kikuchi and Saito have recently obtained an O(p) algorithm for the 
same purpose. (T. Asano, S. Kikuchi and N. Saito, An efficient algorithm to find a 
Hamiltonian circuit in a 4-connected maximal planar graph, in: N. Saito and T. 
Nishizeki, eds., Graph Theory and Algorithms, Lecture Notes in Computer Science 
108 (Springer-Verlag, Berlin, 1981) 182-195.) 

Lemma 2. (a) Every maximal planar graph with ten or fewer vertices contains a 
hamiltonian cycle [3,12]. 

(b) Every nonhamiltonian, maximal planar graph with 11 vertices has a hamilto- 
nian walk of length 12. (Zt is implicit in [3] that every such graph is isomorphic to a 
certain graph depicted in Fig. 1 of [2].) 

Lemma 3. [2] Let xyz be any (triangular) face of a maximalplanar graph G = (V, E) 
with p vertices, where x, y, z E V. 

(a) Zf p = 5 or 6, then at least one of the three graphs G - {x, y}, G - {y, z) and 
G - (2,x} contains a hamiltonian cycle. 

(b) Zf p = 7 or 8, then (i) at least one of G - {x, y}, G - {y, z} and G - {z, x} con- 
tains a hamiltonian cycle, or (ii) G -x, G - y and G - z all have hamiltonian cycles. 

Using the dynamic programming, one can obtain an O(pe2J’) algorithm for deter- 
mining if a given graph contains a hamiltonian cycle. The algorithm requires a 
constant time if p is a constant. Let HAMILTON(G) be such an algorithm which 
determines if a given planar graph with 11 or fewer vertices contains a hamiltonian 
cycle, and moreover finds a hamiltonian walk in constant time. This algorithm will 
be used in the next section. 
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Lemma 4. Given a connected graph G = ( Y, E) with p vertices and given a cycle C of 
length c in G, one can find a closed spanning walk W of G such that l(W) I 2p - c, 
in 0( JE I) time. 

Proof. Contract all the vertices on C into one vertex, and find a (spanning) tree of 
the obtained graph. If C is the set of edges of the cycle C and T the set of edges of 
the tree, then the multiset W= C+ T+ T is a closed spanning walk of G which 
traverses twice each edge of the tree and once each edge of C. Clearly the length of 
Wis2p-c. q 

For a nonface triangle T of a maximal plane graph G, let Grt = (Vrt, ETI) denote 
the induced subgraph of G inside T, and G ro = (k’~o, ETO) the induced subgraph 
of G outside T. Specifically if T=xyz (x, y,.z~ V), U’(T) is the set of vertices lying 
inside T, and U”(T) is the set of vertices outside T, then Grt is the subgraph of G 
induced by the vertex set {x, y, z} U vl( T), i.e., GTI = G - U”(T), and GTO is the sub- 
graph of G induced by the vertex set {x, y,z) U U”(T), i.e., Gro= G- U’(T). Let 
prt = ) VT1 ) and pro= ) VT, I. The following lemma plays a crucial role in the design 
of our algorithm. The precise description of Algorithm LCYCLE and the proof of 
Lemma 5 will appear in Section 4. 

Lemma 5. For a maximal planar graph G with p (2 11) vertices such that either 
pTI = 4 or pro = 4 for each nonface triangle T of G, Algorithm LCYCLE finds a 
cycle C of length i(C) 2 30, + 9), in O(p2) time. 

3. Approximation algorithm HWALK 

In this section we present a polynomial-time algorithm for finding a closed 
spanning walk W with I(W) I max(p, :(p - 3)) of a given maximal planar graph G 
with p vertices. In the algorithm we will employ the divide-and-conquer technique: 
if a given maximal planar graph G has a nonface triangle T satisfying a certain con- 
dition, then (i) divide G into two smaller maximal planar graphs Grt and Gro, (ii) 
recursively call the algorithm with respect to G rt and Gro, and (iii) combine the 
closed spanning walks of Grt and G To into a closed spanning walk of the whole 
graph G. 

The Algol-like procedure HWALK depicted in Fig. 1 takes as input a maximal 
planar graph and returns a closed spanning walk of the graph represented by a 
multiset of edges. 

We can show that HWALK is a polynomial-time algorithm with a worst-case 
bound of i, establishing the following theorem. Remember that h(G)rp for every 
connected graph G. 

Theorem 1. For a maximal planar graph G with p vertices, Algorithm HWALK 
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procedure HWALK(G): 

begin 

1 if p 2 11 then return a hamiltonian walk W of G which - -- 
can be found by the Algorithm HAMILTON; 

2 if G has no nonface triangle (i,e., G is 4-connected) - 

then return a hamiltonian cycle W of G which can be -- 

found by the algorithm in Lemma 1 

3 

10 

11 

12 

13 

14 

else 

if either pTI = 4 or pTo = 4 for every nonface triangle 

T of G then 

begin 

find, in G, a cycle C of length &CC) 2 (p+9)/2 

by Algorithm LCYCLE (Lemma 5); 

return a closed spanning walk constructed 

from C by the algorithm in Lemma 4 

end 

else 

begin 

let T = xyz (x,y,zsV) be a nonface triangle 

such that pTI,p-o _‘ 5; 

comment p = pTI + pTo - 3 > 12; _ 

!?_Q assume that pm1 5 pTo otherwise interchange 
I 

roles of GTI and GTO & 

begin 

if pTo > pTI 2 9 then return -- 

HWALK(GTI) + HWALK(GTO); 

g PTI = 7 or 8 and pTo 2 9 then 

begin 

comment By Lemma 3(b) at least one of 

GTI-x, G,TI-~, GTI-a, GTI-Ix,yj, GTI-ty,zj 

and GTI -{a,~) is hamiltonian; 

find a hamiltonian cycle CI of one 

of the six graphs in the above 

comment; 

return C 
-1 

+ HWALK(GTO) 

end; - 
if +I = 7 or 8 and pTo = 7 or 8 then 

if either GTI-Ix,y}, GTI-Iy,zl or 

GTI-{z,x] contains a hamiltonian 

cycle C I then return CI + HWALK(GTO) 

else 

if either GTO-Ix,y), GTO-ty,z) or - 

GTO 
-{a,~) contains a hamiltonian 

cycle c o then return HWALK(GTI) + Co 

Fig. 1. Algorithm HWALK 



216 T. Nishizeki et al. /Approximation algorithm for hamiltonian walk 

15 

16 

17 

18 

else return -- 

HAMILTON(GTI -x) + HAMILTON(GTO-y); 

if PTI = 5 or 6 then - 

becjin 

comment Either GTI-{x,y}, GTI-Iy,z1 

or G 
TI 

-{z,xl is hamiltonian; 

wlq GTI-Ix,yl is hamiltonian 1" 

find a hamiltonian cycle CI of 

G TI-IX'YI: 

return CI + HPIALK(GTO) 

end 

end 

end 

end 

Fig. 1. Algorithm HWALK (cont.). 

finds, in O(p2) time, a closed spanning walk W of G such that 

ifplll; 

otherwise. 
(la) 

(lb) 

Proof. We first prove correctness by induction on the number p of vertices of G. If 

ps 11, then the algorithm finds a hamiltonian walk W in line 1, and Lemma 2 

implies that I(W) satisfies (1). For the inductive step, we assume that the Algorithm 

correctly finds a closed spanning walk W satisfying (1) in any maximal planar graph 

with less than p (L 12) vertices. Let G be a maximal planar graph with p vertices. If 

G has no nonface triangle (i.e., G is a 4-connected), then the Algorithm returns in 

line 2 a hamiltonian cycle W (by the algorithm in Lemma 1) which clearly satisfies 

(1). If either pTI = 4 or pro = 4 for each nonface triangle T of G, then the Algorithm 

LCYCLE called in line 4 finds a cycle C of G such that I(C) L +(p + 9) (Lemma 5), 

and the Algorithm HWALK returns in line 5 a closed spanning walk W which is 

constructed from C of G. By Lemma 4 we have that 

In the remaining case in which there exists a nonface triangle T such that prr, pro 2 

5, we can assume without loss of generality that prr~pro: otherwise interchange 

roles of Grr and Gro. Note that both Grr and G TO are maximal planar graphs with 

less than p vertices. If prozprrz9, then recursively calling itself the Algorithm 

finds closed spanning walks WI = HWALK(Grr) of Grt and WO= HWALK(Gro) 

of Gro in line 8. Clearly the multiset W= WI+ W. returned in line 8 represents a 

closed spanning walk of G. We shall show 1(W) 5 $07 - 3). It can be shown that 

&w,)5:(PTI-3) and I( Wo) 5 @To- 3). 

If prrz 11, then by the inductive hypothesis 1( WI) I #TI - 3); otherwise, i.e., if 
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prt = 9 or 10, then HWALK finds a hamiltonian cycle WI, so I( WI) =pTIs @TI - 3); 

the proof for the case of Gro is similar. Since p =pT1 +pTo - 3, we have 

If prt = 7 or 8 and pro 2 9 (in line 9), then by Lemma 3(b) at least one of GTI -X, 

GTI-_Y, GTI-Z, GTI- {x,Y}, GTI- {_Y,z} and G T1 - {z, x} has a hamiltonian cycle, 
say Ct. Clearly I(Ct)=prt-1 or ~~1-2. Let Wo=HWALK(Gro), i.e., a closed 
spanning walk of Gro obtained by recursively calling HWALK for Gro. Then since 
9 spTO<p, I( Wo) I @To- 3) as shown above. Hence W= C, + W. is a closed 
spanning walk of G and 

Using Lemma 3 and the inductive hypothesis we can easily establish the correctness 
for the remaining cases. 

We next prove that the total amount of time spent by HWALK is at most 0e2). 
Algorithm HAMILTON used in line 1 etc. determines whether a given graph with 11 
or fewer vertices is hamiltonian or not and returns a hamiltonian walk (or cycle), 
both in constant time (, since ps 11). By Lemma 1 the algorithm used in line 2 
requires 0b2) time. By Lemma 5 LCYCLE called in line 4 requires 0b2) time, and 
by Lemma 4 a closed spanning walk of G can be constructed, in 001) time, from a 
cycle found by LCYCLE. Note that 0( I,!? I) = O@) since G is planar. It shall be 
noted that if a maximal planar graph G contains a vertex w such that both end- 
vertices u and u of an edge e = (u, u) are adjacent to w and the triangle UDW is not a 
face, then uuw is a nonface triangle of G. Using this fact, one can determine, in 
O@) time, whether G contains a nonface triangle with e as a boundary edge. Since 
0( 1 E 1) = O(p), one can find all nonface triangles of G in O@ 2, time. It can be 
easily shown by induction on p that every maximal planar graph with p vertices con- 
tains at most p - 4 nonface triangles. Hence one can determine allpTr and pro for all 
nonface triangles T of G in Ou2) time. Moreover one can determine the inclusion 
relation among all nonface triangles of G. The relation is represented by a rooted 
tree R such that 

(i) the root of R corresponds to the exterior face triangle of G; 
(ii) each vertex of R except the root corresponds to a nonface triangle of G; and 

(iii) a directed edge joins vertex x to vertex y in R if and only if the nonface 
triangle of G corresponding to y is an outmost triangle contained in the triangle 
corresponding to x. 

If T is a nonface triangle of G, every nonface triangle except T is also a nonface 
triangle of Grt or Gro. Once one finds all nonface triangles Tof G together Withprr 
and pro and determines the inclusion relation among them, one can update such 
information for Grr and Gro in O@) time. Hence it is not difficult to implement 
HWALK so that the time T(p) spent for a graph with p vertices satisfies 
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where ki, kz and k3 are constants. Noting that p=pTI+pTO- 3, and solving the 
above equation, we have that ZQ) I 0b2), establishing Theorem 1. q 

4. Algorithm LCYCLE 

In this section we describe a polynomial-time algorithm LCYCLE and prove 
Lemma 5. Given a maximal planar graph G with p (2 11) vertices such that either 

pTI= 4 or p TO = 4 for each nonface triangle T of G, Algorithm LCYCLE returns a 
cycle C with I(C) L +O, + 9) in 0Q2) time. 

In order to find a required cycle in a given graph we will employ a kind of 
augmentation: whenever the graph contains a vertex x off a currently obtained cycle 
C satisfying a certain requirement, some edges of C are replaced by appropriate 
edges off C so that x becomes a vertex on the newly obtained cycle and the length of 
the cycle increases by one. Consider the configurations depicted in Fig. 2, where C is 
written as C=uou1u2~~~uo. 

(I) Fig. 2(a) shows a configuration in which G has a vertex x off C which is adja- 
cent to the endvertices ui and u2 of an edge (ul, u2) on C. It shall be noted that pro- 
bably uj= u3 where uj is the third vertex to which x is adjacent. (It will be known that 
every vertex off C is of degree 3.) Clearly cycle C’= u~u~xu~u~***u~ of G is longer 
than C. 

(II) Figs. 2(b) and (c) show configurations in which for some integer k? 1, 
(i) (ui_r,ui+i)~E for each i, 1 silk, and 

(ii) a vertex x off C is adjacent to u1 and u~+~. 
For simplicity vertex ui is indicated by ‘i’ in Figs. 2(b) and (c). If k is odd, then 
clearly cycle 

(a) Type I (b) Type II with odd k Cc) Type II with even k 

Fig. 2. Configurations of type I and II. (An old cycle is drawn by lines on a circle, and a new cycle is 

drawn by thick lines.) 
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of G is longer than C. (See Fig. 2(b).) If k is even, then cycle 

of G is longer than C. (See Fig. 2(c).) 
The configuration illustrated in Fig. 2(a) is called of type I, and both in Figs. 2(b) 

and (c) together with symmetric ones are called of type II. Note that a configuration 
of type I can be regarded as a special case of type II with k=O. 

For an illustration we depict in Fig. 3 a maximal planar graph G = (V, E) with 
V={O,1,2 ,..., 16). Cycle C= 012**(14)0 is drawn by lines on a circle. Vertices 15 
and 16 off C are of degree 3. G contains a configuration of type I with respect to 
vertex 16: (16,0), (16,l) E E. G also contains a configuration of type II with respect 
to vertex 15: (6,8),(7,9),(8,10),(15,7),(15,11)~E (k=3). The new cycle 

C’=0(16)1234568(10)97(15)(11)(12)(13)(14)0 

longer than C is drawn by thick lines. 
Algorithm LCYCLE is depicted in Fig. 4. We assume that cycle C is written 

generically as uou1u2~~~ u/(+ too at any stage of the algorithm. 
We next present the proof of Lemma 5. 

Proof of Lemma 5. In order to prove the correctness of Algorithm LCYCLE, it is 
sufficient to show that (i) if ps 16, then G contains a cycle C of length 1(C) 2 
+@ + 9), and that (ii) if p 2 17 and C is an arbitrary cycle of length &c)<HP+9> 

Fig. 3. An illustrating example. 
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1 

procedure LCYCLE(G): 

if P ( 16 then return a cycle C of length Q(C) 2 (p+9)/2 - -- 

found by any reasonable algorithm 

else 

begin 

2 

3 

4 

5 

6 

let V3 be the set of all vertices of degree 3; 

G' t G - V3; 

comment G' is a 4-connectedmaximal planar graph; 

C C a hamiltonian cycle of G' which can be found 

by the algorithm in Lemma 1; 

Q(C) + P - IV3li 

While Q(C) < (P+9)/2 g 

begin 

7 

8 

if G contains a configuration of type I then - 

w> assume that vertex x off C is adjacent 

to "1 and v 2, the endvertices of edge 

(v,,v,) on C otherwise rename the vertices 

on C in 

10 

11 

12 

13 

14 

begin 

Q,(C) + Q(C) + 1; 

end 
c c “o”1x”2”3...“o 

else 

begin 
comment G contains a configuration of type II; 

wlq assume that for some k > 1 (i) (v. 1-l ,v. _ l+ljEE 
for each i, 1 5 i 5 k, and (ii) vertex x off C 

is adjacent to "1 and vk+2 otherwise rename 

vertices on C in 

begin 

Q(C) 6 Q(C) + 1; 

if k is odd then 

c t VOV2V4..."k_1Vk+l"k..."3"1XVk+2...V0 

else 

end 
c t VO"2"4..."k"k+l"k_l..."3"1X"k+2...V0 

end 

end - 
end - 

Fig. 4. Algorithm LCYCLE. 

such that every vertex off C has degree 3, then G contains a configuration of type I 
or II. In Section 4 of our previous paper [2] we showed via a lengthy argument that 
every maximal planar graph satisfying the requirement of Lemma 5 contains a cycle 
C of length I(C) L +@ + 9). Thus (i) above has been verified. Furthermore one can 
see that (ii) above is implicit in the arguments in Stages 1 and 2 of Section 4 of [2]. It 
shall be noted that the graph G’ = G - V, in line 3 is 4-connected since G’ contains no 
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nonface triangles: otherwise G would contain a nonface triangle Twithprl,Pror 5, 
contradicting the assumption of G. Thus every vertex off C is of degree 3 for the 
cycle C obtained in line 4. Once a vertex of G is inserted into C, it will be never 
deleted from C in the algorithm. Consequently, every vertex off C is of degree 3 at 
any stage of LCYCLE. 

We next establish our claim on the time complexity of LCYCLE. If ps 16, one 
can find a cycle C of length I(C) z+@+ 9) in constant time. Therefore line 1 of 
LCYCLE requires O(1) time. Clearly lines 2 and 3 can be executed in O(p) time. In 
line 4 we use the algorithm of Lemma 1 which is the most time consuming part of 
LCYCLE and requires O@*) time. Clearly line 5 requires O(1) time. If edge 
e=(ol,b2) is on C, (ur,x) is an edge which is incident to or and is clockwise or 
counterclockwise next to e in the plane embedding of G, and x is off C, then u2 is 
adjacent to x, i.e., G contains a configuration of type I. Using the doubly linked 
adjacency lists for representing the plane embedding of G so that an edge embedded 
next to a given edge can be directly accessed, one can determine in O(1) time 
whether both endvertices of a given edge on C are adjacent to a vertex off C. 
Checking this for each edge on C, one can determine in O(p) time whether G 
contains a configuration of type I. Note that one can embed a planar graph G on the 
plane in O@) time [lo]. Similarly one can determine in O@) time whether G 
contains a configuration of type II. Each time a configuration of type I or II is 
found, cycle C is replaced by a longer one in lines 10, 13 and 14. Each replacement 
requires O(p) time. Clearly each execution of line 9 or 12 requires O(1) time. Thus 
every execution of the loop of lines 7-14 requires O@) time. Since I(C) increases by 
one after every execution of the loop, the loop is executed at most p times. Hence 
the total amount L@) of time spent by LCYCLE for a graph G satisfies 
L@)lO@*), so we have the lemma. 0 

Acknowledgements 

We wish to thank Professor N. Saito for valuable discussions and suggestions on 
the subjects. This work was supported in part by the Grant in Aid for Scientific 
Research of the Ministry of Eduction, Science and Culture of Japan under Grant: 
Cooperative Research (A) 435013(1979), EYS 475235(1979) and EYS 475259(1979). 

Note added in proof 

Recently the conjecture mentioned at the end of Section 1 has been proved in: 
V. Chvatal, Hamiltonian cycles, Tech. Rep. 81-38, School of Compt. Sci., McGill 
Univ., Montreal, Canada (1981). 
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