SIAM J. COMPUT. © 1985 Society for Industrial and Applied Mathematics
Vol. 14, No. 1, February 1985 017

ARBORICITY AND SUBGRAPH LISTING ALGORITHMS*
NORISHIGE CHIBAt AND TAKAO NISHIZEKI

Abstract. In this paper we introduce a new simple strategy into edge-searching of a graph, which is
useful to the various subgraph listing problems. Applying the strategy, we obtain the following fouralgorithms.
The first one lists all the triangles in a graph G in O(a(G)m) time, where m is the number of edges of G
and a(G) the arboricity of G. The second finds all the quadrangles in O(a(G)m) time. Since a(G) is at
most three for a planar graph G, both run in linear time for a planar graph. The third lists all the complete
subgraphs K, of order ! in O(Ia(G)'~2m) time. The fourth lists all the cliques in O(a(G)m) time per clique.
All the algorithms require linear space. We also establish an upper bound on a(G) for a graph G:
a(G) = [(2m+ n)"/?/2], where n is the number of vertices in G.

Key words. arboricity, clique, complete subgraph, independent set, quadrangle, subgraph listing
algorithm, triangle

1. Introduction. The problems to list certain kinds of subgraphs of a graph arise
in many practical applications [2), [3], [4], [6], [8], [10], [11]. In this paper we introduce
a new simple strategy into edge-searching of a graph, which is useful to the various
subgraph listing problems. We choose a vertex v in a graph and scan the edges of the
subgraph induced by the neighbors of v to find the pattern subgraphs containing v.
The feature of the strategy is to repeat the searching above for each vertex v in
nonincreasing order of degree and to delete v after v is processed so that no duplication
occurs. We will show in the succeeding section that the procedure above requires
O(a(G)m) time. Throughout this paper m is the number of edges of a graph G, n is
the number of vertices of G, and a(G) is the arboricity of G, that is, the minimum
number of edge-disjoint spanning forests into which G can be decomposed [5]. We
use the rather unfamiliar graph invariant a(G) as a parameter in bounding the running
time of algorithms.

The strategy yields simple algorithms for the problems to list certain kinds of
subgraphs of a graph. The kinds of these subgraphs include “triangle,” “‘quadrangle,”
“complete subgraph of a fixed order,” and “clique.” Our algorithms are as fast as the
known ones if any, and a factor n is often reduced to a(G) in the time complexity.

In §2 we give an upper bound on a(G) for a general graph G: a(G)=
[(2m+n)"?/2], which implies a(G)= O(m"?) for a connected graph G. In § 3 we
give a simple algorithm which lists all the triangles in an arbitrary graph Gin O(a(G)m)
time. In § 4 we present an O(a(G)m) time algorithm for finding all the quadrangles
(i.e. C,) in G, which does not actually list C, but finds a representation of all the C,.
If G is planar, a(G) =3, so these two algorithms run in linear time for planar graphs.
Because of the bound on a(G), they run in at most O(m*?) time for general graphs.
In §5, extending the triangle listing algorithm, we present an O(la(G)'"2m) time
algorithm for listing all the complete subgraphs of order I (i.e. K,) in G, where ! is an
arbitrary number. Finally in § 6 we present an algorithm for listing all the cliques in
G in O(a(G)m) time per clique. All our algorithms require linear space and exceed
the known algorithms [3], [6], [9] for the same purposes in running time, space, or
simplicity.

* Received by the editors December 15, 1982.
t Department of Electrical Communications, Faculty of Engineering, Tohoku University, Sendai 980,
Japan.

210

ARBORICITY AND SUBGRAPH LISTING ALGORITHMS 211

2. Preliminaries. We first define some terms. Let G=(V, E) be a simple graph
with vertex set V and edge set E. The edge set of graph G is often denoted by E(G).
The edge joining vertices u and v is denodted by (u, v). Throughout this paper we
denote by n the number of vertices and by m the number of edges of a graph. Let
d(v) denote the degree of a vertex v, that is, the number of edges incident to v. A
graph is planar if it is embeddable on the plane without edge crossing. It is well-known
that m=3n-3 if G is planar [5]. A triangle in a graph is a cycle of length three (i.e.
G;), in other words, a complete subgraph of three vertices (i.e. K3). An independent set
is a set of pairwise nonadjacent vertices in a graph. A clique is a maximal complete
subgraph in a graph. We denote by [x] the smallest integer not less than x.

We next present two results; the first is concerned with the arboricity of a graph
and the other with the time required by scanning edges in a way of our strategy.

LemMA 1. Let a graph G have n vertices and m edges. Then

(1) (a) a(G)=[(2m+n)""?/2];
(b) a(G)=[n/2]; and
(¢) a(G)=3 if Gis planar [5, p. 124].

Proof. (a) Nash-Williams [7] showed that

@ a(G)=max [¢/(p-1)],

where H runs over all nontrivial subgraphs of G, p is the number of vertices and ¢
the number of edges of H. Suppose that the maximum in the right-hand side of (2) is
achieved by a subgraph H having p vertices and g edges. Let k be the number of
edges of a complete graph with p vertices, thatis, k = p(p — 1)/2. Consider the following
two cases.

Case 1. k=m.

a(G)=[q/(p—D1=[k/(p—D1=[p/2]
= [(2k+p)"*/2]= [(2m+n)"/?/2).
Case 2. k=m.
a(G)=[q/(p-D1=[m/(p-1)1= [{mk/(p-1)*}''*]

=[{(m(p—1D)+m)/2(p—1}"*]

= [{m/2+k/2(p— 1)}'"*]

=[(2m+p)'?/2]

=[(2m+n)"?/2].
(b) Immediate from (2).
(¢) If G is planar, (2) implies that

a(G)gglaé [Bp-3)/(p—1)]=3. Q.E.D.

Since a(K,)=[n/2]=[(2m+n)'"?/2] where m=n(n—1)/2, there exist an
infinite number of graphs attaining the upper bound in (1). In this sense the bound is
best possible. It should be noted that a(G) = O(1) for a large class of graphs including
(i) planar graphs, (ii) graphs of bounded genus, and (iii) graphs of bounded maximum
degree.

212 NORISHIGE CHIBA AND TAKAO NISHIZEKI

LeMMA 2. If graph G =(V, E) has n vertices and m edges, then
Y min{d(u), d(v)}=2a(G)m.

(uv)e E

Proof. Let F;, (1=i=a(G)) be the edge-disjoint spanning forests of G such that
E(G)=VU,sizsac)E(F;). Associate each edge of F; with a vertex of G as follows:
choose an arbitrary vertex u of each tree T in forest F; as the root of T;regard T as
a rooted tree with root u in which all the edges are directed from the root to the
descendants; and associate each edge e of tree T with the head vertex h(e) of e. Thus,
every vertex of F, except the roots, is associated with exactly one edge of F.. Then we
have

Y min{d(u),d(v)}= ¥ L d(h(e))

{u,v)eE I1=isa(G) ee E(F;)

= ¥ I d

1sisa(G)veV

=2a(G)m. Q.E.D.

3. Algorithm for listing triangles. The triangle detection problem often arises in
many combinatorial problems such as (1) the minimum cycle detection problem [6],
(2) the approximate Hamiltonian walk problem in maximal planar graphs [8], and (3)
the approximate minimum vertex cover (or maximum independent set) problem in
planar graphs [3], [4). Itai and Rodeh [6] presented an algorithm for finding all the
triangles, which uses an adjacency matrix, so requires O(n?) space but runs in o(m*?)
time for general graphs and in O(n) time for planar graphs. Bar-Yehuda and Even
[3] improved the space complexity of the algorithm from O(n?) into O(n) by avoiding
the use of the adjacency matrix. On the other hand Papadimitriou and Yannakakis [9]
gave a linear, but a little complicated, algorithm for finding all the complete subgraphs,
i.e. K, (1=i=4), in a planar graph with assuming a plane embedding of the graph.

Our algorithm for listing triangles in a graph G is very simple as shown below.
Observe that each triangle containing a vertex v corresponds to an edge joining two
neighbors of v.

procedure K3(G);
{Let G be a graph with n vertices and m edges.}

begin
sort the vertices v;, Us, * * * , U, of G in such a way that div)zd(v)z- 2
d(v,);
fori=1ton-2
do begin
{find all the triangles containing vertex v, each of which corresponds
to an edge joining two neighbors of v}
1: mark all the vertices adjacent to v;;
for each marked vertex u
do begin .
2: for each vertex w adjacent to u
do if w is marked
then print out triangle (v, u, w);
3 erase the mark from u

end;
{delete v; from G so that no duplication occurs.}

ARBORICITY AND SUBGRAPH LISTING ALGORITHMS 213

4: delete vertex v; from G and let G be the resulting graph
end
end;

We have the following result on the algorithm.

THEOREM 1. Let G be a connected graph with n vertices and m edges. Algorithm
K3 lists all the triangles in G in O(a(G)m) time, and especially in O(n) time if G is planar.

Proof. Since one can easily verify the correctness, we shall show that the algorithm
runs in O(a(G)m) time.

Clearly the degrees of vertices can be computed in O(m) time. Since the degree
of any vertex is at most n—1, one can sort the vertices in O(n) time by the bucket
sort [1]. We use doubly linked adjacency lists as a data structure to represent a graph
G. The two copies of each edge (u, v), one in the list of v and the other in the list of
u, are also doubly linked. Using such a data structure, we can delete a vertex v from
G in O(d(v)) time, and scan all the vertices adjacent to a vertex v in O(d(v)) time.
Now consider the time required by the ith iteration of the outmost for statement.
Statements 1, 3 and 4 require O(d(v;)) time. Statement 2 requires at most
O(Z e Ny (u)) time, where d(u) denotes the degree of vertex u in the original graph
and N(v;) denotes the set of neighbors of v; in the current graph. Therefore the total
running time T of the algorithm is bounded as follows:

T=0(m)+0(n)+ ¥ O(d(v)+ Y d(u)).

vevV ue N(v,)

Since v; has the largest d(v;) among all the vertices in the current graph, we have
d(u)=d(v;) for each ue N(v;). Since v, is deleted at Statement 4, each edge of G is
involved exactly once.in the double summations above. Thus we have

T=0(m)+ O(n)+0(Y. min{d(u), d(v)}).
(

u,v)eE

Using Lemma 2, we have T= O(a(G)m).

If G is planar, the algorithm runs in O(a(G)m)= O(n) time since a(G)=3 by
Lemma 1(c). Q.E.D.

Algorithm K3 is conceptually very simple and easy to implement. Furthermore it
is at least as fast as the known ones [3), [6], [9] since O(a(G)m)= O(m*?) by Lemma
1(a).

The benefit of our strategy may be intuitively explained as follows: since we delete
the vertices one by one in the largest degree order, the graph tends to become sparse
soon; this also prevents the edges incident to a vertex of large degree from being
scanned many often.

Applying the strategy, we will give three more algorithms for other subgraphs
listing problems in the succeeding sections.

4. Algorithm for finding quadrangles. In this section, using our searching strategy,
we design an efficient algorithm for finding all the quadrangles.

If vertices uy, uy, - + -, w; (1= 2) are all adjacent to two common vertices v and W,
that is, these /+2 vertices induce a complete bipartite graph K, ,, then any quadruple
(v, u, w,), 1=i<j=| forms a quadrangle. Thus even in a planar graph, there may
exist O(n®) quadrangles. Instead of listing these quadrangles individually, we list a
triple (v, w, {uy, u,, - - -, u;}) representing them altogether.

Our algorithm C4 depicted below proceeds, for each vertex v of a graph, to find
all the quadrangles containing v: for each vertex w within distance two from v, the

214 NORISHIGE CHIBA AND TAKAO NISHIZEKI

algorithm finds all such u,, u,, - - -, 4; which are adjacent to both v and w, and stores
them in a set U[w]. When the quadrangles containing v have been found, v is deleted
in order to avoid the duplication.

procedure C4(G);
{Let G=(V, E) be a graph with n vertices.}
begin
sort the vertices in V in a way that d(v,)Zd(v;)=- - -=d(v,);
for each vertex ve V do U[v]:=;
fori=1ton
do begin
for each vertex u adjacent to v
do for each vertex w # v; adjacent to u
do begin
Ulw]= U[w]lU{u}
end;
for each vertex w with |U[w]|=2
do print out the triple (v;, w, U[w]);
for each vertex w with U[w]# @ do U[w]:=O;
delete the vertex u; from G and let G be the new graph
end
end;
" The graph depicted in Fig. 1 contains seven quadrangles. Algorithm C4 lists the
following five triples: (1,5,{2,7,10}), (1,4,{2,3}), (3,8,{4,6}), (3,9,{4,6}), and
(4, 6, {8,9}). The first triple represents three quadrangles.

10 1 3 6

FIG. |. A graph containing seven quadrangles.

We easily obtain the following theorem.

THEOREM 2. Algorithm C4 obtains a representation of all the quadrangles in a
connected graph G in O(a(G)m) time, using O(m) space.

Note that Algorithm C4 does not store the triples. Since Algorithm C4 runs in
O(a(G)m) time, clearly all the quadrangles, if desired, could be represented by the
triples in O(a(G)m) space.

5. Algorithm for listing complete subgraphs. Observe the following fact: Algorithm
K3 finds a triangle (K;) containing a vertex v by detecting an edge (K;) in a subgraph
induced by the neighbors of v. In a similar manner, one can find a complete subgraph
K, containing a vertex v by detecting a complete subgraph K,_, in a subgraph induced
by the neighbors of v. We first present, for the sake of understanding, a simple recursive
algorithm for listing the complete subgraphs K; of fixed order /(22) in a graph
G=(V,E).

ARBORICITY AND SUBGRAPH LISTING ALGORITHMS 215

procedure COMPLETE(], G)
procedure K(k, G,);
{find all K, in a subgraph G,. C is a global stack.}
begin
if k=2
then for each edge (x, y) of G,
do print out {x, y}U C
else for each vertex of G,
do begin
let Gy, be the subgraph of G,
induced by the neighbors of v
add v to the top of C;
K(k~1, Ge_y}: {find K,_, in G,_,, which, together
with v, form K; in G}
delete v from the top of C;

Ge=G,—v {delete v to avoid the duplication}
end
end;
begin
C=g;
K(l, G)
end;

In the algorithm above Stack C contains a sequence of vertices which have been
known to be pairwise adjacent. When procedure K(k, Gy) is executed (at a recursive
call of depth /—k), C contains I - k pairwise adjacent vertices, and the subgraph G,
contains all the vertices that are adjacent to every vertex in C, Procedure K(k, G)
finds all the K, in G,, each of which, together with the vertices in C, forms a K; in
G. Noting these facts, one can easily verify the correctness of the algorithm by induction
on I However the direct implementation of COMPLETE does not yield an efficient
algorithm because it had to produce and store a sequence of induced subgraphs of G.

In order to avoid the trouble above, we introduce a certain kind of vertex-labeling,
by which all the vertices are labeled either “r,l=1",-++, or “k”. The vertices
labelled “k” induce the subgraph G, currently processed. Let U be the vertex set of
Gi. We order the entries of the adjacency lists as follows: in the adjacency list of each
vertex v € V, the neighbors of v having labels not exceeding the label of » occupy the
first part of the list and the other neighbors appear in the latter part in nondecreasing
order of the labels. Thus all the neighbors of each vertex u e U appear in the adjacency
list of u in nondecreasing order of the labels, so that the first parts of the adjacency
lists represent G,. We also employ the same strategy as the triangle listing algorithm,
that is, process the vertices of G, in the nonincreasing order of degrees in G,. Thus
the procedure is refined as follows.

procedure COMPLETE(], G);
procedure K(k, U);
{U is the vertex set of Gy, di(v) is the degree of vertex v in G}
begin
if k=2
then

216 NORISHIGE CHIBA AND TAKAO NISHIZEKI

1: for each edge (x, y) of the subgraph induced by U

do print out {x, y}UC

else
begin
2 sort the vertices in U in way that di(v)) 2 di(v2)Z - = di(vy)), and store
them in list;
for i==1to |U|
do begin

let U’ be the set of all the vertices which are adjacent to v; and labeled
“k”; {U' is the vertex set of Gy.}

3: relabel all the vertices in U’ “k—17";

4: in the adjacency list of each vertex u € U’, move the neighbors of u in
U’ at the first part; {the vertices of G,_, occupy the first parts of the
adjacency lists of vertices in U’, which realize the adjacency lists of
Gi-1-}

5: determine the degree d,_ () of each ue U’ in Gy_;
6: add the vertex v; to C;
7: K(k—-1,U";
8: delete the top entry v; from C;
9: relabel all the vertices in U’ “k”’; {recovery to Gy}
10: relabel v; “k+1"; {logical (not physical) deletion of v; from G}
11: in the adjacency list of each vertex ve U’, move the entry v; to the
position next to the last entry containing a vertex labeled “k”;
end
end
end;

begin {of COMPLETE}
label all the vertices of G “I”";
determine d,(v)(= d(v)) for each ve V;
C=0;
K(I V) {V is the vertex set of G =Gy}
end {of COMPLETE};

We have the following result on the algorithm.

THEOREM 3. If a connected graph G has n vertices and m edges, then Algorithm
COMPLETE lists all the complete subgraphs of order I (22) in G in O(la(G)2m) time
using linear space.

Proof. (a) Correctness. Note that throughout the execution of COMPLETE the
entries of the adjacency lists are ordered as mentioned just before the refined algorithm.
then one can easily verify the correctness of the refined one as well as the original one.

(b) Space. We use the same data structure as the algorithm K3 to represent a
graph. One recursive call with respect to a vertex v produces a list which stores the
vertices in U in nonincreasing order of degree in Gi. The length of the list is at most
d(v). Therefore the total length over all the lists with respect to the vertices in C is
at most ¥, . d(v)=2m during the execution of the algorithm. Thus the algorithm
requires linear space.

(c) Time. We now establish the claim on the running time. If the subgraph G
induced by U has m edges and n vertices, let T(k, m, n) be the time required by
procedure K(k, U) to find all the K, in Gi. Here T(k, m, n) does not count the time

ARBORICITY AND SUBGRAPH LISTING ALGORITHMS 217

required by printing out K; in Statement 1. First consider the case k=2, in which
Statement 1 is executed. One can find all the edges of G, in O(m+ n) time, because
the edges of Gy occupy the first parts of the adjacency lists. Thus Statement | requires
at most O(m+ n) time, and so T(2, m, n)= O(m+ n). Next consider the case k=3.
Clearly Statement 2 can be executed in O(n) time. Consider the time required by the
ith iteration of the for statement. Statements 3 and 9 require O(d,(v;)+1) time, and
Statements 6, 8, and 10 require O(1) time. Just before Statement 3 is executed, in the
adjacency list of each u € U, the neighbors of u appear in nondecreasing order of the
labels, which are “k™, “k+1”, - - - “I". Therefore Statement 4 is performed as follows:
in the adjacency list of each u € U’, choose the vertices in U’ (labeled “k—1") among
the first d,(u) entries; and move them to the first part of the list. Thus State-
ment 4 requires O(Y,, ., (di(u)+1)) time. Similarly one can show that Statements 5
and 1l require O(L,.. (di(u)+1)) time. Statement 7 requires T(k—1,
Xucu de1(u))/2, di(v;)) time by the definition of T. Note that the graph G,_, induced
by U’ has at most (¥, di_,(u))/2 edges and d,(v;) vertices. Thus, the ith iteration
of the for statement requires

oo+ (3, dt)+om+ (- (3, det) /2, d00)
time. Each v; € U satisfies d,(v,) = di(u) for every ue U'. Therefore Lemma 2 implies
that

z {O(dk(v.-))'l'o(ZU,dk(u))+0(l)}=O(a(Gk)m+n).

el

Thus we have the recurrence
T(2, m, n)= O(m+n),

T(k, m,n)= O(a(Gy)m+n)+ ¥ T(k— I, () dk—n(u))/2, dk(vi))-
vieU ue U’

Solving the reccurence with noting a(G,_,)=a(G,), we have T(k, m, n)=

0(a(G)* *m+n).

Since procedure COMPLETE (I, G) calls K(k, U) with k=1 and U=V for a
connected graph G =(V, E), it requires O(a(G)'">m) time in total to find all the K,
in G. This fact implies that the number of K, in G is at most O(a(G)'2m). Since one
can print out a X, in O(!) time, the total running time of COMPLETE including the
time for printing is at most O(la(G)'2m). Q.E.D.

Theorem 3 together with Lemma 1(c) imply that Algorithm COMPLETE lists all
the K, in a planar graph in linear time. The time complexity is the same as the algorithm
of Papadimitriou and Yannakakis [9], but our algorithm does not need the plane
embedding of a graph.

6. Clique listing algorithm. Tsukiyama et al. [11] presented an algorithm MIS
which lists all the maximal independent sets in a graph G and requires O(mn) time
per maximal independent set. In this section, we first show that our strategy can reduce
the running time to O(a(G)m). Then, employing their idea and our strategy, we present
an algorithm which lists all the cliques in a graph G in O(a(G)m) time per clique.

The algorithm of Tsukiyama et al. is outlined as follows. Let G=(V,E) be a
given graph with vertex set V={1,2,- - -, n}. Each vertex is referred by the number.
Let G, 1 =i=n, be the subgraph of G induced by vertices 1, 2, +, i. N(i) denotes

218 NORISHIGE CHIBA AND TAKAO NISHIZEKI

the set of vertices adjacent to i in the given graph G. Assume that I;_, is a maximal
independent set of G,_,, then one can decide by the following rules whether I,_; or
(I-,— N(i))U{i} is a maximal independent set in G;:

(1) If I,_,N N(i)# @, then I;_, is a maximal independent set of G

(2) If there is no independent set I of G;_, such that I — N(i) 2 I,_,— N(i), then

(I,-,— N(i))U{i} is a maximal independent set of G,

Thus they recursively generate all the maximal independent sets of G; from the maximal
independent sets of G;_,. However duplications may occur in maximal independent
sets produced by rule (2), so they avoided the duplications by choosing the lexicographi-
cally largest one among all the independent sets I,_, having the same I_,— N().

Tsukiyama et al. [11] implemented the backtracking algorithm MIS in a way that
one recursive step on vertex i is performed in O(. nciy-(i+1,....ny4 (X)) = O(m) time,
so that MIS requires O(mn) time to find one maximal independent set. An easy
observation leads us to an algorithm which requires O(a(G)m) time per maximal
independent set. We simply number the vertices of a given graph G in such a way
that d(1)=d(2)=---=d(n), and apply the same recursive method. Then, applying
Lemma 2, we can easily show that the new algorithm requires

(8] (Y Y, d(x)) = O(min_{d(u), d(v)}) = 0(a(G)m)
I1sisn xe N(i)={i+1,--.n} (uv)cE

time per maximal independent set. Unlike the preceding three algorithms, we number
the vertices in nondecreasing order of degree so that the newly added vertex i has the
largest degree in G. If G is sparse, the time complexity O(a(G)m) is considerably
better than O(mn).

The problem of listing all the cliques of a graph G is equivalent to that of listing
all the maximal independent sets of the complement G° of G. Therefore the algorithm
suggested above can list all the cliques of a graph G in O(a(G°)m°®) time per clique,
where m¢=n(n—1)/2—m is the number of edges of G°. However, this algorithm is
not necessarily efficient for sparse graphs. Using a recursive method similar to MIS,
we next give an algorithm CLIQUE which lists all the cliques in O(a(G)m) time per
clique. Unlike the case of maximal independent sets, guaranteeing the time complexity
of O(a(G)m) is not straightforward in this case, but requires some nontrivial arguments
especially on the “lexico. test”.

The set of vertices in a clique C is also denoted by C. The following is the outline
of our algorithm CLIQUE.

procedure CLIQUE
procedure UPDATE (i, C)
{generate a new clique of G; from a clique C of G;_,.}
begin
ifi=n+l
then print out a new clique C {C is a clique of G =G,.}
else
begin
if C— N(i)# O then UPDATE (i+1, C); {C is a clique of G.}
if both “maximality test” and “lexico. test” succeed
then
begin
SAVE = C~- N(i); {save the vertices removed from current C}
C=(CNN@{ENU{i}; {new C is a clique of G}

ARBORICITY AND SUBGRAPH LISTING ALGORITHMS 219

UPDATE((i+1, C);
C=(C—{i)USAVE ({recovery to old C}
end
end
end;
begin
number the vertices of a given graph G in such a way that d(1)=d(2)=- - -
d(n);
C:={1}; {C is the unique clique of G,.}
UPDATE (2, C)
end;

lIA

In the algorithm above, “maximality test” checks whether the candidate of anew
clique C'=(CNN(i))U{i} is indeed a clique (i.e. maximal complete subgraph) of
G, The “lexico. test™ checks whether C is the lexicographically largest clique of G,_,
containing C N N(i) (= C,). This test avoids the duplications of cliques. Note that
the same clique C’ of G; may be produced more than once from distinct cliques of
Gi_, containing C,. One can easily verify the correctness of the algorithm CLIQUE
by induction on n. In what follows, we refine the algorithm so that it runs in O(a(G)m)
time per clique.

We begin with the following lemma, which implies that if a clique of G, is generated
from a clique C of G,_, in O(Z, ¢ d(x)) time, then one clique of G can be found in
O(a(G)m) time.

LEMMA 3. Let thevertices 1,2, - - -, nofagraph Gsatisfyd(1)=d(2)=- - -=d(n),
and let C, 1=i=n, be an arbitrary clique of G; where G = G,. Then

Y Y d(x)=4a(G)m.

1¥i=n xeC;
Proof. Let ¢ =max, s, C|, then Equation (2) implies that
(3) c=2a(K,)=2a(G).
Since d(i)= d(x) for any xe C,

Y Ldix)= Y Y di)s Y d(i)e=2me.

1sisn xeC; 1s5isn xeC, 1sisn
Combining this with (3), we have
Y Y d(x)=4a(G)m. Q.E.D.

ISisn xeC

The following three lemmas are concerned with the tests.

LEMMA 4 [maximality test]. Let C be a clique of G;_,. Then, (CN N())U{i} is a
clique of G, if and only if G, has no vertex y € N(i)— C such that y<iand N(y)>CnN
N(i).

Proof. Immediate. Q.E.D.

Using Lemma 4, one can perform the “maximality test” once in O(d(i)+
Zxecnn) d(x)) time as follows: first compute T(y)=|N(y)N CNN(i)| for ye V (in
that time); then check whether there exists y € N(i)— C such that y<iand T(y)=
{C O N(i)|. (We will describe the detail later in the refined algorithm CLIQUE.)

LEMMA §. Let Cy be a complete subgraph of a graph G. A cliqgue C(> C,) of G is
the lexicographically largest one among all the cliques containing C, if and only if there
is no vertex y C such that N(y)> CoU C?, where C” ={ke Clk>y}.

220 NORISHIGE CHIBA AND TAKAO NISHIZEKI

Proof. Necessity. Assume that there exists a vertex y £ C suchthat N(y)> CoU C’.
Then clearly there exists a clique containing {y}U CoU C” which is lexicographically
larger than C.

Sufficiency. Assume that there exists a clique C '> C, which is lexicographically
larger than C. Let y be the largest vertex in C'—C. Then CNC'> C? since every
vertex in (C —C’) is less than y. Thus we have N(y)>CNC'> C,u . Q.E.D.

The direct application of Lemma 5 would require O(m) time to perform the
“lexico. test” once, so the algorithm would require O(mn) time per clique. The following
lemma yields a more efficient “lexico. test”.

LEMMA 6 [lexico. test]. Let C be a clique of G which includes a complete subgraph
C,, where C, may be empty. Let p=|C — Cyl, letji <j<+--<}j, be the vertices in C — C,,
and let j,=0. For each vertex y £ C, let S(y)=|N(y)N(C” - Co)|, and let j,. >y be the
smallest vertex in N(y)N(C?—Cy) if S(y)=1. Then C is the lexicographically largest
cligue containing C, if and only if every y£ C such that N(y) > C, satisfies

(a) if S(y)= 1 then either S(y)+k—1<p or ji_>y;

(b) if S(y)=0 then j,>y.

Proof. Necessity. Assume that there exists a vertex y £ C such that N(y)> C,,
violating either (a) or (b). If S(y)=0 and j, <y, then C” = and there exists a clique
which includes {y}U C, and is lexicographically larger than C. Thus we may assume
that S(»)=1, S(y)+k—1=p and j._,<y. (Note that S(y)+k—1=p.) Then the
inequality ji_; <y implies C* = Co= {ji Ji+15 " * - ,Jjp}» 50 |C” — Co|=p—k+1. Combin-
ing this with S(y)+k—1=p, we have S(y) = |C? — Cy|. Therefore there exists a clique
which includes {y}U C” U C, and is lexicographically larger than C.

Sufficiency. Assume that there exists a clique C'(> C,) which is lexicographically
larger than C. Let y be the largest vertex in C'— C. Then we have N(y)> C*UC, as
shown in the proof of Lemma 5. If S(y) =0, then clearly j, <y, violating (b). Thus we
may assume that S(y) = 1. Then clearly jx_, <y and S(y)=|C” - Cyl,s0 S(y)+k—1=
|C¥ — Co|+ k—1=p, violating (a). Q.E.D.

Using Lemma 6, one can perform the “lexico. test” once in O(Y,.c d(x)) time.
We first compute |[N(y)N(C—Co)| for ye V—C and then alter them to S(y)=
[N(»)N(C? — Cy), as shown in the refined CLIQUE. Thus the computation of S(y)
requires O(T,.c_c, d(x)) time. Let G= G,_, as in the algorithm, then the direct access
of the vertices y & C such that N(y) > G, (= C N N(i)) would require O(i) time, which
may be greaterthan O(.. d(x)). However, we can perform the access in 0%, .o d(x))
time as follows. If either Co# @ or S(y) = 1, then y is accessible from the adjacency
lists of vertices in C. On the other hand, if Co =@ and S(y) =0, then y is not accessible
from these lists. However, if (i) Co =13, (ii) C is not the lexicographically largest clique
containing Co in G;_,, and (iii) every y g C satisfies condition (a) of Lemma 6, then C
does not contain the largest vertex i —1 of G,_,. (Consider the largest clique C’' and
the largest vertex y in C'—C.) Thus in this case we can perform the “lexico. test”
simply by checking whether C contains vertex i —1, as will be known in the algorithm.

We are now ready to present the refined algorithm CLIQUE.

procedure CLIQUE;
procedure UPDATE (i, C);
begin
ifi=n+1
then print out a new clique C
else
begin

10:

ARBORICITY AND SUBGRAPH LISTING ALGORITHMS 221

if C— N(i)# O then UPDATE (i+1, C);
{prepare for tests}
{compute T[y]=|N(y)N C N N(i)| for ye V- C —{i}}
for each vertex xe CN N(i)
do for each vertex ye N(x)— C —{i}
do T[yl:=T[y]+1;
{compute S[y]=|N(y) N (C - N(i))| for yeVvV-C_}
for each vertex xe C — N (i)
do for each vertex ye N(x)-C
do S[y]==S[y]+1;
FLAG ‘= true;
{maximality test}
if there exists a vertex y e N(i)— C such that y<iand T[y]=|CN N(i)|
then FLAG = false; {(C N N(i))U{i} is not a clique of G;}
{lexico. test}
{C N N(i) corresponds to C, in Lemma 6}
sort all the vertices in C — N(i) in ascending order j, < J2<'++<Jj, where

p=|C—N(@);
{case S(y)=1. See Lemma 6.}
forki=1top
do for each vertex y € N(j,)— C such that y <i and T(yl=|CN N()|
doif y=j,
then S[y]):= S[y]-1 {alter S[y] to S(y)}
else

if (ji is the first vertex which satisfies ¥ <ji)
then {S[y]=S(y)}
if (S[yl+k—1=p) and (yZji_,) {jo=0}
then FLAG = false; {C is not lexico. largest}
{case S(y) =0}
fFCNN() =L
then for each vertex y& C U{i} such that y<i, T[y]=|CN N(i)| and

S[y]=0
{access y from the adjacency list of a vertex in CN N i)
do if j, <y then FLAG = false {C is not lexico. largest.}
else if j, <i—1 then FLAG = false; {C is not lexico. largest.}

{reinitialize S and T}
for edch vertex xe CN N(i)
do for each vertex ye N(x)—-C —{i}
do T[y}:=0;
for each vertex xe C— N(i)
do for each vertex ye N(x)-C
do S[y):=0;
{FLAG is true if and only if (CN N(i))U {i} is a clique of G; and C is the
lexicographically largest clique of G,_, containing C N N(i).}
if FLAG
then
begin
SAVE =C-N(i):
C=(CNN())U{i};
UPDATE (i+1, C);

222 NORISHIGE CHIBA AND TAKAO NISHIZEKI

C=(C—-{i})USAVE
end
end
end;
begin {of CLIQUE}
number the vertices of a given graph G in such a way that d NN=d2)=---
d(n);
for i:=1 to n {initialize S and T}
do begin S[i]:=0; T[i]=0 end;
C:={1}
UPDATE (2,C)
end {of CLIQUE};

We have the following theorem.

THEOREM 4. Algorithm CLIQUE lists all the cliques of a connected graph G in
O(a(G)m) time per clique, using O(m) space.

Proof. Using Lemmas 4 and 6, one can prove the correctness. Therefore we shall
concentrate on the claim on time and space.

Let C, be an arbitrary clique of G= G,, and inductively define C, n—1ziz1,
to be the clique of G; from which Ci., is generated by procedure CLIQUE.

Consider the time T(i) required by UPDATE (i, C;-,), excluding the time required
by the recursive calls in Statements 1 and 10. Noting the remark mentioned just before
the refined CLIQUE, one can easily show that all the Statements 1-10 except 5 can
be executed in O(d(i)+|Cioy|+ X, ., d(x)) time. We now show that the sorting in
Statement 5 also requires at most O(,.,_, d(x)) time. One can sort p items in
O(p log p) time where p =|C;_, — N(i)| [1]. Since the subgraph induced by C;_, — N(i)
is a complete subgraph, O(p logp)=0(p(p—IN=0F cc_,-Ney d(x)). Here the
bucket sort should not be used, because it requires O(j,) time, which may be greater
than O(p log p). Thus T(i)= O(d(i)+|Ci_j|+ X cc,_, d(x)).

Hence the total time required to generate C, is at most ¥, .., T(i)=
O(Xosisn (d(i)+|C,_l|+Zx_§Ci_l d(x))). Lemma 3 implies that the time is O(a(G)m).

Every UPDATE (i, C), i = n, calls at least once UPDATE (i+1, C) in Statement
1 or 10. In fact, if the recursive call does not occur in Statement 1, then it necessarily
occurs in Statement 10. Thus every call of UPDATE eventually generates at least one
clique, and hence the time spent by any statement is counted in the time above at least
once for some clique C, of G,. Thus we have shown that CLIQUE requires O(a(G)m)
time per clique.

Since set C is a global variable, C requires O(n) space. Since the sets of vertices
contained in the local variable SA VE are pairwise disjoint, SA VE requires O(n) space
in total. The arrays S, T and the adjacency lists require O(m) space. Thus CLIQUE
requires O(m) space in total. Q.E.D.

A

7. Conclusion. In this paper we introduced a simple edge-searching strategy and
presented the four efficient algorithms for the various subgraph listing problems. We
used the arboricity a(G), a rather unfamilar graph invariant, as a parameter in bounding
the running time of algorithms. Our algorithms are as fast as the previous ones if any,
and a factor n is often reduced to a(G) in the running time. The key idea is in Lemma 2,
which implies that if a certain operation on a graph consumes O(min {d(u), d (v)})
time for each edge (u, v) then the operation can be executed for all the edges in a
graph G in O(a(G)m) time. It is expected that this result will find a number of other
applications in graph problems.

ARBORICITY AND SUBGRAPH LISTING ALGORITHMS 223

Finally we remark that in this paper only the concept of arboricity is used in the
analysis of the running time of algorithms and that any of our algorithms requires

neither to find a(G) nor to decompose a graph into the minimum number of edge-
disjoint forests.

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] J. G. AUGUSTON AND J. MINKER, An analysis of some graph theoretical cluster techniques, J. Assoc.
Comput. Mach., (1970), pp. 571-588.

[3] R. BAR-YEHUDA AND S. EVEN, On approximating a vertex cover for planar graphs, Proc. 14th Annual
ACM Symposium on Theory of Computing, San Francisco, May 5-7, 1982, pp. 303-309.

[4] N. CHiBa, T. NISHIZEKI AND N. SAITO, An algorithm for finding a large independent set in planar
graphs, Networks, 13 (1983), pp. 247-252.

[5] F. HARARY, Graph Theory, revised, Addison-Wesley, Reading, MA, 1972,

[6] A. ITA1 AND M. RODEH, Finding a minimum circuit in a graph, this Journal, 7, (1978), pp. 413-423.

(7] C. ST. J. A. NASH-WILLIAMS, Edge-disjoint spanning trees of finite graphs, J. London Math. Soc., 36
(1961), pp. 445-450.

[8] T. NisHI1ZEK1, T. ASANO AND T. WATANABE, An approximation algorithm for the Hamiltonian walk
problem on a maximal planar graph, Discr. Appl. Math., 5 (1983), pp. 211-222.

[9] C. H. PAPADIMITRIOU AND M. YANNAKAKIS, The clique problem for planar graphs, Inform. Proc.
Lett. 13, 4,5 (1981), pp. 131-133.

[10] R. C. READ AND R. E. TARJAN, Bounds on backtrack algorithmms for listing cycles, paths, and spanning
trees, Networks, 5 (1975), pp. 237-252.
[L1] S. TSUKIYAMA, M. IDE, H. ARIYOSHI AND 1. SHIRAKAWA, A new algorithm for generating all the

maximal independent sets, this Journal, 6, (1977), pp. 505-517.

