
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 30, 54-76 (1985)

A Linear Algorithm for Embedding
Planar Graphs Using PO-Trees

NORISHIGE CHIBA AND TAKAO NISHIZEKI

Faculty of Engineering, Tohoku University, Sendai 980, Japan

SHIGENOBU ABE

Basic Software Corporation, Sendai 980, Japan

AND

TAKAO OZAWA

Faculty of Engineering, Kyoto University, Kyoto 606, Japan

Received October 28, 1983; revised August 7, 1984

This paper presents a simple linear algorithm for embedding (or drawing) a planar graph in
the plane. The algorithm is based on the “vertex-addition” algorithm of Lempel, Even, and
Cederbaum (“Theory of Graphs,” Intl. Sympos. Rome, July 1966, pp. 21>232, Gordon &
Breach, New York, 1967) for the planarity testing, and is a modification of Booth and
Lueker’s (J. Comput. System Sci. 13 (1976), 335379) implementation of the testing algorithm
using a PQ-tree. Compared with the known embedding algorithm of Hopcroft and Tarjan (J.
Assoc. Comput. Mach. 21, No. 4 (1974), 549-568), this algorithm is conceptually simple and
easy to understand or implement. Moreover this embedding algorithm can find all the embed-
dings of a planar graph. 0 1985 Academic Press, hc.

1. INTRoDUCTIoN

Planarity testing, that is, determining whether a given graph is planar or not, has
many applications, such as the design of VLSI circuits and determining
isomorphism of chemical structures. Two planarity testing algorithms bf different
types are known, both running in linear’ time. One is called a “path addition
algorithm,” and the other a “vertex addition algorithm.” These terms “path
addition” and “vertex addition” express well the principles of the algorithms. The
path addition algorithm was first presented by Auslander and Parter Cl] and
Goldstein [6], and improved later into a linear algorithm by Hopcroft and Tarjan
[9]. The vertex addition algorithm was first presented by Lempel, Even, and
Cederbaum [lo], and improved later into a linear algorithm by Booth and Lueker

54
0@22-oooo/85 $3.00
CopyrIght 0 1985 by Academic Press, Inc.
All rights of reproduction in any form reserved.

EMBEDDING PLANAR GRAPHS 55

[2] employing an st-numbering algorithm [5] and a data structure called a
“PQ-tree.”

Many applications require not only testing the planarity but also embedding (or
drawing) a planar graph in the plane [3]. Hopcroft and Tarjan mentioned that an
embedding algorithm can be constructed by modifying their testing algorithm [9].
However the modification looks to be fairly complicated; in particular, it is quite
difficult to implement a part of the algorithm for embedding an intractable path
called a “special path.”

In this paper we present a very simple linear algorithm for embedding planar
graphs, which is based on the vertex addition algorithm of Booth and Lueker. Their
testing algorithm adds one vertex in each step. Previously embedded edges incident
to this vertex are connected to it, and new edges incident to it are embedded and
their end vertices are left unconnected. Sometimes whole pieces have to be flipped
around or permuted. If the representation of the embedded subgraph is updated
with each alteration of the embedding, then the linal representation will be an
actual embedding of a given whole graph. Thus the testing algorithm directly yields
an O(n’) time embedding algorithm. Throughout this paper n denotes the number
of vertices of a given graph.

Our O(n) embedding algorithm runs in two phases. In the first phase the
algorithm embeds the directed graph obtained from a given planar (undirected)
graph by assigning a direction to every edge from the end having a greater st-num-
ber to the other end. In the second phase the algorithm extends the embedding of
the directed graph into an embedding of the given planar (undirected) graph.

If a planar graph is not 3-connected then an embedding of the graph is not uni-
que. We also show that our algorithm can be easily modified so as to construct an
expression for all the embeddings of a planar graph.

2. PRELIMINARY

In this section, we define some terms and present some known results. Let
G = (V, E) be a graph with vertex set V and edge set E. We assume that G is simple,
that is, has no multiedges or loops. Throughout this paper n denotes the number of
vertices of G, that is, n = (V(. A graph G is planar if it is embeddable in the plane
without any crossing edges. A neighbour of a vertex u E V is a vertex adjacent to v. A
graph G is represented by a set A of n lists, called “adjacency lists”; the list A(u) for
vertex u E V contains all the neighbours of v. For each u E V an actual drawing of a
planar graph G determines, within a cyclic permutation, the order of u’s neighbours
embedded around u. Embedding a planar graph G means to construct adjacency
lists A of G such that, in each A(u), all the neighbours of u appear in clockwise
order with respect to an actual drawing. Such a set A of adjacency lists is called an
embedding of G. A graph G is planar if and only if the nonseparable components of
G are planar [7]. Moreover, one can easily obtain an embedding of the entire
graph G from embeddings of all the nonseparable components of G. Hence we

56 CHIBA ET AL.

assume that G is nonseparable. Since we are interested in embedding a graph rather
than testing the planarity, we assume that a planar graph is given. An st-numbering
is a numbering of the vertices of G by 1,2,..., n such that the two vertices “1” and
“n” are necessarily adjacent and each j of the other vertices is adjacent to two ver-
tices i and k satisfying i < j < k. The vertex “1” (resp. n) is called a source (resp.
sink) and denoted by s (resp. t). Every nonseparable graph G has an #t-numbering
[lo], and Even and Tarjan gave a linear algorithm for it [5]. The St-numbering
plays a crucial role in a vertex addition algorithm. From now on we refer the ver-
tices of G by their st-numbers. Let Gk = (Vk, &) be the subgraph of G induced by
the vertices 1,2,..., k. If k < n then there must exist an edge of G with one end in Vk
and the other in V- Vk. Let G; be the graph formed by adding to Gk all these
edges. These edges are called virtual edges, and their ends in V - Vk are called air-
tual vertices and labeled as their counterparts in G, but they are kept separate; i.e.,
there may be several virtual vertices with the same label, each with exactly one
entering edge. Let B, be an embedding of G; such that all the virtual vertices are
placed on the outer face. B; is called a bush form of G;. The virtual vertices are
usually placed on a horizontal line. G, Gk, and Bk are illustrated in Fig. 1.
Lemma 1 implies that every planar graph G has a bush form Bk for 16 k < n.

LEMMA 1 [4]. Let 1 <k < n. If edge (s, t) is drawn on the boundary of the outer
face in an embedding of G, then all the vertices and edges of G - Gk are drawn in the
outer face of the plane subgraph Gk of G.

An upward graph D, of a graph G is defined to be a directed graph obtained from
G by assigning a direction to every edge so that it goes from the larger end to the
smaller. An upward embedding A,, of G is an embedding of the directed graph D,. In
an embedding A of an undirected graph G, a vertex v appears in list A(w) and w
appears in list A(v) for every edge (u, w). However, in an upward embedding A, of
G, the head w appears in A,(o) but the tail u does not appear in A,(w) for every
directed edge (v, w). Figure 2 depicts an upward graph D, and an upward
embedding A, for the graph G in Fig. la.

Booth and Lueker [2] improved the vertex addition algorithm given by Lempel,

l=s

@&A
6=t 56 6 5 56

FIG. 1. Illustrations of (a) sr-numbered graph G, (b) G.,, and (c) bush form B4.

EMBEDDINGPLANARGRAPHS 57

(a) (b)

FIG. 2. Illustrations of (a) upward graph D,, and (b) upward embedding A, for a graph G in Fig. 1.

Even, and Cederbaum into a linear time algorithm by using a data structure
“PQ-tree” to represent Bk. A PQ-tree consists of “P-nodes,” “Q-nodes,” and
“leaves.” A P-node repreents a cut vertex of Gk, so the sons of a P-node can be per-
muted arbitrarily. A Q-node represents a nonseparable component of Gk, and the
sons of a Q-node are allowed only to reverse (flip over). A leaf indicates a virtual
vertex of Bk. In an illustration of a PQ-tree, a P-node is drawn by a circle and a
Q-node by a rectangle. A bush form B, and a PQ-tree representing Bk are
illustrated in Fig. 3. Thus, a PQ-tree represents all the permutations and the rever-
sions possible in a bush form Bk. The key idea of the vertex addition algorithm is to
reduce the planarity testing of Gk+ 1 to the problem which asks for permutations
and reversions to make all the virtual vertices labelled k + 1 occupy consecutive
positions. Lemma 2 guarantees that this reduction is possible.

LEMMA 2 [4]. Let Bk be any bush form of subgraph Gk of a planar graph G.
Then there exists a sequence of permutations and reversions to make all the virtual
vertices labelled k + 1 occupy consecutive positions on the horizontal lines.

Booth and Lueker [2] showed that such permutations and reversions can be
found by repeatedly applying the nine transformation rules called the template
matchings to the PQ-tree. A leaf labelled k + 1 is said to be pertinent in the PQ-tree
corresponding to B,. The pertinent subtree is the minimal subtree of a PQ-tree con-
taining all the pertinent leaves [2]. A node of a PQ-tree is said to be full if all the

(a) (b)

FIG. 3. Illustrations of (a) bush form Bk, and (b) PQ-tree.

58 CHIBA ET AL.

leaves among its descendants are pertinent. The following is the outline of the
planarity testing algorithm PLANAR using a PQ-tree [2].

procedure PLANAR (G);
{G is a given graph}
begin

assign St-numbers to all the vertices of G;
construct a PQ-tree corresponding G; ; {a single P-node with virtual edges
incident to source s = 1 }
for Ii: = 2 to n

do begin
{reduction step}

try to gather all the pertinent leaves by repeatedly applying the tem-
plate matchings from the leaves to the root of the pertinent subtree;
if the reduction fails

A (jf$)
6 45 3 3 5

6 4 53 3 5

Cc) B; Cc’)

FIG. 4. Reduction process of PLANAR for the graph G in Fig. la; (a)-(i) bush forms, and
(a’)-(i’) PQ-trees.

(83)

S 9 9 S s 9

(aa)

s 9P PS 9

E 18 (J)

s 9VP s 9

E 2

w T

fpua
,,myd s! s,, a%ssaw aql mo wyld

fpua
apou-d aqi

60 CHIBA ET AL.

Figure 4 illustrates a sequence of bush forms together with the corresponding
PQ-trees appeared in the execution of PLANAR for the graph G in Fig. la. B; is a
bush form just after the “reduction step” for vertex k + 1.

Clearly the time spent by the vertex addition step for u is proportional to the
degree of u. Therefore the step spends at most O(n) time in total. The time spent by
the reduction step for u is proportional to the number of leaves plus the number of
unary nodes in the pertinent tree. Therefore it is not straightforward to show that
all the reduction steps spend at most O(n) time in total. However Booth and
Lueker [2] showed that the time is proportional to the number of vertices. Thus
the algorithm spends at most O(n) time in total.

6 66 5 5 5

(gy Bi

1

2

3 J4fi 4

5

6 6 6 6

(h) B5

6

6 6 6 5 55

(g’)

fi

6 6 6 6

(h’)

0

(i) G=G6=B6 (i' 1

FIGURE 4 (continued)

EMBEDDING PLANAR GRAPHS 61

3. LINEAR TIME EMBEDDING ALGORITHM

In this section, we present a linear time embedding algorithm EMBED based on
the planarity testing algorithm PLANAR.

One can easily have the following naive embedding algorithm: first write down
the partial embedding of the graph corresponding to B, ; and, with each reduction
of the PQ-tree, rewrite (the adjacency lists of) the bush form. Clearly the final bush
form is indeed an embedding of the graph. Unfortunately the algorithm spends
0(n2) time, since it takes O(n) time per reduction of the PQ-tree to update the
adjacency lists of the bush form.

Our linear algorithm EMBED runs in two phases: in the first phase EMBED
obtains an upward embedding A, of a planar graph G (by an efficient implemen-
tation of the above naive algorithm); in the second phase EMBED constructs an
entire embedding A of G from A,.

3.1. Algorithm for Extending A,, into A

In this subsection we describe an algorithm for the second phase. One can easily
observe

LEMMA 3. Let A be an embedding of a planar graph G obtained by the naive
algorithm above, and let v be a vertex of G. Then all the neighbours smaller than v are
embedded consecutively around v. (See Fig. 5.) That is, A(v) does not contain four
neighbours w, , w2, w3, and w4, appearing in this order and satisfying w 1, wj -c v and
w2, w‘$>v.

Proof Immediately follows from Lemmas 1 and 2. Q.E.D.

As shown later in Subsection 3.2, EMBED finds an upward embedding A, of G
such that, for each vertex v E V, the neighbours xi, x2,..., xi smaller than v appear in
A,(v) in this order as indicated by a dotted arrow in Fig. 5. That is, the neighbour

FIG. 5. Embedding of the neighbours of v. (Numbers x,, x2 ,..., xi are all less than u, and y,, y, ,..., y,
are greater than u.)

62 CHIBA ET AL.

of u embedded around 2) counterclockwise next to the top entry xi of A,(o) is
greater than O. In particular, the top entry of A,(t), where t = n is the sink, is the
source s(= 1). Now we present the algorithm “ENTIRE-EMBED” for extending
such an upward embedding A, into an embedding A of a given graph. The
algorithm executes once the depth-first search starting at sink t on a directed graph
D,. The algorithm adds vertex y, to the top of list A,(u) when directed edge
(yk, v) is searched.

procedure ENTIRE-EMBED;
begin

copy the upward embedding A, to the lists A;
mark every vertex “new”;
T := 0; {A DFS-tree T is constructed only for analysis of the algorithm}
DFS(t)

end;

procedure DFS(y);
begin

mark vertex y “old”;
for each vertex u E A,(y)

do begin
insert vertex “y” to the top of A,(u);
if v is marked “new”

then begin
add edge (y, v) to T;
DFS(u)

end
end

end;

We have the following result on the algorithm.

LEMMA 4. Let D, be an upward graph of a given graph G, and let A, be an
upward embedding of D,. Then, the algorithm ENTIRE-EMBED extends A,, into an
embedding A of G within linear time.

Proof: Clearly the algorithm terminates within linear time since the algorithm
merely executes the depth-first search once. Thus we concentrate on the correctness.
The definition of an st-numbering implies that there exists a directed path from t to
every vertex. Therefore DFS(t) traverses all the vertices and so all the directed
edges of D,. (This is not necessarily true for an arbitrary directed graph.) Hence the
tinal list A(u) contains not only the neighbours of u larger than u but also those
smaller than D. That is, the final lists A are surely adjacency lists of a given
(undirected) graph G. Hence we shall prove that all the entries of A are stored
correctly in clockwise order.

EMBEDDING PLANAR GRAPHS 63

By Lemma 3 all of D’S neighbours x i, x2,..., xi smaller than u appear in A,(u) in
this order. The algorithm first copies list A,(u) to list A(u) and then adds each
neighbour y of u larger than u to the top of A(u) in order of directed edge (y, u)
being searched. Therefore it suffices to show that directed edges (y,, u),
(y2, u),..., (yj, u) are searched in this order. (See Fig. 5.) Assume to the contrary
that (yk, o) and (y,, u) are searched in this order although k > 1. Let PR be the
path from t to yk, and let P, be the path from t to y, in the DFS-tree T. (See Fig. 6.)
Let z be the vertex at which path P, leaves Pk, and let (z, y;) E Pk and
(z, y;) E P,. Thus the vertex y; precedes y; in A,(z). Moreover the subpaths
p;=z.y;... yk of Pk and P;=Z’y;e” y, of PI have no common vertices other
than z. Therefore the two paths P; and Pj together with two edges (y!, u) and
(yk, u) form a cycle C. All the vertices of A,(u) must lie in the interior of the cycle;
otherwise Lemma 3 would be violated. Since source s(= 1) is located on the boun-
dary of the exterior face, the vertex u is not s. By the definition of an St-numbering,
the DFS-tree T contains a descending path P from v to s, all the vertices of which
are smaller than or equal to u. Since s lies in the exterior of the cycle C, P must
intersect the cycle C. However all the vertices of C are larger than or equal to u.
This is a contradiction. Q.E.D.

3.2. Algorithm for Constructing A,,

In this subsection we give an algorithm for constructing A,. One can easily
obtain list A,(u) or its reversion by scanning the leaves labelled u in the vertex
addition step for u. If A,(u) is correctly determined in the step, then, counting the
number of subsequent u’s reversions, one can correct the direction of A,(u) simply
by reversing A,(u) if the number is odd. However a naive counting algorithm takes

FIG. 6. Illustration for the proof of Lemma 4.

571/30/l-5

64 CHIBA ET AL.

Q(n’) time. Moreover, the information on v may disappear from the PQ-tree. Thus
an appropriate device is necessary to trace A,(u)3 reversions.

We first show how to scan all the leaves labelled u. Find the root r of the per-
tinent subtree by using the “bubble up” procedure of Booth and Lueker [2]. Let
b b 1, *,..., b, be the maximal sequence of full brothers that are sons of r. (See
Fig. 7a.) To obtain A,(o), we scan the subtree rooted at bi by the depth-first search
for i = 1, 2,..., m in this order. In a schematic illustration of a PQ-tree, one can easily
recognize the direction of the maximal sequence, that is, whether bl , b2,..., b, are in
left-to-right or right-to-left order. However in the data structure of a PQ-tree, a
Q-node is doubly linked only with the endmost sons, and a son of a Q-node has
pointers only to the immediate brothers [2]. Therefore we must traverse sons of a
Q-node from a full son to one of the endmost sons, and then check the direction of
the sequence by using the pointer between the endmost son and the Q-node. Thus
such a straightforward method requires O(n) time to determine the direction of the
sequence, that is, to know whether the constructed list is either A,(u) or its rever-
sion.

Our algorithm does not determine the direction of A,(u) at the vertex addition
step for u, but adds a new special node to the PQ-tree as one of r’s sons at an
arbitrary position among them. The new node is called a “direction indicator,” also
labelled u, and depicted by a triangle, as illustrated in Fig. 7b. The indicator u plays

(a)

(b)

FIG. 7. Illustrations of (a) direction of a scanning, and (b) direction indicator u.

EMBEDDING PLANAR GRAPHS 65

two roles. The first is to trace the subsequent reversions of A,(u). The indicator will
be reversed with each reversion of its father. (No physical action is taken in the
indicator’s reversion-it is only done implicitly.) The second is to bear the relative
direction of node u to its brothers. When the rightmost or leftmost brother of u is
subsequently scanned together with the indicator u, the direction of the constructed
A,(u) is known and so is corrected if necessary.

In our template matching algorithm, we ignore the presence of the direction
indicators; our matching algorithm is essentially that of [2]. When we access an
immediate brother b of a node u, we skip the direction indicators between u and b,
if any. When we change pointers of a PQ-tree in a reduction step, we treat a direc-
tion indicator as a usual node of a PQ-tree. Note that all the direction indicators in
a PQ-tree are necessarily leaves: none of the direction indicators has a son. Now we
redefine a node to be full if all the leaves of its descendants which are not indicators
are labelled u. Thus we modify the vertex addition step in PLANAR as follows.

{vertex addition step}
begin

let 1 , , I *,..., lj be the leaves labelled “u” and fi, f2,..., fk be the direction indicators
scanned (using the DFS procedure just described) in this order {it is not
necessary to recognize here whether I,, I*,..., lj are in left-to-right order};
A,(u) := {Ii, l*,..., zj};
if root r of the pertinent subtree is not full {the subtree has a leaf which is not an

indicator and not labelled “u”}
if then {the root r is a Q-node}

begin add a indicator “u” directed from lj to I, to the PQ-tree as a son of the
Q-node r {at an arbitrary position among the sons};
add the direction indicators fi, fi,..., fk as sons of the Q-node r {at
arbitrary positions among the sons>

end
else

begin {the pertinent subtree corresponds to a reversible component in an
embedding of G, that is, the cut vertex of G corresponding to root r
forms a “separation pair” with vertext u. Therefore we may assume
that A,(u) is correctly in clockwise order.}

delete fi, f*,..., fk from the PQ-tree;
for i := 1 to k

do if indicator fi is directed from 1, to lk
then reverse the adjacency list A&);

(The order of A,,(fi) is corrected with the assumption that
A,(u) is in clockwise order.}

end;
if root r is not full

then replace all the full sons of r by a P-node (which corresponds a cut vertex
u of G:>

66 CHIBA ET AL.

else replace the pertinent subtree by a P-node;
add all the virtual vertices adjacent to u (i.e. all neighbours of u in G greater than O)
to the PQ-tree as the sons of the P-node
end;

We call this revised algorithm UPWARD-EMBED, on which we have

LEMMA 5. The algorithm UPWARD-EMBED obtains an upward embedding A,
of a given planar graph G.

Prooj Let v E V. Clearly the list A,(o) obtained by UPWARD-EMBED con-
tains all the neighbours of v smaller than v. Clearly these vertices appear in either
clockwise or counterclockwise order around u. Therefore we shall show that the
vertices in each A,(u) appear in clockwise order. It suffices to consider the following
two cases.

Case 1. The direction indicator v is not added to the PQ-tree. The leaves of the
pertinent subtree which are not indicators are all labelled u at the vertex addition
step for u. Such a pertinent subtree corresponds to a reversible component in a
plane embedding of G. (See Fig. 8.) Therefore one may assume that the vertices in
A,(u) appear in clockwise order even in the final embedding.

“” ” ” ” ”

(b) Cc)

FIG. 8. Reversible component: (a) pertinent subtree, (b) B,_ ,, and (c) G,.

EMBEDDING PLANAR GRAPHS 67

Case 2. The direction indicator v is added to the PQ-tree. When the algorithm
terminates, the PQ-tree consists of exactly one isolated P-node, and hence has no
direction indicators in particular. That is, every indicator will be eventually deleted.
Therefore one can assume that the indicator v is deleted in the vertex addition step
for a vertex w(>v). The direction indicator v follows reversions of the Q-node
which is the father of node v as long as v remains in a PQ-tree. Therefore if the
direction of indicator v is opposite relative to the scanning of the leaves I,, 12,..., Zj
labelled w, then either the order (clockwise or counterclockwise) of A,(v) is the
same as A,(w) and vertex v is reversed an odd number of times, or the order of
A,(v) is opposite to that of A,(w) and the vertex v is reversed an even number of
times. In either case, we can correct adjacency list A,(v) simply by reversing it.
Since the pertinent subtree for w corresponds to a reversible component of G, the
direction indicator w is not added to the PQ-tree. Hence the adjacency lists A,(v)
and A,(w) are never reversed after the vertex addition step for w. Thus A,(v)
remains to be correctly in clockwise order. Q.E.D.

However, algorithm UPWARD-EMBED, as it is, requires O(n*) time since it
may scan the same indicator many times, say up to O(n) times. Thus we shall refine
the algorithm so that it runs in O(n) time.

Now consider the role of a direction indicator in detail. Assume that root r of a
pertinent subtree is not full, and define indicators v and f,,f2,...,fk as in the
algorithm. After the direction indicator v is added to a PQ-tree, indicators v and
f, , f2,..., fk are reversed all together. Therefore it suffices to remember the directions
off,, fi,..., fk relative to that of v. Thus we delete the indicators f,, f2,..., fk from the
PQ-tree and store them in A,(v) together with vertices Z,, 12,..., lj. Once the correct
order of adjacency list A,(v) is known, we can easily correct the orders of adjacency
lists A,(A), 1 < i 6 k, simply by checking the direction of indicator fi in A,(v). We
execute such a correction for each v, v = n, n - l,..., 1 in this order.

The following is the algorithm UPWARD-EMBED refined as above. Figure 9
ilustrates an UPWARD-EMBED applied to the graph in Fig. la.

procedure UPWARD-EMBED(G);
{G is a given planar graph)
begin

assign St-numbers to all the vertices of G;
construct a PQ-tree corresponding G;;
for v := 2 to n

do begin
(reduction step}

apply the template matchings to the PQ-tree, ignoring the direction
indicators in it, so that the leaves labelled “v” occupy consecutive
positions;

{vertex addition step}
let I 1, 1 *,..., 1, be the leaves labelled “v” and direction indicators scan-
ned in this order;

68 CHIBA ET AL.

delete l,, 12,..., lk from the PQ-tree and store them in A,(v);
if root I of the pertinent subtree is not full

then
begin

add an indicator “a”, directed from lk to I,, to the PQ-tree as a
son of root r at an arbitrary position among the sons;
replace all the ful sons of r by a new P-node

end
else replace the pertinent subtree by a new P-node;

add to the PQ-tree all the virtual vertices adjacent to u as the sons of
the P-node

end;

6=t 2 3 5

6 2 3 5

(a) B1 (a’)

6 34 5 3 5
Au(23={11

(b) B2 (b’)

1

A 2
6 4 5 3 3 5

6 4 5 33 5

(c) B; (C'l

FIG. 9. Process of UPWARD-EMBED applied to G in Fig. la; (a)-(i) bush forms, (a’)-(i’) P-
Q-trees and lists A,, and (j) corrected lists A,.

EMBEDDING PLANAR GRAPHS 69

{correction step}
for u := n downto 1

do for each element x in A,(v)
do if x is a direction indicator

then begin

end;

delete x from A,(u);
let w be the label of x;
if the direction of indicator x is opposite to that of A,(v)

then reverse list A,(w);
end

We have the following result on the revised UPWARD-EMBED above.

A 66Fil 5

(d) B3

(e) Bj (e’)

6 55 6 6 5

AU(4,=t2, b ,31

(f')

FIGURE 9 (continued)

70 CHIBA ET AL.

LEMMA 6. Algorithm UPWARD-EMBED obtains the upward embedding A, of a
given planar graph within linear time.

Proof: Noting the role of a direction indicator, one can easily verify the
correctness of the algorithm. Therefore we consider the time required by the
algorithm. At most O(n) direction indicators are generated during an execution of
the algorithm. A direction indicator scanned in a reduction step will be necessarily
deleted from a PQ-tree in the succeeding vertex addition step. Therefore each direc-
tion indicator is scanned at most once. Thus UPWARD-EMBED requires at most

6 66 5 5 5

(g) B; (g’)

6 6 6 6

(h) B5 (h’)

0

(i) G=G6=B 6 (i’)

FIGURE 9 (conhued)

EMBEDDINGPLANARGRAPHS 71

O(n) time in addition to the time required by the linear testing algorithm
PLANAR. Therefore UPWARD-EMBED runs in linear time. Q.E.D.

The following is the entire algorithm EMBED for embedding a planar graph.

procedure EMBED(G);
begin

UPWARD-EMBED; {phase 1 }
ENTIRE-EMBED (phase 2)

end;

We have Theorem 1 from Lemmas 1 to 6.

THEOREM 1. Algorithm EMBED obtains a plane embedding A of a given planar
graph within linear time.

4. FINDING ALL THE EMBEDDINGS

In this section we present an algorithm for finding all the embeddings of a planar
graph. Assume as in the previous sections, that G = (V, E) is a 2-connected planar
graph in which vertices are St-numbered. We use edge (t, s) as the reference of all
the embeddings, that is, we consider the embeddings of G such that (t, s) lies on the
boundary of the outer face in clockwise direction. We define a “separation pair” and
a “split component” [S] with slight modification as follows.

Let {x, y } be a pair of vertices in G. Then we can partition the edge set E into
equivalence classes E, , Ez,..., E, such that two edges which lie on a common path
not containing any vertex of {x, y } except as an end vertex are in the same class. If
there are at least two equivalence classes Ei, Ej such that I,?&\, 1 Eil > 2 then {x, y } is
called a separation pair of G. A subgraph Gi = (Vi, EJ of G induced by Ei, 16 i < 1,
is called an (x, y}-split component of G if (EJ > 2 and (s, t) # Ei, where Vi is the set
of vertices to which at least one edge in Ei is incident. If {s, t } is not a separation
pair, the graph obtained from G by deleting edge (s, t) is called an {s, t)-component.

Now for a particular separation pair {x, y } of G we get different embeddings of
G by the following operations:

(i) permute the {x, y}-split components and edge (x, y) if any (see
Fig. lOa), or

(ii) reverse (flip over) any number of the {x, y)-split components (see
Fig. lob).

If we exhaust all the possible operations (i) and (ii), we get all the possible
embeddings obtained from the pair (x, y}. We also see that if (s, t} is not a
separation pair, a different embedding of G is obtained by the following operation.

(iii) reverse the {s, t}-component (see Fig. 10~).

72 CHJBAETAL.

From the definition of st-numbering of G, we get the following lemma for a
separation pair (x, y > of G.

LEMMA 7. Let x < y, and let v be any vertex in an {x, y }-split component. Then v
satisfies x < v 6 y.

ProoJ: The component contains neither s nor t except the case x = s or y = t. By
the definition of an st-numbering there exist a descending path from v to s = 1 and
also an ascending path from v to t =n. Both must pass through x or y. Therefore
wehavex<v<y.

(a)

Q.E.D.

(b)

FIG. 10. Illustrations for operations (a) (i), (b) (ii), and (c) (iii).

EMBEDDING PLANAR GRAPHS 73

Lemma 7 implies that any separation pair {x, y} can be detected in the PQ-tree
at the vertex addition step for y. If the reduction step for a vertex y results in a per-
tinent tree having a full node, y constitutes a separation pair with another vertex,
and the pertinent tree represents split components. Therefore the alterations of an
embedding due to the three operations (i), (ii), and (iii) above can be virtually
realized by the following operations (i’), (ii’), and (iii’) on a PQ-tree at some ver-
tex-addition step:

(i’) If a full P-node which is not the root is scanned at the vertex addition
step for y, then permute the sons ul, z+,..., u[of the P-node;

(ii’) If, at the vertex addition step for t, u 1, uZ,..., uI are the sons of the root
with u1 corresponding to the virtual edge (s, t), then permute u*,..., u,; and

(iii’) reverse a full Q-node.

The operation (i) corresponds to (i’) or (ii’), and (ii) and (iii) correspond to (iii’).
Moreover Lemma 7 implies that every neighbour u of y contained in an {x, y}-

split component is necessarily a leaf of the PQ-tree at the vertex addition step for y.
Therefore all these neighbours are contained in an upward adjacency list A,(y)
constructed by UPWARD-EMBED. For a node w of a PQ-tree let L(w) be the list
containing all the leaves that are descendants of w. The operations (i’), (ii’), and
(iii’) for the PQ-tree can be realized by the following operations (a), (b), and (c) for
the upward adjacency lists A,:

(a) If a full P-node which is not the root is scanned at the vertex addition
step for y, then permute the sublists L(ui), L(u&.., L(u,) of A,(y), where
ul, u2 ,..., u, are the sons of the P-node (see Fig. 11);

(b) If, at the vertex addition step for t, ul, u2,..., uI are the sons of the root of
a PQ-tree with u1 corresponding to the virtual edge (s, t), then permute the sublists
L(u2),..., L(u,) of A,(t); and

(c) If a full Q-node is scanned at the vertex addition step for y, then reverse
the sublists of A,(y) consisting of L(u,), L(u2),..., L(u,), where ul, u2,..., uI are the
sons of the full Q-node. (See Fig. 12.)

In an upward adjacency list A,(y), we use parentheses to represent the per-
mutable sublist L(u,), L(u2),..., L(u,) in (a) and L(u2),..., L(q) in (b) as follows:

A,(Y) = . ..(J3%). ~(u2L, au,))...,

and

A,(t) = 44~2L JYU,)),

respectively. On the other hand we use brackets to represent the reversible sublists
L(ur), L(u2),..., L(u,) in (c) as

A,(Y) = . ..CUu.), U%),..., Qudl....

74 CHIBA ET AL.

FIG. 11. Illustration for operation (a).

These expressions of A,(y) correspond to the formulae of [lo]. From these A, we
can obtain any embedding of G by the following algorithm GENERATE. Thus A,
virtually represents all the embeddings of G.

procedure GENERATE;
begin

apply operations (a), (b), and (c) to the sublists of A, parenthesized or
bracketed;
obtain a correct upward embedding A, by applying the “correction step” of
UPWARD-EMBED;
ENTIRE-EMBED

end;

EMBEDDING PLANAR GRAPHS 75

FIG. 12. Illustration for operation (c),

Using algorithm GENERATE one can generate all the embeddings of G without
duplications. (The proof is left to the reader.) It is also easy to decide the total num-
ber of possible embeddings of G from the expression of A,.

ACKNOWLEDGMENT

We wish to thank Professor Nobuji Saito of Tohoku University for stimulating discussion on the sub-
ject and also the referees for many helpful comments.

76 CHIBA ET AL.

REFI~RENCES

1. L. AUSLANDER AND S. V. PARTER, On imbedding graphs in plane, J. Math. Mech. 11, No. 3 (1961),
517-523.

2. K. S. BOOTH AND G. S. LLJEKER, Testing the consecutive ones property, interval graphs, and graph
planarity using PQ-tree algorithms, J. Comput. System Sci. 13 (1976), 335-379.

3. N. CHIBA, T. YAMANOUCHI, AND T. NISHIZEKI, Linear algorithms for convex drawings of planar
graphs, in “Proceedings of Silver Jubilee Conference on Combinatorics,” Academic Press, in press.

4. S. EVEN, “Graph Algorithms,” Computer Sci. Press, Potomac, M., 1979.
5. S. EVEN AND R. E. TARJAN, Computing an St-numbering, Theoret. Comput. Sci. 2 (1976), 339-344.
6. A. J. GOLDSTEIN, “An Efficient and Constructive Algorithm for Testing Whether a Graph Can Be

Embedded in a Plane,” Graph and Combinatories Conf., Contract No. NONR 1858-(21), Office of
Naval Research Logistics Proj., Dept. of Math., Princeton University, 1963.

7. F. HARARY, “Graph Theory” (revised), Addison-Wesley, Reading, Mass., 1972.
8. J. E. HOPCROFT AND R. E. TARJAN, Dividing a graph into triconnected components, SIAM J. Com-

put. 2, No. 3 (1973), 135-158.
9. J. E. HOPCROFT AND R. E. TARJAN, Eflicient planarity testing, J. Assoc. Comput. Mach. 21, No. 4

(1974), 549-568.
10. A. LEMPEL, S. EVEN, AND I. CEDERBAUM, An algorithm for planarity testing of graphs, in “Theory of

Graphs, Internat. Sympos. Rome, July 1966” (P. Rosenstiel, Ed.), pp. 215-232, Gordon & Breach,
New York, 1967.

