
JOURNAL OF ALGORITHMS 7, 79-104 (1986)

A Better than “Best Possible” Algorithm to Edge
Color Multigraphs

DORIT S. HOCHBAUM*

School of Buiness Administration, University of California, Berkeley, Califonzia 94720

TAKAO NISHIZEKI

Department of Electrical Communications, Tohoku University, Sendai 980, Japan

AND

DAVID B. SHMOYS+

Division of Applied Sciences, Harvard University, Cambridge, Massachusetts 02138

Received September 27,1983

By a result of Holyer, unless P = NP, there does not exist a polynomial-time
approximation algorithm to edge color a multigraph that always uses fewer than
(f) x’ colors, where x’ is the optimal number of colors. This makes it appear that
finding provably good edge colorings is extremely difficult. However, in this paper
we present an algorithm to find an edge coloring of a multigraph that never uses
morethan [ix’+tj colors. In addition, if x’ 2 1 f A + i] then the algorithm
optimal/y colors the graph in polynomial time. Furthermore, this algorithm never
uses more than (f)x’ colors and runs in O(lEKlVl + A)) time, where E is the set of
edges, and P is the set of vertices. 0 1986 Academic Press. Inc.

1. INTRODUCTION

Edge coloring problems arise in many applications, including various
scheduling and partitioning problems [2]. The edge coloring problem is

*Supported in part by the National Science Foundation under Grants ECS8501988 and
ECS-8204695.

+Supported in part by the National Science Foundation by a graduate fellowship and under
Grant MCS8311422 and in part by DARPA Order 4031, monitored by Naval Electronic
System Command under Contract NOOO39-C-0235. Present address: Department of Mathe-
matics, Massachusetts Institute of Technology, Cambridge, Mass. 02139.

79
Ol%-6774/86 $3.00

Copyright 0 1986 by Academic Press, Inc.
All rights of reproduction in any form reserved.

80 HOCHBAUM, NISHIZEKI, AND SHMOYS

simply stated: color the edges of a given multigraph G = (V, E) using as
few colors as possible, so that no two adjacent edges receive the same color.
In view of potential applications, it would be useful to have an efficient
algorithm capable of coloring any multigraph G with this minimum number
of colors (called the chromatic index of G and denoted by x’(G).) Unfor-
tunately, no such efficient algorithm is known. Moreover, Holyer has shown
that the edge coloring problem is NP-hard, and therefore it seems unlikely
that any such polynomial-time algorithm exists [8].

Let A(G) denote the maximum degree of a vertex. By a well-known result
due to Vizing, the chromatic index of a simple graph (i.e., one without
multiple edges) is at most A(G) + 1 [ll]. The situation for graphs that are
not simple, often called multigraphs, is more complicated, and it is this case
that will be considered here. To avoid confusion, in this paper we will
always use the term “simple graph” when we wish to exclude multiple
edges.

In the paper mentioned above, Holyer proved a result stronger than the
N&hardness of computing the chromatic index; he showed that deciding
whether a simple graph has chromatic index of 3 or less is N&complete.
This implies that unless P = NP, there does not exist an approximation
algorithm that finds an edge coloring for multigraphs that uses at most
(: - &)x’(G), for any E > 0 [8]. In contrast to this negative result, there are
a number of surprisingly positive results. In this paper we present an
o(1 E K\vl + A))-time algorithm to find an edge coloring of G that uses no
more than ($)x’ colors; more surprisingly, it uses at most [(9x’ + 6)/8]
colors. This result improves on an algorithm of Nishizeki and Sato [9],
which achieves the (4)x’ bound as well, but uses as many as [(5x’ + 2)/4]
colors, and an algorithm of Hochbaum and Shmoys, in an earlier version of
this paper, which uses at most [(7x’ + 4)/6] colors. We will show that this
sequence of algorithms can be viewed as part of a family of approximation
algorithms, where the ultimate algorithm in this family colors a multigraph
using at most x’ + 1 colors.

It should be noted that for the special case of bipartite graphs, multi-
graphs are no harder than simple graphs, and that such graphs can all be
colored with A colors. Furthermore, there exist polynomial-time algorithms
to find edge colorings using A colors, and there is rich literature exploring
these questions [l, 3, 71.

The contrasting complexity results have many interesting implications.
Following the notation of [4], we let R,(G) denote the ratio xL(G)/x’(G)
where x;(G) is the number of colors required by approximation algorithm
A. Furthermore, we define the absolute performance ratio, R,, of an
approximation algorithm A,

ALGORITHM TO EDGE COLOR MULTIGRAPHS 81

and the asymptotic performance ratio Ry for A to be

Ry = inf{ r 2 I] for some N E Z+, R,(G) I r

for all G s.t. x’(G) 2 N}.

In this notation, the algorithm color that we give has R,,,,, = : and
R%o* = t. Furthermore, the negative result says that unless P = NP, there
does not exist a polynomial-time algorithm that achieves R, = 4 - E. Most
of the negative results for approximation algorithms for other NP-complete
problems have been of this form; that is, they deal with the absolute
performance ratio. Here we have an example of a problem where the
negative result belies the true nature of the problem. Therefore, hardness
results about approximation algorithms that use the absolute performance
ratio should be viewed with slight skepticism since a result with superior
asymptotic performance might still be obtained. By the same reasoning,
results that exclude the possibility of approximation algorithms with certain
asymptotic performance ratios (assuming that P # NP), like those for the
vertex coloring and independent set problems [4], are especially desirable.

The algorithm presented here follows a long history of research dating
back to Shannon [lo], who proved that x’ I [3A/2]. If x’(G - e) =
x’(G) - 1 for every edge e in G then G is said to be x’-critical. Most of the
earlier results were not concerned with algorithms, but with characteriza-
tions of x’-critical graphs that have chromatic index greater than aA + fi
for some a and 8. Recently, Goldberg [5] has shown that if G is a x’critical
graph such that x(G) > (9A + 6)/8, then G contains at most 7 vertices.
This result does not yield an efficient approximation algorithm, but many of
his techniques are useful in the construction of our algorithm. In [6],
Goldberg independently claimed algorithmic results similar to those con-
tained here. In Section 4 we will discuss why we believe that our approach
would probably lead to a polynomial-time algorithm to edge color multi-
graphs using at most x’ + 1 colors.

2. THE ALGORITHM IN BRIEF

The most naive approach to edge coloring a graph might be described as
follows: choose an arbitrary edge of the graph and, if possible, color it with
one of the colors used already; otherwise use a new color to color the edge.
The most obvious improvement is to use an interchange approach: for each
edge, check if some “simple” recoloring of the colored edges would eliminate
the need for an additional color. This simple approach is the basis for most
of the results about the chromatic index, and dates back to Shannon, and is
the approach that is used here. In order to prove better bounds, the

82 HOCHBAUM, NISHIZEKI, AND SHMOYS

“simple” recolorings become more complicated. A pidgin PASCAL descrip-
tion of the algorithm is given below; the “simple” recolorings are hidden in
the subroutine recolor. The remainder of this paper is dedicated to a
description of this procedure.

procedure color(G) :
begin {G = (V, E)}

if A(G) I 2 then color G with x’(G) colors by a trivial method (DFS)
else {A 2 3)

begin
* 4,;=== y.p-; w317 { q colors are currently available}

for each z E E do

ka
G’ := G’ + e; {add an uncolored edge e = (x, y)}
let a and b be any missing colors of x and y, respectively;
recolor(x, y, a, 6) {update coloring}

end
end

end

Before proceeding with a detailed description of the subroutine recolor,
we first introduce a few preliminary definitions. Assume that G = (V, E) is
edge colored with a set of q colors. Throughout this paper, n and m denote
IV1 and 1 EJ, respectively. A color c is said to be missing at vertex u if color c
is not assigned to any of the edges incident to u. The set of all colors missing
at u is called the missing color set of u, and is denoted by M(u). The set of
colors assigned to the multiple edges joining vertices u and u is denoted by
C(II, u). An edge colored c is called a c-edge. For two colors a and b, the
edge subgraph of G induced by all of the edges colored a or b is called an
ab-subgraph, and is denoted by G[a, b]. Each connected component of
G[a, b] is either a path or a cycle, in which the edges are alternately colored
a and b. Such a path (or cycle) is called an ab-alternating path (qcle). A
vertex x is an endpoint of such a path if and only if exactly one of a and b
is missing at x. Note that interchanging the colors a and b of the edges in
an ab-alternating path or cycle yields another q-coloring of G. If a E M(x)
for a vertex x, then Apath (x, a, b) denotes the ub-alternating path starting
from x. As in the algorithm, G’ will always denote the graph induced by all
of the colored edges and a single uncolored edge (x, y). If, in G’, a E M(x)
and b E M(y), then the &alternating path between x and y, if any, is
called an .ab-critical path. Note that every critical path contains an odd
number of vertices. If H is a subgraph of G, then let V(H) and E(H)
denote, respectively, the vertex and edge sets of H. Finally, define a k-cycle
to be a cycle containing k vertices.

ALGORIT'HMTOEDGECOLORMULTIGRAPHS 83

Let us now consider some easy lower bounds on x’.

FACT 1. x’(G) 2 A(G).

FACT 2. Let c(JG) be the maximum number of edges in any subgraph
induced on 2k + 1 uertices. Then x’(G) 2 [pk(G)/k] .

This follows directly from the fact that each color can be used to color at
most k edges of the subgraph. For our purposes it will be convenient to
define r(G) = maxkBl,2,3 pk 1 (G)/k] . The following fact is an immediate
corollary of Fact 2.

FACT 3. x’(G)2 r(G).

LEMMA 1. Suppose that the routine recolor has the following property: if a
new color is added to the color set, a subgraph induced on 3, 5, or 7 vertices
has been identified that shows that the number of colors previously used is
strictly less than r(G). Then the procedure color uses at most
tin{ 1(9x’ + 6)/81&)x’~ co ors. 1 Furthermore, if x’ 2 l(9A + 6)/8],
then color yields an optimal coloring.

Proof Consider again the algorithm color. We assume that if the num-
ber of colors is ever increased by the routine recolor then the number of
colors previously used was strictly less than 7(G). Given this, the algorithm
has the very strong property that if an additional color is introduced
(beyond the initial [(9A + 6)/g]), then the coloring produced is optimal
(by Fact 3). Thus, the only other case is that exactly [(9A + 6)/8] colors
are used; but by Fact 1, this implies that at most [(9x’ + 6)/8] colors are
ever used. Furthermore, if A I 2 we color optimally, and if A 2 3,
[(9A + 6)/8] s 4A/3 I 4$/3. Therefore, to prove the claimed perfor-
mance guarantees we need only show that recolor satisfies the property
mentioned in Lemma 1.

There are five basic cases handled by recolor :

Case 1. Either x and y have a common missing color, or G’ has no
ab-critical path.

Case 2. The ub-critical path Q contains two vertices u and u that have a
common missing color.

Case 3. The ab-critical path Q contains seven vertices.

Case 4. The ab-critical path Q contains five vertices.

Case 5. The ab-critical path Q contains three vertices.

We first show that these five cases are indeed sufficient. Note that if recolor

84 HOCHBAUM,NISHIZEKI,AND SHMOYS

is called, then A 2 3, and therefore [(9A + 6)/8] 2 A + 1. Thus, every
vertex of G’ has at least one missing color, whereas the endpoints of the
uncolored edge of G’, (x, y), have at least two missing colors. Using a
straightforward counting argument, we obtain the following lemma.

LEMMA 2. Suppose that A(G) 2 3, and that all of the edges of G’ except
e = (x, y) are colored with at least [(9A + 6)/8] colors. Let S be any subset
of V such that no two vertices have a common missing color:

(a) If x, y E S, then ISJ I 8.

(b) If x E S, then ISI I 16.

Proof. (a) Assume that q colors are used, where q 2 1(9A + 6)/8].
Clearly, IWxN and IWYN areeachatleastq-A+l,andlM(v)lkq-
A for every vertex v other than x and y. Since CVcslM(v)l I q, we have
that

2(q - A + 1) + (ISI - Nq - A> I q,
and using straightforward manipulations we obtain

ISI 5 h - 2)/h - A).
Noting that A 2 3 and q > (9A + 6)/8 - 1, we get that ISI < 9.

(b) This proof is almost identical to (a). 0

Lemma 2 implies that if the ab-critical path Q contains nine or more
vertices, then Q contains two vertices that have a common missing color
among the first 17 vertices, and hence Case 2 must occur. Thus, if Cases 1
and 2 do not occur, then Q contains either seven, five, or three vertices
(Cases 3, 4, and 5, respectively).

3. THE ALGORITHM IN DETAIL

In this section we give a explicit description of the algorithm for each of
the five cases.

Case 1. Either x and y have a common missing color or G’ has no
ab-critical path. In this case we execute the following procedure npath:

procedure npath(x, y, a, b):
begin

if G’ has no ab-critical path then
begin

Q := Apath(x, a, b):

ALGORITHM TO EDGE COLOR MULTIGRAPHS 85

{Q does not end at y, a E M(x) and b E M(y)}
interchange the colors a and b of Q

end;
{x and y now have a common missing color}
assign a common missing color of x and y to the uncolored edge
e = (x, Y);
{the resulting coloring is a q-coloring of the entire graph G’.}

end

Case 2. The &critical path Q contains two vertices u and u with a
common missing color c. We reduce this case to Case 1 above. If u is
followed by u on the path Q, then one can break the critical path Q simply
by recoloring the edge (u, u) with color c. There no longer exists an
ab-critical path in the resulting q-coloring of G’, so npurh is applicable. If u
is not followed by u on the path Q, the situation is slightly more com-
plicated. The essence of procedure cputh given below is that the coloring of
G’ can be altered so that two new vertices of Q have a common missing
color and these new vertices do appear consecutively on Q:

procedure cputh(x, y, a, b):

begin
find two vertices u and u on Q with a common missing color c such
that no vertex between u and u has a missing color c;
{assume that x, u, u, and y appear on Q in that order}
{possibly x = u or u = y }
while u is not followed by u on Q do

begin
let u’ be the vertex following u on Q (traversing Q from x);
let I? be any missing color of u’;
interchange the colors of Apurh(u’, c’, c);
if Apufh(u’, c’, c) ends at u then u := u’ else u := u’
{new u and u have a common missing color c, and the distance
between them decreases by at least one.}

end;
(Q has two successive vertices u and u of a common missing color c}
assign color c to the edge (u, u) on Q;
{there is no &-critical path}
wWx, Y, a, b)

end

Before presenting the details for the remaining three cases, we give two
useful subroutines. Suppose that there are two critical paths Q and R
together with two vertices u and u, where u is on Q and u is on R, and u

86 HOCHBAUM, NISHIZEKI, AND SHMOYS

and u have a common missing color. Then the following procedure twopath
completes the coloring of G’ by recoloring some alternating paths:

pmcedure twopath(Q, R, u, u, c):
besin

{QandRarecriticalpathsfromxtoy,uEQ,uER,andcEM(u)fl
M(u))
assume that neither Q nor R contains two vertices of a common missing
color;
{Otherwise execute cpath. Thus u +Z R, u 4 Q.}
let Q be an A-critical path, a E M(x), b E M(v);
let R be an fg-critical path, f E M(x), g E M(u);
{a#forb+g}
assume that a # f; {otherwise, interchange the roles of x and y }
let u’ be the vertex of Q next to x;
let u’ be the vertex of R next to x;
let c’ and c” be arbitrary missing colors of u’ and u’, respectively;
(if u’ = u’, let c’ = c”}
if [u # u’ and Aparh(u’, c’, c) does not end at u] or
[u # u’ and Aputh(u’, c”, c) does not end at u]
then

begin
{Note that if u’ = u’, then u’ # u, u, and one of the above conditions
must hold, since u and u are assumed distinct}
assume WLOG that the first condition holds;
{clearly they are symmetric}
interchange the colors of Apath(u’, c’, c);
{c E M(u’) r-l M(u)}
cpath(x, y, 0, b)

if u # u’ then interchange the colors of Aputh(u’, c’, c);
if u z u’ then interchange the colors of Aputh(u’, c”, c);
{c E M(u’) n M(d)}
if Apath(x, a, c) ends at u’ then

begin
recolor Apath(x, a, c);
{c E M(x) and a E M(u’)}
assign color c to the edge (x, u’) of Q;
assign color b to the uncolored edge (x, y)

end

ALGORITHM TO EDGE COLOR MULTIGRAPHS 87

else { Apath(x, a, c) does not end at u’}
begin

recolor Apath(x, a, c);
{Since a, c # f, g, R is still a critical path. R contains two
vertices x and u’ of a common missing color c}
CP~~(X, Y, f, g)

end
end

end

Recall that q is the number of colors currently available for the edge
coloring. Suppose that the &critical path Q between x and y does not
contain two vertices of a common missing color. Let H be the subgraph of
G’ induced by the vertices of Q. An edge of G’ is said to leave H at vertex z
if it joins a vertex z in H to a vertex not in H.

By Fact 2, if q < lE(H) I/((lV(H) 1 - 1)/2), then q < T(G) and hence we
can and must introduce a new color q + 1 for (x, y). Thus one may assume
that

JEW I
” (IV(H)1 - 1)/2 ’

Since lV(H)I is odd, each of the q colors is assigned to at most
(lV(H)I - 1)/2 edges of H. Since H has an uncolored edge (x, y), there is
a color c assigned to at most (lV(H)I - 1)/2 - 1 edges of H. Thus, H
contains three or more vertices at which no induced c-edge is incident. At
most one of them is missing color c within G’. Therefore, there must be at
least two c-edges that leave H. (Furthermore, if c is not missing at any
vertex of H, then at least three c-edges leave H.) In this case the following
procedure leave modifies the coloring of G’ so that an edge colored with a
missing color of x or y leaves H:

procedure leave :
begin

(4 2 IE(HN/W(HN - W2). n ere are two or more edges leaving H
that are colored with the same color.}
if G’ has no edge leaving H that is colored with a missing color of a
vertex of H

then
begin

{G’ has three or more c-edges leaving H, where c is not missing at
any vertex of H}
let (u, u’) be a c-edge leaving H, { u E H, u’ 4 H }
let f be a missing color of u different from a, b and c;

88 HOCHBAUM, NISHIZEKI, AND SHMOYS

{Note that x and y have two missing colors, so that if no such f
exists, we could use cpath }
let (u, u’) be the final c-edge of Apath(U, f, c) such that u E Z-Z and
u’ 4. H as the path is traversed from U;
if u = u then interchange the colors of Apath(U, f, c)

{ c E M(u) and there is a c-edge leaving H}
else {u # u}

ha
let g be a missing color of u different from u, b, c and f;
{If no such color exists, this is an easier case and cpath could
be used}
{since no f - or g-edge leaves H, Apath(u, g, f) does not
leave H and must end at u}
interchange the colors of Aputh(u, g, f); { f E M(u)}
interchange the colors of Aputh(u, f, c)
{ c E M(u) and there is a c-edge leaving H }

end
end

(G’ has an edge leaving H that is colored with a missing color of a
vertex of H}
redefine color c and vertices u, u E H and u’ 4 H so that c E M(u)
and a c-edge (u, u’) leaves H;
if u # x, y then

begin
assume WLOG that vertices x, u, u, and y appear on Q in this
order;
{otherwise interchange the roles of x and y }
let w be the vertex preceding u on Q (traversing Q from x);
erase the color of edge (w, u) of Q;
interchange the colors of the subpath of Q between x and w;
color (x, y) with b;
{edge (w, u) is an uncolored edge, c E M(u) and there exists a
c-edge (u, u’) leaving H }
redefine (w, u) to be the uncolored edge of G’

end
{color c is missing at the new x or y, and a c-edge leaves H}

end

We are now ready to present the details of the remaining three cases.

Case 3. The &critical path Q contains seven vertices. We can reduce
this case to one of the preceding two cases by the following procedure

ALGORITHM TO EDGE COLOR MULTIGRAPHS 89

seven :

procedure seven :
begin

assign a new color q + 1 to edge (x, y);
q := q + 1

end
else {there are two or more edges leaving H that are colored with the

same color}
begin

leave;
assume that c E M(x) and the c-edge (u, u’) leaves H;
{c is not missing at any vertex of Q except x. At least two c-edges
leave H.}
let Q be (x7 q, z2,. . . , z5, Y);
{Note that u = zt, z2,. . . , z5 or y}
if there is no &critical path then npath(x, y, c, b)
else {there is a &critical path R}

if the &-critical path R contains two vertices of a common
missing color

then cpath (x, y, c, b)
else {R contains at most seven vertices}

if there exist two vertices, w, v that have a common missing
color where w is on Q and v is on R;

then twopath
else {Since IV(Q U R)I I 8 by Lemma 2, R does not leave

H. (Note that it is impossible to add just one vertex by
leaving H, since b is a color common to both Q and R.)
Hence u # x, y, zl}

if a component (Z R) of G’[b, c] which is not a 2-cycle
contains exactly one of the two b-edges (z2, zs) and
(z4, z5)

then
begin

{the component has two c-edges leaving H}
interchange the colors of the component;
{the ab-critical path, if any, has nine or more vertices}
if there exists no ab-critical path then npath(x, y, a, b)
else cpath(x, y, a, b) {the ab-critical path contains
two vertices of a common missing color}

90 HOCHBAUM, NISHIZEKI, AND SHMOYS

end
else

if a component of G’[a, c] which is not a 2-cycle con-
tains exactly one of the three a-edges then

begin
interchange the colors of the component;
{the ab-critical path, if any, contains nine or more
vertices}
if there exists no ab-critical path
then npafh(x, y, a, b) else cpurh(x, y, a, b)

end
else

begin
{By a straightforward case analysis, it can be seen
that edge (JJ, zt) must be colored c}
let S be the bc-alternating path or cycle containing
~2, ~3, 24, and 25; { We further divide this into 2
cases depending on the order of the appearance of
z2, z3, z4, and z5 in S. The patient reader can find
the details of these cases in the Appendix.}

Case 3.1 and Case 3.2

end
end

end

Case 4. The &critical path Q contains five vertices. Let Q =
(x, zt, zr, z3, y). We can reduce this case to one of the preceding three cases
by the following procedure fioe:

pmcedure five:
begin

if Q < l~(W/W~~)I - l/2) hen
besin

(4 < 7(G))
assign a new color q + 1 to edge (x, y);
q := q + 1

end
else {there are two or more edges leaving H and colored with the same

color}
begin

leave;
assume WLOG that c E M(x) and a c-edge leaves H,

ALGORITHM TO EDGE COLOR MULTIGRAPHS 91

(a)
(cl

FIGURES

(b)

{since c is missing at none of the four vertices zl, z2, zj, and y, there
are two or four c-edges leaving H }
if there is no &critical path then npath(x, y, c, b)
else {there is a &-critical path R }

if R has two vertices of a common missing color
then cpath
else { R has at most seven vertices}

if R has seven vertices then seven

if R has three vertices
then
{R = (x, zl, y). Two c-edges leave H at z2 and zj for
c E M(x). See Fig. l.}

begin
interchange the colors of the bc-alternating path or
cycle containing z2 and z3;
{the new &critical path, if any, has seven or more
vertices}
recolor(x, y, a, b)

end
else {R has five vertices}

if there are two vertices of a common missing color in
UQ u R)
then. twopath
else

begin
let R be (x, zl, w2, w3, Y);
{w,, w3 4 H. (z,, w2) and (y, w3) are two c-edges
leaving H}
let T be the subgraph of G’ induced by V(Q U R);

92 HOCHBAUM, NISHIZEKI, AND SHMOYS

(a)

G.2)

FIGURE 2

{ T has exactly seven vertices}
if two c-edges leave H at z2 and z3 then

begin
interchange the colors of the bc-alternating path or
cycle containing z2 and z3;
{the ub-critical path, if any, has seven or more vertices}
recolor(x, y, a, b)

end
else {a c-edge joins z2 and z3}

if a 4 C(w,, w3) then
begin

{since a is missing at neither w, nor w,, two u-edges
leave T at wz and w3 }
interchange the colors of the ub-alternating path or
cycle containing wz and w3;
{the k-critical path, if any, has seven or more
vertices}
recolor(x, y, b, c)

end
else {an u-edge joins w, and w3. See Fig. 2.)

if 4 < IQTWW~T) - U/2) then
begin

(4 < T(G))
color (x, y) with a new color q + 1;
q:=q+1

end
else

{G’ has two edges leaving T of the same color.

ALGORITHMTOEDGECOLORKULTIGRAPHS 93

Separating four cases, we can find a q-coloring of
G’. Note that leave is not applicable since T is not
induced by the vertices of a single critical path. The
details are given in the Appendix for the extremely
patient reader.}
Cases 4.1 through 4.5

end
end

end

Case 5. The ah-critical path Q contains three vertices. Let Q = (x, z, y),
and let H be the subgraph of G’ induced by the three vertices of Q. We can
reduce this case to one of the preceding four cases as follows:

pmxxhue three:
begin

if 4 < IWOI/WW)I - WI = IWOI aen
begin

{q < T(G))
assign a new color q + 1 to edge (x, y);
q:=q+l

end
else {there are two or more edges leaving H and colored with the same

color}
begin

leave;
assume WLOG that c E M(x) and two c-edges leave H at y
and z;
interchange the colors of the ac-alternating path or cycle contain-
ing y and z;
{the new ab-critical path, if any, has five or more vertices}
recolor(x, y, a, b)

end
end

4. SOME IMPLEMENTATION DETAILS

In this section we outline the details needed to show that the algorithm
can be implemented in the claimed time and space bounds. The most
critical of these details is the manner in which the partial coloring is stored.
In addition to the standard adjacency list representation of the graph, a
same-color list is stored for each color. Each same-color list contains all of

94 HOCHBAUM, NISHIZEKI, AND SHMOYS

the edges assigned a particular color. In addition, there is a list of all of the
uncolored edges. The same-color lists use O(m) space.

An edge (u,u) assigned color c appears in the two adjacency lists for u
and u, and also in the same-color list for c. These three elements are linked
to each other by pointers so that each can be directly accessed from another.
Each element of a same-color list also has a pointer to the beginning of the
list. These devices clearly use O(m) space in total.

It should be noted that our algorithm does not compute r(G) explicitly,
because r(G) seemingly cannot be computed in O(m(n + A)) time. To
prove an O(m(n + A)) bound for the execution time, it suffices to show
that one execution of recolor can be done in O(n + A) time since color calls
recolor exactly m times. In what follows we argue that the recoloring can be
done in this time.

Let us consider some basic operations that are used repeatedly. First of
all, note that the adjacency list representation of G’[a, b] can be constructed
in O(n) time by using the same color lists. Since G’[a, b] contains at most n
edges, one can find the ab-alternating path from any given vertex in O(n)
time. The next fundamental operation is interchanging the colors of an
alternating path. Once again, by maintaining pointers between correspond-
ing edges in the adjacency list representations of G’[a, b] and G’, one can
update the coloring of G’ in O(n) time. Furthermore, consider the compu-
tation of M(x) for some vertex x. Since r(G) I [3A/2] there are O(A)
colors in M(x) and the time required to find M(x) is O(A) by just
scanning the adjacency list of x.

Consider now Case 1 in detail. The sets M(x) and M(y) can be found in
O(A) time, and therefore one can know in O(A) time whether x and y have
a common missing color. As discussed above, it takes O(n) time to find the
alternating path starting from vertex x. If it does not end at y, the colors
can be interchanged in O(n), and since the updating of the same-color lists
can be done in O(n + A) time, the overall running time for Case 1 is
O(n + A).

For Case 2, consider first the time to decide whether Q contains two
vertices u and u having a common missing color, and then to find them if
they exist. Once again, it requires O(n) time to construct the G’[a, b]
subgraph. If Q has at most seven vertices, then the pair of vertices can be
found in O(A) time. Otherwise, by Lemma 2(b), Q necessarily contains two
vertices of a common missing color among the first 17 vertices. Therefore,
this can be done in O(A) time. Next consider the time required for the while
statement in cpath. Since one execution of the while statement decreases the
distance between u and u by at least one, the statement is executed at most
15 times. One execution of the statement can be done in O(n + A) time
using the basic operations discussed above. Therefore, the while statement
requires 0(n + A) time and cpath can be implemented to run in O(n + A)
time overall.

ALGORITHM TO EDGE COLOR MULTIGRAPHS 95

For the remaining cases we consider a subgraph (H or T) induced by a
constant number of vertices (at most seven) plus all of the edges colored in
G’ with some fixed number of colors (no more than six colors are ever
considered in an iteration.) As a result, at most O(n + A) edges are ever
considered in these cases. Furthermore, note that although recolor is used
recursively in these cases, it is impossible for a particular subcase to recur.
Therefore, the depth of recursion is bounded by a constant (which turns out
to be five). Using many of the techniques discussed thus far, it is a routine
exercise to show that these cases can in fact be implemented to run in
0(n + A) time. Thus we have the following result.

THEOREM 1. Given a graph G, the algorithm color edge colors G using at
most max{ [(9A(G) + 6)/8], r(G)} co ors, I in O(m(n + A)) timeand O(m)
space. Thus, Rcolor = $ and Rs,O,, = g.

5. CONCLUSIONS

The algorithm presented here is considerably more complicated than the
one presented in [9]. Algorithm color, and the earlier algorithms with
asymptotic performance ratios of 2 and z, can all be viewed in the following
way: first show that if there is a critical path of length at least I, then there
is an “easy” recoloring (for some I); then provide a recoloring routine that
takes any critical path of length less than 1, and either produces an
augmented coloring or a longer critical path. (Once the longest critical path
exceeds 1 then we used the “easy” recoloring mentioned above.) For the
three algorithms the values of 1 are 5, 7, and 9, respectively.

Suppose that we have a critical path that contains all of the vertices of the
graph to be colored. If this path contains two vertices with a common
missing color and we are using A + 1 colors, we may still apply procedure
cpath to update the coloring. Otherwise, let mu = IM(v)j and d, be the
degree of u. Then if q colors are used in the current coloring,

c mv= 2+ c (q-d,bq
OCV OCV

and as result,

I4 2
q s (IV/ - 1)/2 - Iv(-1 < x’

by Fact 2. Therefore, we are free to use an additional color to color the
uncolored edge. Therefore, we need only provide the polynomial-time
procedure to either extend some critical path or augment the coloring in
order to prove the following conjecture.

96 HOCHBAUM, NISHIZEKI, AND SHMOYS

CONJECTURE. There exists an approximation algorithm A for edge color-
ing a multigraph G that uses at most max{ x’, A + l} colors and runs in time
that is polynomial in the size of G.

This conjecture implies that from a computational point of view, the edge
coloring of multigraphs is no harder than simple graphs.

APPENDIX

Case 3.1. The four vertices appear in S in one of the two following
orders; t2, zj, z5, z4 or zj, z2, z4, z5. (See Figs. 3a and b.)

Either c 4 C(zz, z4) or c e C(z,, z5). Therefore, two c-edges leave H
either at z2 and z., or at zj and z5. In this case we execute the following:

begin
interchange the colors of S;
interchange the colors of the ac-alternating cycle (z,, z2,. . . , z5, y);
if there is no &critical path then npath(x, y, c, b)
dae {the &critical path has at least nine vertices}

wth(x, Y, c, b)
end

Case 3.2. The four vertices appear in S in one of the two following
orders; z2, z3, z4, z5 or zs, z2, z5, z4. (See Figs. 3c and d.)

In this case we can show that two distinct c-edges, (zz, z;) and (zj, z;)
leave H. Suppose to the contrary that c E C(z,, z5). (If the c-edges do not
leave H, where could they go?) Then two c-edges leave H at z3 and z4, and
(zi, z2, z5, y) is an ac-alternating cycle. Therefore the component of G’[a, c]
containing the a-edge (zs, z4) is neither a 2-cycle nor includes the other two
a-edges of Q. This contradicts the assumptions of our procedure. Therefore,
we can execute the following procedure in this case:

let (z,, z$) and (z,, z;) be two c-edges leaving H,
if [a 4 C(z;, z;)] or [b E M(z$) U M(z;)] or [b G C(z;, z;)]
then

begin
interchange the colors of S;
{the new coloring of G’ satisfies one of the following:
(a) there is no a&critical path (if we are lucky)
(b) the new ab-critical path Q’ has nine or more vertices (by
a 4 C(z;, z;))
(c) vertex x shares a common missing color c with z; or z; (by
b E M(z;) u M(z;))

ALGORITHM TO EDGE COLOR MULTIGRAPHS 97

a
”

(al
(cl

(b) ’

FIGURE 3

(d) the component of G’[a, c] containing the u-edge (z;, z;) is
I neither a 2qcle nor contains any of the other a-edges of the new

&critical path Q’ = (x, zl, z2, z$, z;, z5, v).
(by a E C(z$, z;), b E M(z;) U M(z;), and b 4 C(z$, z;).))
recdor(x, y, (I, b)

98 HOCHBAUM, NISHIZEKI, AND SHMOYS

else {u, b E C(z& z;) and as a result of this and the 2-cycle condition
used in the procedure it follows that a, c E C(z,, z4). See Fig. 3e.)

begin
let f # b be any missing color of y;
if [there is no uf- or cf-critical path] or [the uf- or cf-critical path

contains two vertices of a common missing color]
then recolor(x, y, h, f) { h = a or c as appropriate from above}
else

if two of the four ab-, uf-, cb-, and cf-critical paths contain two
vertices of a common missing color
then twopath
else {since the af- and cf-critical paths do not go out of H (by

Lemma 2(a)), an f-edge neither leaves H at zs nor joins z5
with x or zt; thus an f-edge joins z5 with either z2, zs, or
z.4.)

if an f-edge joins z5 with z2
then

begin
interchange the colors of the component of G’[c, f]
containing the f-edge (zs, zz);
if [there is no af-critical path] or [the uf-critical path

contains two vertices of a common missing color]
then recolor(x, y, a, f)
else {the ab- and uf-critical paths contain nine or

more vertices in total, so they contain two vertices
of a common missing color}
twopath

end
else {an f-edge joins z5 with z3 or z4}

begin
interchange the colors of S;
{the new &critical path (x, zr, z2, z$, z;, zj, u) and
the uf-critical path contain two vertices of a common
missing color}
twopath

end
end

end

Case 4.1. An f-edge leaves T for f E M(y):

begin
if [there is no af- or cf-critical path] or

[the uf- or cf-critical path has two vertices of a common missing
color] or [the uf- or cf-critical path contains seven vertices]

ALGORITHM TO EDGE COLOR MULTIGRAPHS 99

then recolor(x, y, h, f) {where h is either a or c, from above}

if two of the four ab-, cb-, uf-, and c$critical paths have two vertices of
a common missing color

then twopath
else (The af- and cjkritical paths have at most five vertices and do not

leave T. Thus, no f-edge leaves T at x, zr, or ws. Hence two
f-edges leave T at zr, z2, or w2}

begin
{The af-critical path does not contain ,the a-edge (zr, zz). Other-
wise, the afcritical path would leave T.}
interchange the colors of the uf-alternating path or cycle contain-
ing z1 and z,; { the ub-critical path, if any, has seven or more
.vertices}
recolor(x, y, a, b)

end
end

Case 4.2. An f-edge leaves T for f E M(z,):

begin
erase the color b from edge (x, zr);
color (x, y) with b;
let (x, zr) be the new uncolored edge (x’, y’);
{a, c E M(x’), b E M(y’) and an f-edge leaves T for f E M(y’). Thus
Case 4.1 is applicable.}
recolor(x’, y’, a, b)

end

Case 4.3. An f-edge leaves T for f E M(x):

besin
if [there is no &critical path] or

[the fb-critical has two vertices of a common missing color] or
[the fkxiticalpath has seven vertices]

then recolor(x, y, f, b)
else {the fb-critical path has at most five vertices}

if two of the three ab-, cb- and bf-critical paths have two vertices of a
common missing color

then twopath
else {Since the fb-critical path does not leave T, no f-edge leaves T at

y or zr. Hence two f-edges leave T at z2, z3, w2, or w3.}
begin

assume WLOG that an f-edge leaves T at z2 or z3;
interchange the colors of the bf-alternating path containing the
f-edge leaving T;

100 HOCHBAUM, NISHIZEKI, AND SHMOYS

{the &critical path, if any, has seven or more vertices}
recolor(x, y, a, b)

end
end

Case 4.4. An f-edge leaves T where f is a missing color of z2, zs, w,, or
w,:

assume WLOG that f E M(ws)
{Although it is clear that zs and w, are completely equivalent, it is not as
simple to see that w, is not fundamentally different from ws. However,
this can be attained by uncoloring the b-edge (x, zr) and coloring (x, y)
with b. This interchanges the roles of w, and wz.}
if [S = Apafh(y, b, f) does not end at ws] or [S contains two vertices of

a common missing color] or [S contains exactly seven vertices] or [S
and R have two vertices of a common missing color]

then
besin

erase the color c of (y, w3);
color (x, y) with c;
recoWy, w3, b, f)

end
else {path S ends at w3 and contains no two vertices of a common

missing color, and S and R do not have two vertices of a common
missing color}

if an f-edge leaves T at w, or y
then

begin
{Iv- u WI 2 91
T U S contains two vertices I(and u with a common missing color
g, where u is in S - T and u is in T - S;
{u = z2 or z3 since S and R have no two vertices of a common
missing color. g # a, b, c, f}
let h#bbeamissingcolorofy; {h#u,b,c,f,g}
if Aputh(y, h , g) does not end at u then

besin
interchange the colors of Aputh(y, h, g);
{two vertices u and y on Q have a common missing color g }
cpWx, Y, a, b)

end
else { Aputh(y, h, g) ends at u}

begin
interchange the colors of Apufh (y, h, g);

ALGORITHM TO EDGE COLOR MULTIGRAPHS 101

{vertices u and y have a common missing color g }
erase color c of edge (y, ws);
color (x, y) with c;
WWY, w3, Jb f)

end
end

else
if an f-edge leaves T at x or zi then

begin
{the bf-alternating path S contains exactly three or five vertices,
and contains neither x nor zi}
interchange the colors of S;
erase the color c of (y, w3);
color (x, y) with c;
{the &critical path, if any, contains seven or more vertices}
recowy, w3, f, c)

end
else {an f-edge leaves T at z2 or z3 }

begin

end

{Actually, two f-edges leave T at z2 and z3. An f-edge joins w,
and either x, q, or y. If f E C(w,, y) then f E C(x, zi).}
interchange the colors of S;
{the uf-critical path, if any, contains seven or more vertices}
recofor(x, y, (I, f)

end

Cuse 4.5. Three f-edges leave T where f is not missing at any vertex
of T:

let (u, u’) be an f-edge leaving T such that u E T - (x, y } and u’ G T;
let g be any missing color of u;
{g # a, b, c, f. No g-edge leaves T. (Otherwise do one of Cases 4.1-4.4.))
S := Apath(u, g, f);
let (D, u’) be the last f-edge of S such that ZJ E T and u’ 4 T as S is
traversed from u;
ifu=uthen

besin
interchange the colors of S;
(Since f E M(u) and an f-edge leaves T, one of Cases 4.1-4.4
necessarily occurs.}
recofor(x, y, a, b)

end

102 HOCHBAUM, NISHIZEKI, AND SHMOYS

else {u # u}
if u#x then{u#u,x}

hegin
let h be any missing color of ZJ such that h # a, b, c;
assume WLOG that no h-edge leaves T, {otherwise Cases 4.1-4.4
are applicable}
{ Aparh(u, h, g) ends at u and does not leave T since g and h are
missing only at u and u respectively, and there is no g- or h-edge
leaving T. (Otherwise, one of Cases 4.1-4.4 apply immediately.)}
interchange the colors of Apath(u, h, g);
{g E M(u))
interchange the colors of Apath(u, g, f);
{Since f E M(u) and an f-edge leaves T at U, one of Cases
4.1-4.4 necessarily occurs.}
recolor(x, y, a, b)

end
else {u = x}

if Aparh(x, a, f) or Apath(x, c, f) contains a vertex of T other than
x then
begin

assume WLOG that Apath(x, a, f) contains a vertex of T other
than x;
let (r, r’) be the last f-edge of Apufh(x, a, f) such that r E T
and r’ 4 T as Apath(x, a, f) is traversed from x;
let h be any missing color of vertex r;
{We can assume that no a- or h-edge leaves T since otherwise,
Cases 4.1 to 4.4 are applicable.}
interchange the colors a and h in T,
{a E M(r), h E M(x)}
interchange the colors of Apafh(r, a, f);
{Since f E M(r) and an f-edge leaves the new T =
Aparh(x, h, b) U Apurh(x, c, b), one of Cases 4.1-4.4 must oc-
cur.}
recolor(x, y, h, b)

end
else {neither Apath(x, a, f) nor Apath(x, c, f) contains a vertex of

T other than x }
if an f-edge, say (s, s’), leaves T at z2, z3, w,, or w3

then
hegin

assume WLOG that s = w, or w,;
{the situation for wi and zi is identical}
interchange the colors of Apufh(x, a, f);

ALGORITHM TO EDGE COLOR MULTIGRAPHS 103

if [there is no j&critical path] or
[the fb-critical path has seven or more vertices]
then recolor(x, y, f, b)
else

besin
{Since the fb-critical path contains at most five
vertices, the path contains none of w,, w,, and s’}
interchange the &alternating path or cycle contain-
ing w,, w,, and s’;
{the new cb-critical path, if any, has at least seven
vertices}
recolor(x, y, c, b)

end
end

else
ban

(exactly three f-edges (x, x’), (y, y’), and (q, t;) leave T }
if b 4 C(z;, y’) then

begin
interchange the colors of Apath(x, a, f);
{the bf-critical path, if any, contains seven or more
vertices}
recolor(x, y, b, f)

end
else

begin
let P be the fb-alternating path (x, zI, L;, y’, y);
{two of the nine vertices of P, Q or R have a common
missing color}
if P has two vertices of a common missing color then

begin
interchange the colors of Aparh(x, a, f);
recolor(x, y, f, b)

end
else

begin
assume WLOG that P and R have two vertices of a
common missing color;
interchange the colors of Apath(x, a, f);
recoior(x, y, f, 6)

end
end

end
end

104 HOCHBAUM, NISHIZEKI, AND SHMOYS

ACKNOWLEDGMENTS

We would like to thank Professor Nobuji Saito for stimulating discussions on the subject of
this paper.

REFERENCES

1. R. COLE AND J. HOPCROFT, On edge coloring bipartite graphs, SIAM J. Comput. 11,
(1982), 540-546.

2. S. FIORINI AND R. J. WILSON, “Edgexolouring of Graphs,” Pitman, London, 1977.
3. H. N. GABOW AND 0. KARIV, Algorithms for edge coloring bipartite graphs and multi-

graphs, SIAM J. Compti. 11, (1982), 117-129.
4. M. R. GAREY AND D. S. JOHNSON, “Computers and Intractability: A Guide to the Theory

of NP-Completeness,” Freeman, San Francisco, 1979.
5. M. K. GOLDBERG, Edge-coloring of multigraphs; Recoloring technique, J. Graph Theory 8,

(1984), 121-137.
6. M. K. GOLDBERG, An approximate algorithm for the edge-coloring problem, in “Proceed-

ings of the 15th Southeastern Conference on Graph Theory, Combinatorics, and Comput-
ing,” to appear.

7. T. Go~vluz AND S. SAW, Open shop scheduling to minimize finish time, J. Assoc.
Comput. Mach. 23, (1976), 665-679.

8. I. J. HOLYER, The NP-completeness of edge colourings, SIAM J. Comput. 10, (1980),
718-720.

9. T. NISHIZEKI AND M. SATO, An approximation algorithm for edge-coloring multigraphs,
preprint, 1983.

10. C. E. SHANNON, A theorem on colouring lines of a network, J. Math. Phys. 28, (1949)
148-151.

11. V. G. VIWNG, On an estimate of the chromatic class of a p-graph, Diskret. Anal. 3, (1964)
25-30. [Russian]

