
JOURNAL OF ALGORITHM 10,187-211 (1989)

The Hamiltonian Cycle Problem Is Linear-Time
Solvable for 4-Connected Planar Graphs

NORISHIGE CHIBA

Department of Computer Science, Fad@ of Engineering, Iwate University,
Morioka 020, Japan

AND

TAKAO NISHIZEKI

Department of Electrical Communications, Faculty of Engineering, Tohoku University,
Sendai 980, Japan

Received October 18,1986; accepted April 6,1988

An algorithm is presented for finding a Hamiltonian cycle in I-connected planar
graphs. The algorithm uses linear time and storage space, while the previously best
one given by Gouyou-Beauchamps uses 0(n3) time and space, where n is the
number of vertices in a graph. o 1989 Academic PRSS. hc.

1. INTRODUCTION

A Hamiltonian cycle (path) of a graph G is a simple cycle (path) which
contains all the vertices of G. The Hamiltonian cycle problem asks whether
a given graph contains a Hamiltonian cycle. It is NP-complete even for
3-connected planar graphs [3, 61. However, the problem becomes polyno-
mial-time solvable for Cconnected planar graphs: Tutte proved that such a
graph necessarily contains a Hamiltonian cycle [9, lo]; and, moreover,
Gouyou-Beauchamps [4], based on Tutte’s proof, gave an O(n3) algorithm
which actually finds a Hamiltonian cycle in such a graph. Throughout the
paper n denotes the number of vertices in a graph.

In this paper we give a linear algorithm for finding a Hamiltonian cycle
in Cconnected planar graphs. This linear algorithm improves Gouyou-
Beauchamps’ O(n3) and Asano, Kikuchi, and Saito’s linear algorithms [l];
the last works only for 4-comected maximal planar graphs.

187
0196-6774/89 $3.00

Copyright 0 1989 by Academic Press, Inc.
All rights of reproduction in my form reserved.

188 CHIBA AND NISHIZEKI

Gouyou-Beauchamps’ algorithm, as well as ours, used a “divide-and-con-
quer” method: they first decompose a graph into several small subgraphs,
then recursively solve the subproblems, and finally combine the subsolu-
tions into a solution for the whole graph. Since the decomposed subgraphs
might not be (edge-)disjoint, it was nontrivial to verify even the polynomial
boundedness of the algorithm. Indeed he needed a lengthy argument to
prove the O(n3) bound. In contrast, Thomassen somehow remarks in [8]
that a polynomial bounded algorithm can easily be extracted from his short
proof for Tutte’s theorem. This remark seems to be misled from a flaw in
his proof. The proof misses an argument on an “e-bridge” in Tutte’s proof
which produces nondisjoint subgraphs [7, 41. Although his proof can be
completed, the proof as well as Tutte’s suffers from the same algorithmic
difficulty, which Gouyou-Beauchamps struggled to resolve [2].

In this paper we first present our version of a proof for Tutte’s theorem,
based on Thomassen’s proof but avoiding the decomposition into nondis-
joint subgraphs. The proof is constructive and yields a simple algorithm for
our purpose. It is rather straightforward to show that at most O(n)
recursive calls occur during one execution of the algorithm. To the contrast
O(n*) recursive calls occur in Gouyou-Beauchamp’s algorithm. Thus our
algorithm clearly runs in O(n*) time, since one step of “divide-and-con-
quer” can be done in O(n) time. Furthermore, we show that, using a
sophisticated method to decompose a graph, one can implement the algo-
rithm to run in linear time.

2. PROOF

In this section we define some terms and present our version of a proof
for Tutte’s theorem.

We first define some terms, related to a graph decomposition, which are
variants of those in [5]. Let G = (V, E) be a 2-connected simple undirected
graph with vertex set V and edge set E. A pair {x, y} of vertices x and y
is a separation pair if G contains two subgraphs G{ = (Vi, E[) and G; =
(V,, E2)) satisfying the following conditions:

(a) V=VluV2,V,nV,={x,y};
(b)E=E;uE;, E;nE,‘= 0,

&‘I 2 2, lE2’1 2 2.

A graph G is 3-connected if G is 2-connected and has no separation pair.
For a separation pair {x, r}, G, = (Vi, E[U {(x, y)}) and G, = (V,, E;
u {(x, y)}) are called split graphs of G, where (x, y) denotes an edge

HAMILTONIAN CYCLE PROBLEM 189

joining x and y. We sometimes say “split G, from G” when constructing
G, from G. Note that in our definition no multiple edges are produced in
G, or G,. The edge (x, y) in G, or G, is called a virtual edge no matter
whether it originally exists in G or is newly added to G, or G,. Dividing a
graph G into two split graphs G, and G, is called splitting. Reassembling
the two split graphs G, and G, into G is called merging. Merging is the
inverse of splitting.

Analogously we define a separation triple as follows. A set {x, y, z} of
three vertices is a separation triple of G if G has two subgraphs G, =
(V,, E,) and G, = (V,, E2) satisfying the following conditions:

(a> Y = V, u V,, V, f-7 V, = {x, Y, z>,

IV,1 2 4, Iv,1 2 4;

(b)E=E,uE,, E,nE,= 0.

A graph G is 4-connected if G is 3-connected and has no separation
triples. The terms “3connected” and “4-connected” are equivalent to
“ vertically 3connected” and “vertically Cconnected” in [9, lo], respec-
tively.

If G’ is a subgraph of G, then G - G’ denotes the graph obtained from G
by deleting all the vertices in G’ together with all the edges incident to
them. If V’ is the vertex set of G’, G - G’ is denoted by G - V’.

We are now ready to present Thomassen’s results.

LEMMA 1 [Thomassen]. Let G be a 2-connected plane graph with the outer
facial cycle Z. Let s and e = (a, b) be a vertex and an edge, both on Z, and
let t be any vertex of G distinct from s. Then G has a path P going from s to t
through e such that

(i) each component of G - P is adjacent to at most three vertices of P,
and

(ii) each component of G - P is adjacent to at most two vertices of P if it
contains a vertex of Z.

Clearly Lemma 1 implies that a 4-connected planar graph G has a
Hamiltonian cycle: let s and t be two adjacent vertices on Z and let
e # (s, t) be an edge on Z, then the path P joining s and t through e,
assurred by Lemma 1, must be a Hamiltonian path of G, so P + (s, t) must
be a Hamiltonian cycle of G. Thus an algorithm for finding the s-t path P
immediately yields an algorithm for finding a Hamiltonian cycle. In this
paper we give such a linear algorithm for fmding the s-t path P in a
Cconnected plane graph.

Although the original graph G is 4-connected, the subgraphs into which G
is decomposed by our algorithm are no longer bconnected. However, they

190 CHIBA AND NISHIZEKI

inherit some favorable property, which we call “internally 4-connected.”
Intuitively a graph is internally llconnected if it contains no separation pair
or triple in the interior. We define formally the term as follows.

Let G be a 2-connected plane graph with outer facial cycle 2. Let s and t
be two distinct vertices on 2, and let e = (a, b) be an arbitrary edge on 2
such that e # (s, t). Interchanging the roles of s and t or a and b and also
mirroring the plane embedding of G if necessary, one may assume without
loss of generality that t # a, b and vertices s, a, b, and t appear clockwise
on 2 in this order. (See Fig. l(a).) Note that possibly s = a as shown in
Fig. l(b). Let r be the vertex on 2 counterclockwise next to s, and let
f = (r, s) be the edge joining r and s. If vertices x and y are on 2, Pxu
denotes the “outer” path going from x to y clockwise on 2. Then a plane
2-connected graph G is internally 4-connected with respect to (s, t, e) if G
satisfies the two conditions:

(a) If {x, y } is a separation pair, then (i) every component of G -
{x, y } contains at least one vertex of 2 and (ii) each of the three paths P,,,
Pbr, and P, contains at most one of x and y.

(b) If {x, y, z} is a separation triple, then every component of G -
{x, y, z } contains at least one vertex of Z.

Condition (a) (i) above implies that both x and y of the separation pair
must lie on Z and that G - {x, y } contains exactly two components, while
condition (b) implies that at least two of x, y, and z of the separation triple
must lie on 2. Figs. l(c), (d), and (e) show separation pairs violating
condition (a), while Fig. l(f) shows a separation triple violating condition
(b). It should be noted that the property of internal 4-connectivity depends
on the planar embedding of G as well as the choice of s, t, and e.

An internally 4-connected graph is diagramatically illustrated in Fig.
2(a). A separation pair {x, y} is called vertical if either x E P,. - s and
y E Pbr or x = s and y E Pb, - t. In Fig. 2(a) (x, y } is one of the vertical
separation pairs. In the algorithm, G is decomposed into two subgraphs
with respect to a vertical separation pair. (Such a decomposition is called a
Type I reduction for the time being, and will be formally defined later.) If
{ x, y } is a non-vertical separation pair, one of x and y must be in Pb, - t
and the other in PII - t, and such a pair is implicitly said to be horizontal.
In Fig. 2(a) { y’, z’} is a horizontal separation pair.

Let G be an internally 4-connected plane graph having no vertical
separation pair. (Figure 3(a) illustrates such a graph G with s # a, while
Fig. 3(b) illustrates G with s = a.) Then G is decomposed into several types
of subgraphs, called G,, Gl, Gi, and Gi, which are defined below. (If
s = a, G is decomposed into G,,.)

Let C, be the block (i.e., 2-connected component) of G - P,, which
contains r. (In Figs. 3(a) and (b) C, are cross-hatched.) Then C, must

HAMILTONIAN CYCLE PROBLEM 191

t t b t b

(b)

b

t b

(4

r t Y b

Id)

t b

w

FIG. 1. Illustrations for notations and conditions (a) and (b): (a) shows G with s + a;
(b) shows G with s = a; (c), (d), and (e) show separation pairs violating conditions (a); and
(f) shows a separation triple (x, y, I} violating condition (b).

entirely contain Pbr, otherwise G would contain a vertical separation pair.
Repeat splitting of C, at every separation pair such that one of the two split
graphs entirely contains Pbr. (In case of Fig. 3(a), C, is split into four
components, as illustrated in Fig. 3(c).) The resulting components are called
G, or Gj. That is, the component containing Pbr is called G,, while each of
the others is called Gi, where g = (x, y) is a virtual edge contained in the

192 CHIBA AND NISHIZEKI

t Y yb

t'=s " b' t' b' s' s'

w r' f' 5' =a' 5' t'=t b' t' b' t' b’ t’ b’=b

FIG. 2. Type I reduction for an internally 4-connected graph G having vertical separation
pairs: (a) G; (b) G, and G,; (c) the split graphs.

component. Here we may assume by possibly interchanging the roles of x
and y that x z b.

We next define G,’ for each cut vertex u of G - P,, contained in C,.
(There are six U’S in Fig. 3(a).) Let C, be the maximal subgraph of G - P,,
which can be separated from C, at U. Let C,’ be the subgraph of G induced
by the vertices of C, and the vertices on P,, which are adjacent to C,,. Note

?IAMILTONIAN CYCLE PROBLEM 193

pL
t

*I?
b b

(b)

s'=b
@I

(el

FIG. 3. Type II reduction for an internally 4-connected graph G having no vertical
separation pair: (a) G with s # a; @) G with s = a; (c) Gh and Gi, where gl, g2, and g3 are
virtual edges; (d) Gi; (e) G,*.

that there is no vertex of degree 2 on P,, - s - a; otherwise an illegal
separation pair would exist. Let x (resp. y) be the vertex of P,, n C,’
which is nearest to s (resp. a) along P,,. Clearly x # y. Add a new edge
e’ = (u, y) to C,’ if it does not exist, and let G,’ be the resulting graph.
Figure 3(d) illustrates G,‘.

Finally we define Gi for a virtual edge g = (x, y). Schematically Gi is a
graph formed by merging Gl with all the Gl, and C,’ drawn above Gi.

194 CHIBA AND NISHIZEKI

Formally we constructively define Gi as follows (see Fig. 3(e)):

(1) Cg” := G;;

(2) while Ci has a virtual edge g’ # g, iterate to merge G: into Ci;

(3) for each cut vertex u(# x, y) of G - PS, contained in Ci, merge C,’
to CB”;

(4) construct the subgraph of G induced by the vertices of Ci together
with the vertices of P,, adjacent to Cl, and redefine C: as the subgraph;

(5) GB” := CB” - x - y.

Figure 3(e) illustrates Gsz 4 for virtual edge g2. Let v (resp. w) be the
vertex of G: that appears first (resp. last) on P,,. Note that Gi must
contain at least two vertices of P,, and hence v and w are distinct. Let w’
(resp. v’) be the vertex which is adjacent to y (resp. x) and appears last
(resp. first) on outer path P,,,, of Gl.

We now have the following lemma.

LEMMA 2. Let G be an internally 4-connected graph containing no vertical
separation pair. Then all the decomposed graphs G,, Gl, Gi, and Gi are
internally 4-connected with respect to (s’, t’, e’) ifs’, t’, and e’ are defined as
follows:

(a) Case G,. Lets’ = b, and t’ = t. If t z r, let e’ be the edge clockwise
incident to r on the outer facial cycle Z’ of G,; if t = r, let e’ be the edge
counterclockwise incident to b.

(b) Case Gl. Let s’ = y, t’ = x, and let e’ be the edge counterclockwise
incident to y on the outer facial cycle of Gg’.

(c) Case G,‘. Let s’ = u, t’ = x, and e’ = (u, y).

(d) Case Gg”. Let s’ = w and t’ = v. If w’ # v’, let e’ = (a’, b’) be an
arbitrary edge on outer path P,,,,,.; if w ’ = v’, let e’ be an arbitrary edge on P,,
incident to w’ (= v’).

Proof Since the proof for cases (a)-(c) is trivial, we verify only the case
(d). Suppose that Gi is not internally 4-connected with respect to (s’, t’, e’).
Then G: must have one of the following three:

(i) a cut vertex u,;
(ii) a separation pair { vPr, vPz} such that both uPI and up2 are con-

tained in path P,,,,,, PuU, or P,,; and

(iii) a separation triple {v il, v ,*, v,~} for which one of the components
of Gg” - { qr, q2, vlg} contains no vertex of the outer facial cycle Z’ of Gg”.

HAMILTONLU’I CYCLE PROBLEM 195

In either case G would contain a separation triple (u,, x, y }, { uP1, u,,, x},

{ UpI9 up29 Y 1 or { % utz9 t3 u } such that the deletion of the triple from G
produces a component containing no vertex of 2.

This contradicts the internally Cconnectedness of G. 0

Lemma 3 below claims that a plane graph internally Cconnected with
respect to (s, t, e) has a Hamiltonian path joining s and t. Although the
claim is implied by Lemma 1, we give a constructive proof, from which a
simple algorithm for finding a Hamiltonian path follows immediately.

LEMMA 3. Let G be a plane graph hauing an outer facial cycle Z. Let s
and t be two distinct vertices on Z and let e (# (s, t)) be an edge on Z. If G is
internally Cconnected with respect to (s, t, e), then G has a Hamiltonian path
P(G, s, t, e) which connects s and t and contains e. Moreover, if G has no
vertical separation pair, then P(G, s, t, e) does not contain edge f = (s, r).

Proof The proof is by induction on the number 1 F/I of vertices of a
graph G. If 1 VJ = 3, the claim is clearly true, so we assume that (V(> 3.
There are two cases to consider.

Care 1. There exists a vertical separation pair {x, y } (see Fig. 2).
Denote by G, and G,, the two {x, y}-split graphs. One may assume that

G,, contains e. Among all vertical separation pairs of G, we choose {x, y}
such that G, has the smallest number of vertices. We call such a separation
pair the rightmost separation pair.

First consider the case t E G, as shown in Fig. 2. Let e’ = (x, y) be a
virtual edge. Then clearly G, is internally Cconnected with respect to
(s, t, e’), while G, is internally ‘l-connected with respect to (x, y, e) (or with
respect to (y, x, e) if y = b). Therefore by the inductive hypothesis G, has
a Hamiltonian path P(G,, s, t, e’) and G,. has P(G,, x, y, e) (or
P(G,, y, x, e)). Thus G has Hamiltonian path

P(G, s, t,e) = P(G,,s, t,e’) + P(G,, x, y, e) - e’

or

P(G,, s, t,e’) + P(G,, y, x,e) - e’.

Next consider the case t 4 G,. Let e’ = (y, x), then G, and G, are
internally konnected with respect to (y, s, e’) and (x, 1, e), respectively.
Here s # x, since G is internally Cconnected with respect to (s, t, e). Thus
G has a Hamiltonian path

P(G, s, t,e) = P(G,, y, s,e’) + P(G,, x, t, e) - e’

as desired. Note that P(Gr, x, t, e) does not contain (x, y), since G, has no
vertical separation pair.

196 CHIBA AND NISHIZEKI

Case 2. G has no vertical separation pairs (see Fig. 3).
By the inductive hypothesis and Lemma 2, all the decomposed graphs G,,

Gi, Gi, and Gi have Hamiltonian paths. From them one can construct a
Hamiltonian cycle P(G, s, t, e) of G as follows:

(i) First set P to Psb + P(G,, 6, t, e’).

(ii) Then P is modified into a Hamiltonian path P(G, s, t, e) of whole
G. Note that in the following modifications edge f = (s, r) is never in-
cluded in path P.

(ii.1) If there is a virtual edge g = (x, y) in G,, modify P as follows:
if g E P, then let P := P - g + P(Gl, y, x, e’) (that is, replace g
of P by a Hamiltonian path of Gt), and subsequently merge Gi
into G,;
if g @ P, then construct Gi, and set P := P - P,, +
P(Gi, w, u, e’) (that is, replace the subpath P,,,, of P by a Hamil-
tonian path of Gi).

(Thomassen’s proof misses the counter part of the argument on Gi above.)

(ii.2) Finally, for each u of the cut vertices of G - P,, contained in
G,, set P := P - Pxy + P(G,f, u, x, (u, y)) - (u, y) (that is,
replace the subpath Pxy of P by a Hamiltonian path of Gz,
and delete an extra edge (u, y)).

Clearly the resulting P forms a Hamiltonian path P(G, s, t, e) of
whole G. q

EXAMPLE. For an illustration consider G in Fig. 3(a). If P(G,, b, t, e’)
contains virtual edge g, but not g,, then P(G, s, t, e) is constructed from
Hamiltonian paths of G,, G$ Gi,, G,‘,, G,‘,, and Gg4. If P(G,, b, t, e’)
contains both g, and g, and if P(G$ s’, t’, e’) does not contain g,, then
P(G, S, r, e) is constructed from Hamiltonian paths of G,, Gi, G$ G$ GJ,,
G.$ G$ and Gi6.

3. ALGORITHM AND O(n') BOUND

The proof of Lemma 3 immediately yields a recursive algorithm which
finds a Hamiltonian path P(G, S, t, e) in an (internally) d-connected planar
graph G. The reduction performed with respect to a vertical separation pair
at Case 1 is called a “Type I reduction” (Fig. 2), while the reduction at

HAMILTONIAN CYCLE PROBLEM 197

Case 2 is called a “Type II reduction” (Fig. 3). Then the algorithm is as
follows.

~mcedwe HPATH(G, s, r, e);
Wn

if G contains exactly three vertices
then {G is a triangle}

return a (trivial) Hamiltonian path P(G, s, t, e)
else if G has a vertical separation pair

then Type I reduction
else Type II reduction

end;

As shown below it is rather easy to verify an O(n2) time bound for the
algorithm HPATH. Clearly the running time of the algorithm is dominated
by the time required by the graph decomposition: the decomposition of G
into G, and G, in Type I reductions; and into G,, G,“, Gj, and Gi in Type
II reductions. Hopcroft and Tarjan have given a lmear algorithm which
decomposes a given graph into 3-connected components [5]. Using a similar
algorithm, the decomposition above can be done in linear time per reduc-
tion. (Note that our situation is much easier than theirs since we can use the
plane embedding of G.) Furthermore we have the following lemma.

LEMMA 4. If the input graph G of the algorithm HPATH has n vertices,
then there are at most n - 3 reductions during one execution of HPATH.

Proof. Assume that r reductions occured during one execution of
HPATH. Then we should verify r I n - 3. Let d(i), 1 I i s r, be the
number of smaller graphs into which a graph is decomposed at the i th
reduction. That is, d(i) is the number of the recursive calls occured at the
reduction. Then d(i) is necessarily 2 if the ith reduction is Type I, while
d(i) is 1 if the ith reduction is Type II and none of Gi, Gi, and G,’ is
produced. Let r’ be the number of reductions with d(i) = 1. Recall that G
is eventually decomposed into triangles, for which Hamiltonian paths can
be found trivially and no more reductions occur. Let t be the number of
these final triangles.

Consider the so-called recursive call tree. Each internal node of the tree
corresponds to a reduction, its sons to the recursive calls at the reduction,
and the leaves to the final triangles. Thus the tree has t leaves and r
internal nodes, r’ of which have outdegree 1. The trivial fact that the
number of internal nodes in a binary tree is one less than the number of
leaves implies that the recursive call tree has at most t - 1 internal nodes of
outdegree 2 or more. Thus we have

rIt-l+r’. (1)

198 CHIBA AND NISHIZEKI

A Type I reduction decomposes a graph G into G, and G, having two
duplicated vertices. The total length (i.e., number of edges) n of Hamilto-
nian paths in G, and G, is one larger than the length n - 1 of a Hamilto-
nian path in G. Thus a Type I reduction increases by one the total length of
paths which will be found in the two reduced graphs. In general, the ith
reduction increases by at most d(i) - 1 the total length of paths which will
be found in the d(i) reduced graphs. Conversely, if d(i) = 1, then the
length of a path which will be found in the reduced graph decreases by at
least one. Trivially HPATH initially wishes to find a Hamiltonian path of
length n - 1. Therefore the total length of paths found in triangles cannot
exceed

n- 1+ C (d(i) - 1) - r’=n--l+r+t-l--l--T’
lsisr

=n+t-r’-2.

Since the lengths of the Hamiltonian paths found in the final triangles total
2t, we have

2t I n + t - r’ - 2;

that is,

tin-r’-2. (2)

Combining (1) with (2), we get the claimed bound on r

rjn-3. Cl

Thus it is rather straightforward to implement the algorithm HPATH to
run in O(n*) time.

Remark. Gouyou-Beauchamps’ algorithm seems to be more compli-
cated, partly due to the fact that it is based on the original lengthy proof of
Tutte’s theorem. Furthermore, he needed a lengthy argument to polynomi-
ally bound the algorithm. In our terminology, when G has no vertical
separation pair as shown in Fig. 3(a), his algorithm decomposes G into G,’
and C, (instead of Gb). If the (not necessarily Hamiltonian) path found in
C,, does not pass through vertices in G& then his algorithm recurses to GB”,
and then constructs a single path from the two paths in C, and G:z. Thus
some edges and vertices in GB’, and GB”, are contained in both C, and GB”, to
which his algorithm recurses. This is the obstruction that makes the analysis
of his algorithm quite hard, although he eventually gave an O(n3) bound.

HAMILTONIAN CYCLE PROBLEM 199

4. LINEAR IMPLEMENTATION

In this section, we refine the algorithm HPATH to run in linear time.
We first give a precise implementation of a Type I reduction. In a Type I

reduction G is decomposed into two graphs G, and G, as in the proof of
Lemma 3. In order to make the analysis easy, we decompose G into two or
more graphs at once as follows. Continue to split G, into G; and G,’ at the
rightmost separation pair {x’, y’} of G, while G, contains vertex t and a
vertical separation pair. Further split G, into G; and G; if G, contains a
vertical separation pair of form {u, y’} for some vertex u. We then apply
the algorithm recursively to all the split graphs all together (see Fig. 2(c)).
We newly call this operation a Type I reduction. The vertical separation
pairs involved in the Type I reduction are called usuble. (The graph G in
Fig. 2(a) has five usable vertical separation pairs together with one nonus-
able pair { u, w }.)

We then show how to find the usable vertical separation pairs. Here we
do not want to spend linear time since reductions occur O(n) times.
Making use of the plane embedding, one can do it spending less than linear
time. Let u E P,, and u E Pbr, then {u, u} is a vertical separation pair if
and only if u and u are on the same inner facial cycle other than the two
inner facial cycles containing edge e or f. Thus traversing all the inner
facial cycles passing through a particular vertex u on P,,, one can find
every vertex u with which u forms a vertical separation pair. Repeating this
procedure for each vertex u on path Ps, from a to S, we can find all the
vertical separation pairs in the rightmost order. Using an appropriate
numbering of vertices on the outer boundary, one can immediately decide
whether a given vertex on Pbr is either on Pbr or P,,. Therefore we can
know which pairs are usable. Once these usable separation pairs are known,

b

FIG. 4. Finding path P,,.

200 CHIBA AND NISHIZEKI

we can immediately split a graph into the smaller graphs (for example, G in
Fig. 2(a) into those in Fig. 2(c)). Thus we have the following lemma.

LEMMA 5. The time spent by a Type I reduction is proportional to the time
for tranversing all the inner facial cycles passing through vertices on Ps,
(which are called the P,,-cycles from now on).

We next show how to implement a Type II reduction. Since graphs Gi,
G:, and Gi are not always disjoint and some of them need not be
constructed, we delay the actual constructions until they become necessary.

Let Pb be the “outer” path on the outer facial cycle of G, counterclock-
wise going from b to r. If Pb is known, then the graph G, is easily
constructed from G. The path Pb is found by the following procedure (see
Fig. 4):

procedure PATHPB;
begin

color all the vertices and edges of &-cycles “red”;
P,, := b; {initialize path P,, as a single vertex b)

SP := 0 ; { SP is a list of separation pairs of block C,]
u := b; {u is a possible vertex of a separation pair)
let F, be the face which is incident to b and clockwise next to the outer face Z
repeat

let 4, F,, . , F/ be all the inner facial cycles incident to v which are ordered
clockwise around u;
for i = 1 to I

do begin
let ue(= u), ut, . , uk be the vertices on 4 ordered clockwise;
traverse clockwise cycle F; from us to uk; { { ue, ui } is not a separation pair
of G)
if a red vertex I(is found

then exit from the for-statement;
end;

if there is no red edge (u, u)
then begin ({ u, 0) is a separation pair of C, }

add {u,u} toSP;
add a virtual edge (u, u) in the interior of 4;
F; := u,(= u), u, ul,. . , u.

end;
Ph := Ph + u; (P,, proceeds to u}
u := u; Fl := F;

until u = r (P,, reaches r)
end;

As in procedure PATHPB one can find path Pb and simultaneously split
G into two graphs G, and G’. (See Fig. 5.) Clearly one execution of
PATHPB is done within time proportional to the time spent for traversing
all the facial cycles of G, incident to Pb - r. However, in order to achieve a
linear bound of HPATH, we need to slightly modify PATHPB so that one

HAMILTONIAN CYCLE PROBLEM 201

FIG. 5. Splitting G (shown in Fig. 3(a)) into G,, and G’. (Path Pb in G,, is drawn in a
thick line.)

need not traverse the facial cycles incident to both Pb and Pbr that have
been traversed so far. (In Fig. 4 the procedure PATHPB above traverses
faces Fi2, Fzz, and FM although they may have been traversed so far.) For
the purpose we maintain for each vertex 1(a list L(u) of traversed faces on
which u lies. (Thus in Fig. 4 Flz E L(ui), Fz2, FM E L(uz), and Fz4 E
L(+) if F12, f&, and F4 have been traversed so far.) Furthermore we
color the vertices on faces traversed so far “green.” The procedure
AVOID-DUPLICATE below finds all the separation pairs of C, which lie
on faces traversed so far (such as (u2, u2) in Fig. 4). More precisely, for all
faces f traversed so far, AVOID-DUPLICATE constructs the lists W(f)
of candicate vertices. If 1 W(f) 1 2 2 and f is a facial cycle in C,,, then the
first and the last vertices in W(f) compose a separation pair of C, lying
on f which should be added to SP in PATHPB.

procedure AVOID-DUPLICATE;
begin

let 4, F,,..., F, be all the P,,-cycles ordered from a to s;
for i := 1 to I do

begin
let ul(E P,.), q,. . . , uk be the vertices on F; ordered clockwise;
forj:=ltokdo

if u, is a “green” vertex and has no mark, that is, uj lies on a cycle traversed so
far and has not been traversed by this procedure

then
begin

foreachfacefEL(uj)do
W(f) := W(f) + (ui};

202 CHIBA AND NISHIZEKI

mark the vertex u,
end

end;

(we next update lists L(U)}
for i := 1 to I da

for each vertex uj on F; do

L(Uj) := L(u,) + (6);

remove the marks from the “green” vertices on P,,-cycles;
initialize all nonempty lists CV(f) to empty ones

end;

We execute AVOID-DUPLICATE just before the execution of PATHPB.
(In Fig. 4 we have CV(F,,) = (ui}, CV(F,,} = { u2}, and CV(&> =
{ u2, u2 } .) Every two vertices contained in CV(f) is a separation pair lying
on face f traversed so far. Thus in the modified procedure PATHPB we can
skip the traverse of faces which have been traversed so far (such as Fii, F12,
and Fz4 in Fig. 4). Note that after the execution of PATHPB we need to
recolor all the vertices ZJ traversed by PATHPB “green” and to update the
lists L(u). Hereafter, we call the procedure modified as above PATHPB.

We then find a Hamiltonian path P(G,, b, t, e’) by procedure
HPATH(G,, b, t, e’). The path P of G is first set as P := Psb +
P(G,, b, t, e’). When P contains a virtual edge g = (x, y), we need to split
Gi from G’. Gl can be split from G’ by applying the same procedure
PATHPB to G’ with setting u := y and r := x. Redefine G’ as the remain-
ing graph. Replace edge g in P by a Hamiltonian path HPATH(Gi, y, x, e’)
of Gf. Repeat these operations while P contains a virtual edge. Then we
eventually obtain a path P having no virtual edges. Let G; be the graph
obtained from G, by merging all the Gi above. We replace virtual edges g
in the outer path Pb of G, by the outer paths Py* in each of Gi involved in
the operations above, and let P; be the resulting outer path of G& Clearly
the time for constructing G, and all Gi above is proportional to the time
for traversing all the facial cycles in G; mcident to path P; - r except those
which are incident to Pbr and have been traversed so far. We call these
traversed facial cycles “P,‘-cycles.” (Figure 6 illustrates graph G; and path
PL for graph G shown in Fig. 3(a), assuming that P(G,, b, t, e’) contains
virtual edge g, but not g2.)

r b

FIG. 6. Graph Gi and path PL (drawn in a thick line).

HAMILTONIAN CYCLE PROBLEM 203

Other graphs which must be constructed are Gi or Gi. We can easily
split these graphs from G’ by traversing the outer facial cycle of G’. Thus
this can be done within time proportional to the time for traversing the
P,,-cycles.

Thus we have the following lemma.

LEMMA 6. The time spent by a Type II reduction is proportional to the
time for traversing the Psa- and P,‘-cycles.

5. LINEAR BOUND

In this section we will show that each of the edges, including virtual
edges, is traversed at most constant times during one execution of HPATH,
so HPATH runs in linear time. At each stage of the execution of HPATH
the set of edges is partitioned into 23 classes defined below. An edge
belonging to a certain class at a stage may transit to another class at the
next stage. We investigate how an edge transits the classes and show that
every edge which is traversed more than some constant times disappears
from a graph. (All the edges in a graph remain in the subgraphs decom-
posed by a Type I reduction. However, some edges disappear after a Type
II reduction: all the edges incident to s disappear if s = a; and some of the
edges incident to vertices on P,, disappear if s # a; furthermore, the edges
incident to x or y in Ci disappear when constructing Gi.)

An edge e belongs to exactly two facial cycles F and F’. In order to
analyze the time complexity, we regard e as a pair of multiple edges eF and
ep, which belong to F and F’, respectively. Thus when face F is traversed,
edge eF is charged but e, is not. The 23 classes of edges are denoted by
(X) or (X’), where X is one of the 13 characters in sequence
Y, H, f, e, u, n, s, t, a, b, r, U, L, R, B, 0. Each class (X) consists of all
the edges that are in components with s # a and lie on cycles specified
below. Class (X*) consists of all the edges that lie on the same type of
cycles as (X) but are contained in components with s = a. Note that
although the graph is a single connected component at the first stage, it is
decomposed into several components thereafter. When an edge can be in
two or more classes, the edge is defined to be in the first class. Thus every
edge is in exactly one of the 23 classes. Note that the classes (n*), (a*),
and (U*) are all empty:

(Y), (Y*): inner facial cycles incident to all three paths P,,, Pbt and
P,, (Note that each component contains at most one such cycle. In Fig. 2(a)
the cycle containing x’, y’, and z’ is such a cycle. The cycle looks like “Y

204 CHIBA AND NISHIZEKI

turned upside down.” From now on we simply write “cycle” for “inner
facial cycle”);

(H), (H*): cycles incident to both paths P,, and Pbr in a graph with
r # t (Such a cycle contains a horizontal separation pair.);

(f), (f*): cycles containing an edge f = (s, r);

(e), (e*): cycles containing an edge e;

reduL?;(u*)
: c c es

y l
containing a separation pair usable for a Type I

3
(n) : cycles containing a separation pair { u, w } nonusable for a Type I

reduction such that u E PS, and w E P,, - t;

(s), (s*): cycles incident to a vertex s;

(t), (t*): cycles incident to a vertex t;

(a): cycles incident to a vertex a;

(b), (b*): cycles incident to a vertex b;

(r), (r*): cycles incident to a vertex r;

(U): cycles incident to a path P, = P,, - s - a;

(L), (L*): cycles incident to a path PL = PtI - t - r;

(R), (R*): cycles incident to a path P, = Pb, - b - t;

(B), (B*): cycles in G; incident to the outer path Pi (It should be
noted that this class is defined only before a Type II reduction is applied.);

(0), (O*): the other cycles.

If the edges contained currently in (X) were in classes (Y,), (Yz), . . . , or
(Y,) before a Type I reduction, then we write Prec I(X) = { Y,, Y,, . . . , Y, }.
Similarly we define Prec II(X) with respect to a Type II reduction. When a
Type I reduction and subsequently a Type II reduction occur, we denote by
Prec I.II(X) the set of classes to which the edges currently in (X) belonged
just before the last two reductions. SimiIarly define Prec II.I(X). Then we
have the folIowing lemmas, which can be proved by an easy but lengthy
case study.

LEMMA 7. A Type I reduction causes the following transitions of the
classes :

(Y) = 0,
PrecI(H) = {H},

Pr=I(f 1 = {Y, f, u>,
PrecI(e) = {e, u},

(u> = 0,

HAMILTONIAN CYCLE PROBLEM 205

(n) = 0,
Prec I(s) = { 3, U},

PrecI(t) = {t, R},

PrecI(a) = {a, U},

PrecI(b) = {b, R},

PrecI(r) = {r, L},

PrecI(U) = {U},

PrecI(L) = {L),

PrecI(R) = {R},

PrecI(B) = {0},

PrecI(0) = {0},

Prec I(Y*) = (Y, u, r(l),

PrecI(H*) = (23, n, H*},

I+= Itf*) = {Y, f, u, L, p, f*, u*},
Prec I(e*) = {Y, e, u, e*, a*},

(u*) = 0,

PrecI(s*) = {s, t, a, b, U, L, R, s*},
PrecI(t*) = {s, t, lJ, R, t*, R*},

PrecI(b*) = {a, b, U, R, b*, R*),

Prec I(r*) = {r, L, r*},

Prec I(L*) = {r, L, L*},

Prec I(R*) = {U, R, R*},

PrecI(B*) = (0, o*},

PrecI(O*) = (0, O*}.

Proof. As illustrations, we verify some of the equations above. Just after
a Type I reduction, clearly there is no edge in (Y), that is, (Y) = 0. Only
the edges in (H) become edges in (H). Therefore PrecI(H) = {H}. We
next verify Prec I(f) = { Y, f, u }. Since in a Type I reduction a graph is
split at usable separation pairs, only edges in (Y), (u), or (f) itself may
transit into class (f) in a decomposed graph. Consider the cycle of G in
Fig. 2(a) which is incident to z’ and clockwise next to the outer cycle. The
edges on that cycle belonged to (L) before the reduction, but at present
belong to the inner facial cycle containing f’ = (s’, r’) of the leftmost
component in Fig. 2(c). However, L 4 Prec I(f) since s’ = a’ in the
component. (In fact, L E PrecI(f*) and L E Pm I(s*).) Thus we have
verified PrecI(f) = {Y, f, u}. 0

206 CHIBA AND NISHIZEKI

LEMMA 8. A Type ZZ reduction causes the following transitions of the
classes :

PrecII(Y) = {H, U, H*},

Prec II(H) = { H, U, H*},

PrecII(f) = {s, t, a, b,U, t*, b*},

Prec II(e) = {r, 0, r*},

PrecII(u) = {s, t, a, U, L, R,O, t*, L*, R*},

Prec 11(n) = {U, R, R*},

PrecII(s) = {a, b, U, b*},

PrecII(t) = {s, t, U, t*},

Prec 11(a) = (B, 0, B*},

PrecII(b) = {r, 0, r*},

PrecII(r) = {U, R, R*),

PrecII(U) = {B, 0, B*},

Prec 11(L) = {U, R, R*},

Prec 11(R) = {L, 0, L*},

(B) = 0,
PrecII(0) = {O,O*},

Prec 11(r*) = {H, b, U, H*, b*},

Prec 11(H*) = {U, R, R*},

Prec 11(f *) = {s, t, a, b, r, u, 4 0, t*, b*},
PrecII(e*) = { e, a, b, u, 4 b*},

PrecII(u*) = {a, U},

Prec II = {a, b, U, B, 0, b*},

PrecII(t*) = {s, t, r, U, B, t*},

Prec II = {a, U, B, B*},

PrecII(r*) = {U, R, 0, R*},

Prec 11(L*) = {U, R, 0, R*},

Prec 11(R*) = {U, B, 0, B*},
(B*) = 0,

Prec II = { 0, o*>.

ProoJ: We verify only Prec 11(e) = {r, 0, r*}. As shown in Fig. 3, only
G, and Gi may have an edge in (e) since Gi and G,’ satisfy s’ = a’.
Clearly such an edge had to be in (r), (0), or (r*). 0

HAMILTONIAN CYCLE PROBLEM 207

Lemmas 7 and 8 lead us to the following Lemmas 9 and 10.

LEMMA 9. A pair of successive reductions of Type I and Type II causes the
following transitions:

PrecI.II(Y) = {H, n, lJ, Zf*},

Prec I.II(H) = { H, n, U, H*},

PrecI.II(f) = {s, t, a, b, U, R, t*, b*, R*},

Prec 1.11(e) = {r, L, 0, r*},

PrecI.II(u) = {s, t, a, r, U, L, R,O, t*, L*, R*},

PrecI.II(n) = (U, R, R*},

PrecI.II(s) = {a, b, U, R, b*, R*},

PrecI.II(t) = {s, t,U, R, t*, R*},

Prec I.II(a) = { 0, O*},

Prec I.II(b) = { r, L, 0, r*},

Prec I.II(r) = {U, R, R*},

PrecI.II(U) = {O,O*},

Prec I.II(L) = {U, R, R*},

Prec I.II(R) = {r, L, 0, L*},

PrecI.II(B) = 0,

Prec 1.11(O) = { 0, O*},

Prec I.II(y*) = { H, n, a, b, U, R, H*, b*, Ii*},

PrecI.II(H*) = {U, R, R*},

Prec I.II(f *) = {s, t, a, b, r, U, L, R, 0, t*, b*, R*),

Prec I.II(e*) = { e, u, a, b, U, R, 0, b*, R*),

PrecI.II(u*) = {a, U},

PrecI.II(s*) = {a, b, U, R, 0, b*, R*},

PrecI.II(t*) = {s, t, r, U, L, R,O, t*, R*},

Prec I.II(b*) = { a, U, 0, 0*},

Prec I.II(r*) = {U, R, 0, R*},

Prec I.II(L*) = {U, R, 0, R*},
Prec I.II(R*) = {U, 0, 0*},

PrecI.II(B*) = 0,

PrecI.II(O*) = {O,O*}.

208 CHIBA AND NISHIZEKI

Proof. By the definitions, we have

PrecI.II(X) = U PrecI(w).
w E Prec II(X)

Using this equation and Lemmas 7 and 8 we can easily verify the claimed
equations. For example, since Prec II(Y) = { H, U, H*},

PrecI.II(Y) = PrecI(H) U PrecI(U) U PrecI(H*)

= {H} U {U} U {H,n,H*}

= {H,n,U,H*}. cl

LEMMA 10. A pair of successive reductions of type II and Type I causes
the following transitions of the classes:

(Y) = 0,
PrecII.I(H) = {H, IJ, H*},

PrecII.I(f) = {H,s, t, a, b, U, L, R,O, H*, t*, b*, L*, R*},

PrecII.I(e) = {s, t, a, r, U, L, R, 0, t*, r*, L*, R*},

(u> = 0,

(n) = 0,
PrecII.I(s) = {a, b, U, B, 0, b*, B*},

PrecII.I(t) = {s, t, U, L, 0, t*, L*},

Prec III(a) = {B, 0, B*},

PrecII.I(b) = {r, L, 0, r*, L*},

Prec 11.1(r) = {U, R, R*},

Prec 11.1(U) = {B, 0, B*},

Prec II.I(L) = {U, R, R*},
Prec II.I(R) = {L, 0, L*},

Prec II.I(B) = { 0, 0*},

Prec 11.1(O) = { 0, 0*},

PrecII.I(Y*) = {H, s, t, a, b, U, L, R, 0, H*, t*, b*, L*, R*},

Prec II.I(H*) = {H, U, R, H*, R*},

PrecII.I(f*) = {H, s, t, a, b, r, U, L, R, B, 0, H*, t*, b*, L*, R*},

Prec II.I(e*) = {H, e, s, t, a, b,r, U, L,R, B,O, H*, t*, b*, r*, L*, R*},
(u*) = 0,

PrecII.I(s*) = {s, t, a, 6, r, U, L, R, B,O, t*, b*, r*, L*, R*, B*},

HAIbfILTONIAN CYCLE PROBLEM 209

PrecII.I(t*) = {s, t, a, b, r, U, L, B, 0, t*, b*, L*, B*},

Prec II.I(b*) = { a, r, U, L, B, 0, r*, L*, B*),

PrecII.I(r*) = {U, R, 0, R*},

Prec II.I(L*) = {U, R, 0, R*},

PrecII.I(R*) = {U, L, B,O, L*, B*},

Prec II.I(B*) = (0, 0*},

Prec II.I(O*) = { 0, O*}.

Proof. Similar to that of Lemma 9. q

Lemmas 9 and 10 lead us to Lemmas 11 and 12, which imply that every
edge is traversed at most constant times. Note that in one execution of a
reduction, only the edges on P,,- and P,‘-cycles are traversed some constant
times.

LEMMA 11. Every edge in G is involved in Type I reductions at most four
times during one execution of HPATH.

Proof: Since a Type I reduction decomposes a graph into small graphs
having no vertical separation pair, the reduction does not occur succes-
sively. Thus we can divide the sequence of reductions into pairs, each
consisting of two consecutive reductions of Type I and Type II. Note the
fact that the Type I reduction in a pair may be “spurious”; that is, possibly
there is no vertical separation pair and the Type I reduction does nothing.
This fact does not violate Lemma 9, since X E Prec I(X) and X* E
Prec I(X*) for every X and X* except B and B*. Note that B and B* do
not exist just before the Type I reduction. Call the execution of the kth pair
stage k. Then we claim the following:

At the beginning of stage k the edges in each class have been involved in
Type I reductions during the preceding stages at most the following number
of times: (e) : 1, (t> : 2,

(U>:O,
(L) : 1, (R): 1, (B) : 0, (O):O,

p):z (H*) : 1, (e*) : 3,
(u*) : 1, (t*) : 2,

(b*) : 1,
(L*) : 1, (R*) : 1, (B*): 0, (o*) : 0.

(Here “ 0 ” means that the class is empty.)
Clearly the claim above implies this lemma. We prove the claim by

induction on k.

210 CHIBA AND NISHIZEKI

Obviously the claim is true when k = 1. Assume that the claim is true for
stage k. Since only the P,,-cycles are involved in the Type I reduction at
stage k the edges h c1asse-s (Y), (f), (e), (u), (n), (s), (a>, (0 (Y*),
(f*>, (e*>, (u*>, ad (s*> are involved in a Type I reduction once more.
The stage k causes the transition of classes which are described in Lemma
9. For example, Prec I.II(Y) = (H, n, U, H*}. Therefore at the beginning
of stage k + 1 the edges in class (Y) have been involved in Type I
reductions at most max(2,l + 1,O + 1,2} = 2 times. Thus we can verify
our claim holds at stage k + 1. 0

LEMMA 12. Every edge in G is involved in Type II reductions at most six
times during one execution of HPATH.

Proof: We divide the sequence of reductions into pairs, each consisting
of two consecutive reductions of Type II and Type I. As in the proof of
Lemma 11, we call the execution of the kth pair stage k. Then we prove the
following stronger claim by induction on k:

At the beginning of stage k the edges in each class have been involved in
Type II reductions in the preceding stages at most the following number of
times:

(Y) : 0, (H) : 2,
(u> : 0, ‘:i::
(a) : 1, KY : <s, : 2:

‘(‘ii::
<:, I 1:

(L) : 2, (R) ; 2: (B) : 0, (0) : 0,

(F):4, (H*) : 2,

‘ici

(e*) : 5,
(u*) : 0, (t*) : 4,

(b*) : 2, (r*) I21
CL*) : 2, (R*) : 2, (B*) : 0, (o*) : 0.

Obviously the claim is true when k = 1. Assume that the claim is true for
the k th stage. Since the P,,- and P,‘-cycles are involved in the Type II
reduction at stage k, the edges in classes (f), (e), (s), (a), (b), (U),
(WY (f*>, (e*>, (s*>, (b*), (B*) are traversed once more in stage k.
Although there are edges on P,‘-cycles which are contained in (H), (t),
(r), (L), (R), (H*), (t*), (r*), (L*), (R*), they are traversed once
more in stage k only if they have not been traversed so far. Thus it is not
necessary to charge the edges in classes (H), (t), (r), (L), (R), (H*),
(t*), (r*), (L*), and (R*). The kth stage causes the transition of classes
as in Lemma 10. For example Prec II.I(H) = { H, U, H*}. Therefore at the
beginning of stage k + 1 the edges in class (H) have been involved in Type
II reductions at most max(2,l + 1,2} = 2 times. Thus we can show that
our claim holds at stage k + 1. 0

HAMILTONIAN CYCLE PROBLEM 211

The following theorem is an immediate consequence of Lemmas 5,6,11,
and 12.

THEOREM 1. The algorithm HPA TH runs in linear time.

Proof. If the input plane graph G has n vertices, then G initially has
O(n) edges and O(n) virtual edges are introduced. All these edges are
involved in at most 10 reductions by Lemmas 11 and 12. Therefore
HPATH runs in O(n) time. q

Algorithm HPATH uses a usual data structure to represent a plane
embedding of a graph [l]. Therefore HPATH uses linear space.

ACKNOWLEDGMENTS

We wish to thank Professor Nobuji !&it0 of Tohoku University for stimulating discussion
on the subject, and the referees for many very helpful comments and suggestions.

REFERENCES

1.

2.

3.

4.

5.

6.

7.
8.

9.
10.

T. ASANO, S. KIKUCHI, AND N. SAITO, A linear algorithm for finding Hamiltonian cycles
in 4connected maximal planar graphs, Discrde Appl. Math. 7 (1984), l-15.
N. CI-IIBA AND T. NISHIZEKI, A theorem on paths in planar graphs, J. Graph Theory 10

(1986), 449-450.
M. R. GAREY, D. S. JOHNSON, AND R. E. TARJAN, The planar Hamiltonian circuit
problem is NP-complete, SIAM .I. Comput. 5 (1976), 704-714.
D. GOUYOU-BEAUCHAMPS, The Hamiltonian circuit problem is polynomial for 4-con-
netted planar graphs, SIAM J. Comput. 11(1982), 529-539.
J. E. HOPCROFT AND R. E. TARJAN, Dividing a graph into triconnected components,
SIAMJ. Comput. 2, No. 3 (1973), 135-158.
R. M. RARP, Reducibility among combinatorial problems, in “Complexity of Computer
Computations” (R. E. Miller and J. W. Thatcher, Eds.), pp. 85-104, Plenum, New York,
1972.
0. ORE, “The Four Color Problem,” Academic Press, New York, 1967.
C. ~OMASSBN, A theorem on paths in planar graphs, J. Graph Theory 7 (1983), 169-176.
W. T. TUTTE, A theorem on planar graphs, Trans. Amer. Marh. Sot. 82 (1956), 99-116.
W. T. Twrr~, Bridges and Hamiltonian circuits in planar graphs, Aequationr Math. 15

(1977), l-33.

