
JOURNAL OF ALGORITHMS 11,102-116 (1990) 

Improved Edge-Coloring Algorithms 
for Planar Graphs 

MAREK CHROBAK* 

Department of Mathematics and Computer Science, lJniversi@ of California, 
Riverside, California 92521 

AND 

TAKAO NISHIZEKI 

Department of Electrical Communications, Tohoku University, Se&i 980, Japan 

Received October 21,1988; revised January 25,1989 

We consider the problem of edge-coloring planar graphs. It is known that a 
planar graph G with maximum degree A 2 8 can be colored with A colors. We 

present two algorithms which find such a coloring when A 2 9. The first one is a 
sequential O(n log n) time algorithm. The other one is a parallel EREW PRAM 
algorithm which works in time O(log3 n) and uses O(n) processors. o 1990 Academic 

Press. Inc. 

1. INTRODUCTION 

An edge-coloring of a graph G is an assignment of colors to the edges of 
G such that edges with a common endpoint have different colors. Let x’(G) 
denote the chromatic index of G, that is the minimum number of colors 
necessary to color the edges of G. Vizing [25] proved that x’(G) is either 
A(G) or A(G) + 1 for each graph G, where A(G) denotes the maximum 
degree of a vertex in G (see also [9]). Therefore each graph belongs to one 
of two classes: either to class 1 which contains all graphs G such that 
x’(G) = A(G), or to clers 2 which contains all graphs G such that x’(G) = 
A(G) + 1. The problem of deciding whether a given graph belongs to class 
1 or 2 is known as the chwification problem and has a rich literature (see 
the bibliography in [9]). 
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The classification problem is NP-complete even when restricted to cubic 
graphs [16, 17, 201, and this implies that there are no polynomial-time 
algorithms for this problem, unless P = NP. Therefore it is natural to look 
for approximate algorithms which use A(G) + 1 colors for each G. A 
straightforward implementation of the proof of Vizing’s theorem yields 
such an algorithm with complexity O((m + n)2). With some care the 
complexity can be improved to O(mn) (see, for example, [12]). Gabow et al. 
[12] describe also algorithms for this problem with complexity 0( Am log n) 
and O(m(n log n)‘12). 

Vizing’s theorem does not hold for multigraphs. In this case Shannon [24] 
proved that, if G is a multigraph, then x’(G) 5 ]3A(G)/2J. Hochbaum, 
Nishizeki, and Shmoys [15] give an efficient approximation algorithm for 
edge-coloring multigraphs. 

The problem of coloring graphs with A(G) + 1 colors in parallel is one 
of the major open problems in the theory of parallel algorithms. So far it is 
only known that, as it was shown by Karloff and Shmoys [18], the problem 
is in the class NC for graphs G with A(G) = O(logk n), where k is a fixed 
constant. For the general case the problem is open. 

In view of the difficulty of the general edge coloring problem, some 
special classes of graphs have been investigated. Much research has been 
done on bipartite graphs. A classical theorem of Kiinig and Hall (see, for 
example, [2]) states that all bipartite graphs are in class 1. There exist also 
efficient algorithms for optimal edge coloring bipartite graphs, both sequen- 
tial and parallel, [6, 11, 211. 

In this paper we concentrate on another class of graphs for which the 
classification problem has been deeply investigated, that is on the class of 
planar graphs. In this case the situation is rather peculiar. Vizing [26] 
proved that all planar graphs G with A(G) 2 8 belong to class 1. He also 
conjectured that this can be extended to A(G) = 6,7, but this is still open 
(see [9]). If 2 I A(G) I 5 then G can belong to either of the classes. For 
A(G) = 2 the problem is simple: G can be either in class 1 or 2, depending 
on whether G has all cycles of even length or not. If G is cubic then G is in 
class 1 providing that it does not have bridges. However, this result was 
shown by Tait (see [9]) to be equivalent to the Four Color Theorem, which 
should convince the reader that the problem is already non-trivial for this 
case. For A(G) = 4,5 the problem is suspected to be NP-complete, but no 
one has been able to prove it so far, and the constructions from [16, 17,201 
do not work for planar graphs. 

The complexity of edge-coloring planar graphs has been considered 
already in some articles. Gabow ef al. [12] give an O(n2) algorithm which 
colors each planar graph G such that A(G) 2 8 with A(G) colors. This 
algorithm is based on a modified proof of Vizing’s theorem for planar 
graphs. Boyar and Karloff [3] prove that this problem is in NC if A(G) 1 23. 
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Their algorithm runs in time O(log’ n) and uses O(n2) processors. These 
results have been recently improved by Chrobak and Yung [5], who give a 
linear-time sequential algorithm and a parallel EREW PRAM algorithm for 
this problem when A(G) 2 19. This parallel algorithm runs in time 
O(log2 n) and uses O(n) processors. Additionally, it was shown in [5] that 
the methods used there cannot work for graphs of smaller degree. 

In this paper we present two algorithms which, given a planar graph G 
such that A(G) 2 9, color the edges of G with A(G) colors. The first 
algorithm is sequential and runs in time O(n log n). The second one is a 
parallel EREW PRAM algorithm which runs in time O(log3 n) and uses 
O(n) processors. 

In the sequential case, this result improves the time complexity of the 
problem. In the parallel case, we extend the class of planar graphs for which 
the problem is known to be in NC. Note that the parallel algorithm is close 
to optimal, since the time-processor product is O(n log3 n), missing the 
optimality only by the factor O(log* n). 

The technique we use is based on the proof of Vizing’s theorem for 
planar graphs. However, the original proof was not sufficient for our 
purpose. Roughly, in the proof of Vizing’s theorem it is shown that each 
planar graph G with A(G) 2 8 contains an edge e with the property that if 
we remove e and color the remaining graph with A(G) colors, then the 
obtained coloring can be extended to e without using more colors. Such 
edges will be called reducible. We strengthen this result for A(G) 2 9 by 
showing that in this case the number of such edges is O(n), where n is the 
number of vertices of G. We also present an example that this is not true if 
A(G) = 8; in this case it may happen that G will have only O(1) such 
edges. 

Unfortunately, for this reason, we were unable to extend our method to 
the case when A(G) = 8. It appears that in order to obtain an NC parallel 
algorithm for this case (and a more efficient sequential one) one has to find 
a new reduction technique, stronger than the one used in the proof of 
Vizing’s theorem and in this paper. 

Our algorithms do not use an embedding of a given graph. In fact, any 
graph can be given on input. If the algorithm fails, or if it works too long, it 
will mean that the input graph was not planar. (Actually, the algorithms 
work correctly also for toroidal graphs and, more generally, for sufficiently 
large graphs of bounded genus). 

Let us finally mention a related problem: vertex coloring of planar 
graphs. The proof of the Four Color Theorem [l] seems to yield a sequen- 
tial O(n*) algorithm for 4-coloring every planar graph, but the parallel 
complexity of this problem is open. There are, however, many dgofitbs 
for coloring planar graphs with five colors. Sequential algorithms in [4, 8, 
27, 221 achieve linear-time complexity. In parallel the problem can be 
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solved in time O(log n log* n) [13, 141, even on an EREW PRAM with 
0( n/log n log* n) processors and without using an embedding of a given 
graph [14]. (Somewhat less efficient algorithms can also be found in [3, 231.) 

2. SOME COMBINATORIAL RESULTS 

Let G = (V, E) be a planar graph. For u E I/ by deg(u) we denote the 
degree of u, and A(G) = rnax,,=” deg( u). By deg,*( u) we denote the 
number of neighbours of u of degree A(G) different than u. By n, and 
respectively m, we will always denote the number of vertices and edges 
of G. 

An edge (u, u) E E is called reducible if either deg( u) + deg,*( u) I A(G) 
or deg:(u) -I- deg(u) I A(G). A vertex u E V is good if there is a neigh- 
bour u of u such that (u, u) is reducible, otherwise it is bud. 

The theorem below is proven by a rather complicated manipulation of 
inequalities, but the intuitions behind the proof are rather simple: A planar 
graph with n vertices has at most 3n edges. On the other hand, if an edge 
(u, u) is not reducible, then both u and u must have some neighbours of 
degree A. Thus, the more non-reducible edges a graph has, the more dense 
it becomes. Therefore, a planar graph cannot have too many non-reducible 
edges, because of its low density. 

THEOREM 1. Let G = (V, E) be a planar graph without isolated vertices, 
and R the set of reducible edges in G. If A(G) 2 9 then 1 RI 2 &n. 

Proof: We introduce first some notation. Let A = A(G). We say that 
u E V is of type (iI,. . . , is) if u has i, neighbours of degree d, for each 
d = l,..., 8. By nd we denote the number of vertices of degree d. We will 
use the convention, that if x is the number of vertices with some property, 
then x and x’ denote, respectively, the number of good and bad vertices 
with this property. 

Additionally, we define: 

l jd is the number of bad vertices of degree d which have exactly two 
neighbours of degree A. 

l ti,, is the number of good vertices of degree A which have at least 
one non-reducible edge incident to it. 

l NA( i,, . . . , is) is the set of bad vertices of degree A and of type 
(i Ir.. . , is). 

l RA(iI,..., i,, c) is the set of good vertices u of degree A and type 
(iI,. . . , is) such that at least one of the edges incident to u is not reducible 
and c = min{deg(u)](u, u) E E is not reducible}. 
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We will prove first some auxiliary lemmas. 

LEMMA 1. (a) For each u E &(i,, . . . , i,, c), 

(b) For each u E I?,,(&, . . . , is), 

Proof. (a) Let z4 E Iv,<&, . . . , is, c). Then u has a neighbour u of degree 
c such that (u, u) is not reducible. Clearly, c 2 2. Since (u, u) is not 
reducible, deg:( U) 2 A + 1 - c. Therefore u has at most A - deg,*( u) 4 
c - 1 neighbours of degree smaller than A. So we obtain that 

i i,I 1. 
d=c 

(b) The proof is similar to (a). We only have to choose u to be the 
neighbour of u of minimum degree c and note that then id = 0 for 
d= l,...,c- 1. 0 

LEMMA 2. pd I n,-, ford = 3,4. 

ProoJ: Let pd be the set of bad vertices of degree d, which have exactly 
two neighbours of degree A. We have lpd] = @dd, d = 3,4. 

Consider first the case d = 3, and let u E i3. Since u is bad, it has two 
neighbors of degree A and one neighbour of degree A - 1. Also, if a vertex 
u has degree A - 1, then u can have at most one neighbour u in ps, 
because (u, u) is not reducible. Therefore, if we denote by a the number of 
edges between vertices in Fs and vertices of degree A - 1 then we have 
8s = a I n&-r, which proves the lemma for d = 3. 

Consider now the case d = 4, and let u E Fd. Since u is bad, it has two 
neighbours of degree A and two neighbours of degree A - 1. Also, if a 
vertex u has degree A - 1, then u can have at most two neighbours ur, u2 
in id, because (u,, u) is not reducible. Therefore, if we denote by b the 
number of edges between vertices in pd and vertices of degree A - 1 then 
we have 2jjd = b I 2n,-,, which proves the lemma for d = 4. 0 
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Now we continue the proof of the theorem. From Euler’s theorem that 
m I 3n, after substituting m = iZdrldnd, n = C,zlnd, we have 

5 (6 - d)n, 2 c (d - 6)n, 2 2n, + 3 c nd- (1) 
d=l d>l dk9 

A bad vertex must have at least two neighbours of degree A. On the other 
hand, if deg(u) = A and u has a bad neighbour of degree d I 8, then 
either u E &(i,, . . . , iR), or else u E flA(i,, . . . , i,, c) for some c 5 d. 
Therefore, counting for each d = 2,. . . ,8 the number of edges between bad 
vertices of degree d and vertices of degree A, we have 

d 

%,I 1 c id+ c (2) 
(i,.....is) UElj*(i,,...,i,) c=2 uEiV~(i,....,ig,c) 

For d = 3,4 these inequalities can be improved: 

d 

2pd + 3(n”, --a,) < c c 
(i**...,is) Ud*(i,,...,i,) 

id+c -c 
c=2 UCN,(i I,..., i,,c) 

After dividing (2) for d # 3,4 and (3) by d - 1 and adding them together, 
we have 

2n”, + ;(2a, + 3(z, 

8 

(i ,,..., I~) c=2 uEF&(i, ,_.., i,,c) d=c 

I - 
< nA + nAl- (4) 

In the last inequality we used Lemma 1. Rearranging (4) we have immedi- 
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2E, + $i, + ii, + ; 
2 

-fi, 5 ii,, + ii, + fa, + $4. 
d=5 d - 1 

(5) 

Now, from (5) 

8 2 
2 2n, + 2n, + in3 + n4 + C -n 

d=5d-1 d 

1 1 
- ii, - 

Using (6) and (1) we derive 

2 i ii, + ii,, 2 $ 5 nd + 5 i (6 - d)n, + $8 - ii, 
d=l d=l d=l 

51 1 
k~~nr+~ng+ Cn,-iiA--w 

cl21 dr9 
2P3 - 

Now, using Lemma 2, we derive from (7) that 

x 1 1 1 
2 c iid + iiAl > -n + ?(“A-’ -i3> + -(nApI 

d=l 8 3 
- 

- 

(6) 

1 1 
$53 - 764 

1 
gh 

(7) 

1 
2 -n. 

8 
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Finally, observing that 2lRI 2 Ci,lZ, + iibl, we obtain 

Note that in the proof we do not use any property of graphs’ embedding 
in the plane, besides Euler’s formula. For graphs of genus g, Euler’s 
formula reads m I 3n + 6(g - l), and it differs from that for planar 
graphs only by an additive constant 6g. In the proof we have neglected the 
constant - 6 from Euler’s formula, so Theorem 1 is true also for toroidal 
graphs. For graphs of bounded genus the following formula holds: JR 1 
2 $n - cg, where cg is a constant dependent on g. Therefore, in the case 
of graphs of genus g our algorithms will work correctly when n is large 
enough. 

Theorem 1 is optimal, in the sense that it is not true for A(G) = 8. We 
construct first a counterexample on a torus. Imagine a k X I-tiling of a 
torus with regular hexagons, where both k and 1 are even. Consider a cubic 
graph whose regions are these hexagons. Put a vertex on each edge of this 
graph. For each region, create a length-6 cycle containing new vertices on 
the boundary of this region. Now old vertices have degree 3 and new 
vertices have degree 6. Inside this cycle join every second vertex by an edge, 
obtaining a triangle. It is easy to do it in such a way that new vertices have 
now degree 8. So finally we obtain a toroidal graph whose vertices have 
degree 3 or 8, vertices of degree 3 have only neighbours of degree 8, and 
each vertex of degree 8 has exactly two neighbours of degree 3. If we call 
the obtained graph by G,, we have A(G,) = 8, and deg( u) + deg:( u) 2 9 
for each edge (u, u) in G,. Therefore G, does not have reducible edges 
at all. 

To modify this example, instead of tiling the torus, we start with a 
2 x I-tiling of the sphere without the poles (that is, we divide the sphere 
into 1 horizontal strips, each tiled with two hexagons, and two regions at 
the poles). We repeat the above procedure. Then the obtained graph G, is 
planar, again A(G,) = 8, but the number of reducible edges in G, is O(1). 

3. FAN SEQUENCES 

Let G = (V, E) be a planar graph such that some of its edges already 
colored. We use colors from the set (1,2,. . . , A}. By col(x, y), for (x, y) E 
E, we denote the color of the edge (x, y). For x E V we define Used(x) to 
be the set of colors used at x and Free(x) to be the set of colors free at x. 
Clearly, for each x E V, Used(x) u Free(x) = {1,2,. . ., A}. 
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Let (u, u) E E, and suppose that all edges (u, x) E E except (u, u) are 
already colored. By a fun sequence centered at u and starting at u we mean 
a sequence of u’s neighbours F = [u = x,,, xi,. . . , x,], where all the x, are 
different, and 

(4 col(u, xi+i) E Free(x,) fori=O,l,..., k-l. 

By 5$? Ir we denote the family of all fan sequences centered at u and starting 
at u. If, additionally to (s), a fan sequence F = [x0, x1,. . . , xk] E YU,” 
satisfies 

(0 Free( xk) n Free(u) # 0, 

then F is called a local fun. -E”,, u is the family of all local fans in Yu, “. If 
F E 9”,. then we can extend the coloring to (u, u) by simply rearranging 
the colors around u as follows: 

begin 

Let c E Free(x, ) n Free(u); 
fori=O,l,..., k-ldocol(u,x,):=col(u,x,+,); 
col(u, XL) := c 

end. 

If c, d are different colors, then by a (c, d)-path we will understand a 
maximal alternating path colored with colors c, d. By recoloring P we will 
mean exchanging the colors c, d on P. 

LEMMA 3. Let F E 9,. “, F = [x,, x1,. . . , x,], and c E Free(u), d E 
Free(x,). Suppose that the (c, d)-path P starting from u (possibly empty) 
avoids xk. Then, after possibly recoloring P, there is a local fun F, E 5?,,, U. 

Proof. F, is constructed as follows: 

begin 

ifc~Free(x,)forsomeO~j~kthenF,:=[~~,x~,...,x,] 
else begin 

let i be smallest such that d E Free(x,) 
and x, does not belong to P; 

recolor P; 
F, := [x0,x1 ,..., x,] 

end 

end. 

We will show that F, is indeed a local fan. The case when c E Free(x,), 
for some 0 ~j I k, is trivial. Therefore assume that c E Used for 
j = O,l,..., k. By the assumption that P avoids xk the number i must 
exist. 

Case 1. Suppose first that d E Used for every p = 0, 1, . . _ , i - 1. 
Then col(u,x,) Zd for p = l,..., i, since otherwise we would have d E 

Free( xP _ i), a contradiction with the assumption of this case. Thus col( u, xP) 
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does not change after recoloring P, for p = 1,2,. . . , i, and (s) holds. Also, 
after recoloring P we have d E Free(u) fl Free(x,), so (I) is satisfied. 

Case 2. The second case is when d E Free(x,) for some 0 I p I i - 1. 
By the definition of i, there is only one such number p, and x,, belongs to 
P. Also, col( U, x,) # d for r = 1,2,. . . , p, p + 2,. . _ , i, because otherwise 
d E Free(x,.-,) and r - 1 f p. 

The colors col( U, x,), for r = 1,2,. . . , p, p + 2,. . . , i do not change, so 
after recoloring P we have col( U, x,+~) E Free(x,) for r = 0, 1, . . . , 
p - 1, p + 1, . . . , i - 1. If col( U, xP+ J f d then also col( U, xP+ J does 
not change and (s) holds for F,. Else, if col( U, xP+J = d, then after 
recoloriqg P we have col( U, xP + 1) = c E Free(x,), because xP belonged to 
P, SO (s) is satisfied too. Finally, (I) holds because d E Free(u) n Free(x,). 

0 

Let 4, F2 E yu.c77 Fl f F2, where Fl = [x,, x1,. . . , x,], and F2 = 
tyo, Y,, . . . , y,]. Clearly, x o = y. = U. Then the pair F = (F,, F2) is called a 
double fan if xk # y, and 

(4 Free( xk) n Free( y,) # 0 . 

9,,, D is. the family of all double fan5 (F,, F2), for F,, F2 E Yu, “. We show 
how a double fan F = (F,, F2) can be transformed into a local fan F,, thus 
enabling us to extend the coloring to (u, u): 

begin 

let c E Free(u): 

let d E Free(s, ) n Free( y,); 
ifc~Free(r,)forsome1~j~kthenF,:=[x,,x,,...,x,] 

else 
ifcEFree(y,)forsomel<j<IthenF,:=[y,,.vl....,y,] 

else begin 

let P be the (c, d)-path starting from u; 
exchange the colors on P; 
if P contains xI then F’ := F2 else F := F’,k 

construct 4, from F’ as in the proof of Lemma 3. 

end 

end. 

Using Lemma 3, we immediately obtain that this procedure is correct; 
that is, F, is a local fan. 

If F is a double fan, as defined above, and c, d are colors, then F is 
called a (c, d)-fan if c E Free(u) and d E Free(x,) n Free(y,). 

Let G = (V, E) be a planar graph with A = A(G) 2 8. Vizing [26] and 
Gabow et al. [12] proved that then G must have a reducible edge. Let (u, v) 
be such an edge, satisfying deg,*( u) + deg( u) I A. We will show that after 
removing (u, u) and coloring the remaining edges with A colors we can 
extend the coloring to (u, u). This will prove that x’(G) = A(G), that is G 
is in class 1. 
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Let c E Free(u). We will attempt to color (u, u) by constructing a fan 
sequence F, as follows. The first vertex in F, is xg = u. If c E Free(u) then 
we can color (u, u). Else, find an edge (u, x1) such that col( U, xi) = c and 
extend F, to [x,, xi]. Suppose that we have already F, = [x,, x1,. . . , x,+1. If 
Free(x,) n Free(u) # 0 then F, is a local fan, as before. Also, if Free(x,) 
n Free(x,) # 0 for some 0 I j I k - 1 then (F,, F,‘), for F,’ = 
Ix,, Xl,. . ., x,], is a double fan and we can color (u, u). Otherwise, if 
Free(x,) # 0, let xk+i be a vertex such that col( U, xk+ J E Free( xk) and 
set F, := [x0, xi,. . ., xk+i]. Clearly, xk+i cannot be equal to any xi, 
i = 0,l ,--., k. Note also that Free(x,) = 0 only when deg(x,) = A. 

Suppose that we have already constructed I;, for each c E Free(u) and 
we failed to color (u, u). In this case all these fan sequences F, end in 
vertices of degree A different than u. We have ] Free( u) 1 = A - deg( u) + 1 
fan sequences F,. But u has at most deg:( u) I A - deg( u) neighbours of 
degree A different than u, so there are two fan sequences, say F, and Fd, 
which end in the same vertex x of degree A. Remove x from F, and Fd, 
and if they still have a common vertex at the end, remove this vertex too, 
and so on. Finally, we obtain two fan sequences F,.’ and F;. Then (F,‘, F;) 
is a double fan and we can color (u, u). This completes the proof that 
x’(G) = A. 

Our algorithm will be based on the above procedure. Theorem 1 says that 
A(G) > 9 implies that the number of reducible edges in G is O(n), and 
indeed, we will reduce, and later color O(n) edges simultaneously. This 
cannot be done without care, especially when we have to recolor an 
alternating path. To avoid difficulties we will consider (c, d)-fans sepa- 
rately for different pairs (c, d), and additionally choose the fans to be, in 
some sense, independent. 

4. FAN-CONFLICT GRAPH 

Let et = (u, u), e2 = (x, y) be two edges of G. Then, e,, e2 are called 
2-independent, if the distance between the endpoints of ei and e2 is at least 
2. In other words, {u, u} n {x, r} = 0, and there are no edges (u, x), 
(x, Y), (u, x), and (0, Y) in G. 

Let 9 be a family of (c, d)-fans, such that for each F, F’ E 9, if 

F E %,” and F’ E 9,. y then (u, u) and (x, v) are 2-independent. 
We define the fan-conflict graph for 3 as the graph C( 9) = (9, &‘), 

where the set of edges 6’ is determined as follows. For each F E Ssn 9,, u 
let Pc,d( F) be the (c, d)-path starting from U. Then (F, F’) E d iff either 
PC, J F) ends in a vertex of F’ or PC, J F’) ends in a vertex of F. (Saying 
that a path P ends in a fan sequence F we mean that it ends in an element 
of this sequence or in the center.) 
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Suppose that ]s] = f. Then, obviously, ]B] 5 f. Let 2~ 9 be the set 
of vertices of degree at most 2 in C(9). A simple calculation shows that 
[#J ; ii Therefore, if 3 is a maximal independent subset of &’ then 

Thes; considerations will be applied to find the set of double fans to be 
recolored in our algorithm. Consider two fans F, F’ E 3. By the definition 
of .Y, the paths PC, d( F), P,,,(F’) are disjoint. Additionally, even though 
the path PC, J F’) may contam a vertex in F, recoloring PC, J F’) will not 
affect F. For suppose that F = [x0, xi,. . . , x,J, and that xi belongs to P. 
Let c E Free(u). Then col(u, xi) 64 {c, d}, and c, d E Used( Recolor- 
ing Pc,d(F’) does not change Free(xi), so fan F will also remain un- 
changed. 

Therefore, we can recolor paths PC, d(F) for F E 9 in parallel, without 
collisions. 

5. GENERAL STRATEGY 

Both algorithms, sequential and parallel, are based on the same general 
strategy which will be described in this section. Then, in the next sections 
we will explain how this strategy can be implemented to achieve the 
claimed complexity bounds. 

If A(G) 2 19 then we can apply the algorithm from [5]. Therefore we can 
assume from now on that 9 I A(G) I 18. 

The algorithm is divided into two stages: reduction and coloring. Both 
stages consist of loop statements, a single execution of such loop will be 
called a phuse. 

During the execution of the algorithm our graph will be reduced or 
enlarged at each phase. To avoid confusion, by G,, = (V,, E,) we will 
denote the input graph, no = ( V,] , and G = (V, E) is the current graph. 

We are concerned mainly with the asymptotic complexity of the algo- 
rithm, as well as simple and uniform description. We are aware that some 
of the steps, especially in the sequential implementation can be realized 
more efficiently than described below (for example, steps (2)-(5) can be 
done simultaneously by searching the graph). 

begin 

G := G,,: 

(1) construct the representation of G; 
p := 0; 

sruge 1: 

(2) 

while V + 0 do 

begin 
p :=p + 1; 

find the set R of reducible edges in G; 
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(3) 
(4) 
(5) 

find a maximal set I,, L R of 2-independent edges: 
E := E/I,,; 

V:= (D E Vldeg(u) 2 1) 
end 

p(, := p; 
stage 2: 

(6) 

(7) 
(8) 

for p := p,, downto 1 do 
begin 

E := E U I,,; 

V:= VU(xl(x,y)E Ip forsomey}; 
while there are uncolored edges in IP do 

begin 

let K be the set of uncolored edges in Ip; 
for each (u, u) E K such that deg( u) + deg:( u) I A do 

(9) construct a fan (local or double) F,, L, E YU, L,; 
(10) for each local fan F,. (, do color (u, u); 

(11) partition the set of remaining fans into the 
sets do,. ,, where s’~ h contains (a, h)-fans; 

(12) choose &<, J with greatest cardinality; 
(13) construct the fan-conflict graph C(Z&~. d); 
(14) find the set .P of vertices of degree at most 2 in C(SS!~. d); 
(15) find a maximal independent subset 4~ SF’; 
(16) for each F,,,, E X do 

begin 

(17) 
(18) 

recolor P, d ( F,. .L’ 1: 
transform F,,,. mto a local fan; 

(19) color (u. 0) 
end 

end 

end 

end. 

Step (1) can be realized within the claimed complexity bounds both in 
sequential and parallel by the standard techniques, so in the next sections 
we will analyze only stages 1 and 2. 

6. SEQUENTIAL ALGORITHM 

In this section we will prove that the general strategy from the previous 
section can be realized sequentially in time 0( n,, log n ,,). Let us analyze the 
consecutive steps of the algorithm. 

Steps (2)-(5) can be done easily in time O(n) by searching G. Therefore, 
a phase of stage 1 costs time O(n). But, by Theorem 1, we have IRI = O(n), 
and using the fact that A I 18, we obtain lIpI = O(n) as well. Therefore 
the size of G decreases geometrically at each phase, what implies that the 
total cost of stage 1 is O(n,). 
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In stage 2 the steps (6)-(7) are also easy to do in time O(n). Also steps 
(lo)-(19) cost time O(n). By the considerations from Section 5 and by the 
choice of J&‘~,~ we have either O((K]) local fans recolored in (l(I), or else 
9 = O( ]K(). Therefore loop (8) is executed O(log n) times. So the total time 
for loop (8) in one phase is O(n log n). This implies that one phase of stage 
2 can be done in time O(n log n), and by summing these terms for each 
phase we obtain that the total execution time of stage 2, and of the whole 
algorithm, is 0( n, log no). 

7. PARALLEL ALGORITHM 

In this section we will prove that the general strategy from the previous 
section can be realized on an EREW PRAM in time O(log3 no) with O(n,) 
processors. 

Step (2) costs time O(1) because the processor assigned to each edge can 
check itself whether this edge is reducible or not. To implement (3) compute 
the graph (R, W), where (e, e’) E W iff e, e’ have a common endpoint or 
some endpoint of e is adjacent to some endpoint of e’. This costs time 
O(1). And then let fp be a maximal independent set in this graph. Clearly, 
Ip satisfies the reqtnred condition, and it can be found in time O(log* n,) 
with O(n,) processors by the algorithm from [13 or 71. Steps (4) and (5) 
both cost time O(log no). Therefore a phase of stage 1 costs time O(log no). 
But, since the size of G decreases geometrically, the number of iterations is 
O(log n,), and we obtain that the cost of stage 1 is O(log’ no) with O(n,) 
processors. 

In stage 2 the steps (6)-(7) are easy to do in time O(log no). Loop (8) is 
executed O(log no) times, and each execution can be done in time O(log no). 
So stage 2 costs time O(log3 n,), and the whole algorithm too. 
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