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Abstract 

Frank, A., T. Nishizeki, N. Saito, H. Suzuki and E. Tardos, Algorithms for routing around a rectangle, 

Discrete Applied Mathematics 40 (1992) 363-378. 

Simple efficient algorithms are given for three routing problems around a rectangle. The algorithms 

find routing in two or three layers for two-terminal nets specified on the sides of a rectangle. All 

algorithms run in linear time. 

One of the three routing problems is the minimum area routing previously considered by LaPaugh 

and Gonzalez and Lee. The algorithms they developed run in time O(n’) and O(n) respectively. Our 

simple linear time algorithm is based on a theorem of Okamura and Seymour and on a data structure 

developed by Suzuki, Ishiguro and Nishizeki. 

1. Introduction 

In this paper we give efficient algorithms for three routing problems around a 

rectangle. The minimum area routing problem in Section 5 has been considered 

previously by LaPaugh [6] and Gonzalez and Lee [4,5]. Our simple algorithm for 

this problem can serve as useful building block in practical algorithms when routing 
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in the assigned area is not possible, and one has to minimally enlarge the area so 

as to make the routing possible. 

The routing region of our problem is the part of the plane grid between a 

connected boundary 0 and a rectangular hole Z inside 0. The pairs of terminals to 

be connected are on the boundary of the hole I, every node on Z is the terminal of 

at most one pair, and none of the four corners are terminals. In our routing the 

paths connecting the terminals are pairwise edge-disjoint and are wired in two or 

three layers. 

The paper is organized as follows. In Section 2 we consider an edge-disjoint path 

problem on a capacitated cycle. This will be the basis of all three routing algorithms. 

Next we present an algorithm that finds two layer routing using the knock-knee 

free model in the case when 0 is also a rectangle. The algorithm runs in time linear 

in the number of terminals if the order in which they appear around Z is known in 

advance. 

The second routing algorithm finds a routing using three layers in a given region 

with a nonrectangular outside boundary 0. The time complexity is linear in the 

perimeter of 0. 

In Section 5 we give a linear time algorithm to find a minimum area rectangle 0 

surrounding Z such that there is a routing using two layers in the grid graph defined 

by Z and 0. The algorithm is based on ideas from Section 3. This problem has been 

studied previously by LaPaugh [6] and Gonzalez and Lee [4,5]. Our algorithm is 

considerably simpler than either of these algorithms, and runs as well as one in [5], 

in time linear in the number of terminals if their order is given around Z. The area 

of the minimum outer rectangle is expressed explicitly in terms of the “density of 

terminals”. 

Finally we consider the problem of finding all of the feasible positions of the rec- 

tangle Z inside a given rectangle 0. We give a linear time algorithm that finds all 

such positions. 

Basic ingredients of our algorithms are a theorem of Okamura and Seymour [7] 

and the data structure variable-priority queue developed in [S]. Preliminary versions 

of this paper appeared independently as extended abstracts [2] and 191. 

2. Routing around a cycle 

In this section we define and solve the edge-disjoint path problem in cycle net- 
works N= (G, P), where G = (V,E) is a cycle, with nonnegative integer capacities 

c(e) on its edges, the arcs of the cycle, and P= {(Si, ti): i = 1, . . . , k} is a set of k pairs 

of terminals. The problem is to find paths in G connecting the pairs of terminals 

in P such that the number of paths using an edge e is at most its capacity c(e). 

Okamura and Seymour [7] considered the edge-disjoint path problem for a more 

general class of graphs. A planar network consists of a planar graph G given with 

a planar embedding and pairs of terminals P such that every terminal is on the outer 
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face. A node u E V is even if the sum of the capacities of the edges adjacent to u 

plus the number of pairs in P with o as one terminal is even, and odd otherwise. 

A network N is even if every node is even. A cut A c E is a minimal set of edges 

disconnecting G. The demand d(A) of a cut is the number of terminal pairs 

separated by the cut. The capacity c(A) of the cut is the sum of the capacities of 

the edges in the cut. The following condition is trivially necessary for the required 

paths to exist: 

Cut criterion. d(A) I c(A) for every cut A. 

Okamura and Seymour [7] proved the following theorem. 

Theorem 2.1. For an even planar network N the required paths exist if and only 
if the cut criterion is satisfied. 

In this section we consider cycle networks. A cycle is a particular planar graph 

where all nodes are on the outer boundary. However, we shall not assume that the 

network is even. In [l] a more general theorem is developed characterizing the ex- 

istence of edge-disjoint paths if evenness is only required for nodes not on the outer 

face. A polynomial time algorithm that finds the required paths in a cycle network 

follows from the results in [l]. However, the special case when the graph is a cycle 

is considerably easier. Here we give an O(n) algorithm for the special case. 

First note that the cut criterion is not sufficient. To show this consider the cycle 

network, consisting of a cycle of length 4 with all edges having capacity 1. Let the 

two pairs of terminals be the opposite pairs of nodes on the cycle. This network 

satisfies the cut criterion, but the required paths do not exist. 

We shall introduce another necessary criterion, the parity criterion. A cut is tight 
if the inequality in the cut criterion is satisfied as equality. The edges in a tight cut 

must be used up to their capacity in every solution. A cut A is odd if c(A) -d(A) 

is odd, and even otherwise. A simple parity argument shows that in any solution 

and in every odd cut A there must be at least one edge e such that the number of 

paths through e is strictly less than c(e). Note that cuts of the cycle consist of pairs 

of edges. The above observations imply the necessity of the parity criterion. 

Parity criterion. If each of the edges e and f is in some tight cut, then the cut {e,f } 
is even. 

Theorem 2.2. The edge-disjoint path problem in a cycle network has a solution if 
and only if both the cut and the parity criterion are satisfied. 

Proof. The necessity has been indicated above. Here we prove the sufficiency. If 

the cycle network is even the statement follows from the Okamura-Seymour 

theorem. Otherwise let T denote the set of odd nodes. Observe that the number of 
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odd nodes is even. Let {e,,e2} denote a tight cut separating some of the nodes in 

T, if there is any. We shall refer to the nodes in T as {ut, . . . , u2[} in the order as 

they appear clockwise around the cycle with ut being the first after et if there is a 

tight cut. Add the following additional pairs of terminals to the problem: (u,, u2), 

(u3, u,), ... 9 oJ2(-I, Q). The resulting network augmented is even by definition, 

therefore the Okamura-Seymour theorem applies. We claim that it satisfies the cut 

criterion and hence the required paths exist. 

The augmented network is even. In an even network c(A) - d(A) is even for every 

cut A. On the other hand the difference c(A) - d(A) has decreased by at most 2 by 

augmenting the network with the new pairs of terminals. This implies the cut 

criterion in the augmented network provided that in the original network no tight 

cuts separate the nodes of T. 
Next assume that there is a tight cut {e1,e2}. We proceed by contradiction. Let 

{fi,f2> denote a cut violating the cut criterion in the augmented network. The dif- 

ference c(A) -d(A) is even, therefore it is at most -2. This implies that {fi,f2) is 

a tight cut in the original network, and it must be crossed by two of the new pairs 

of terminals. In this case all of the four cuts of the form {e;,fj} for i,j= 1,2 are 

odd, contradicting the parity criterion. 0 

The above proof is based on the Okamura-Seymour theorem. Using the proof of 

that theorem this proof can be converted into an O(n2) time algorithm. In [8] the 

variable-priority queue data structure is used to find a solution in O(n + k) time. 

3. Routing on two layers 

A grid graph is a subgraph of the integer grid in the plane. For easy reference we 

shall assume that the grid lines are horizontal and vertical, and the grid nodes are 

Fig. 1. The semicut associated with an edge. 
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the integer points on the plane. In this section we shall consider routing problems 

on grid graphs consisting of the part of the grid between a rectangular boundary 

0 and a rectangular hole Z inside 0. The network N= (G, P) consists of such a grid 

graph G and k pairs of terminals P on the inside rectangle I. We assume that every 

node on Z is the terminal of at most one pair and the four corners of Z are not ter- 

minals. 

Routing of a network N is defined as follows. A conducting layer is a graph 

isomorphic to the grid graph G. Assume that 12 2 layers L,, Lz, . . . , L, are available. 

These layers are stacked on top of each other. A routing of a network N= (G, P) 
is a set of edge-disjoint paths {R,,Rz,..., Rk} in G connecting the pairs of ter- 

minals, and the assignment of each edge of the paths R; for 1 <ilk to a layer. The 

paths are node-disjoint on each layer. If Rj changes from layer L, to layer Lh at a 

node u, then a via is established between layers L, and L, at node u. If a via con- 

nects layers L, and Lh with (g<h) at a node u, then no other path can use node o 

on any of the layers Lj for g<j<h. 

A set of edge-disjoint paths in a grid graph is knock-knee free if whenever two 

paths share a node u one of them passes through u vertically and the other one 

horizontally, i.e., no two paths bend at the same node. Note that knock-knee free 

edge-disjoint paths in a grid graph can be turned into two layer routing by assigning 

the vertical and horizontal edges on the paths to the two layers respectively. 

In this section we solve the two layer routing problem defined above by finding 

knock-knee free edge-disjoint paths in the grid graph. The problem is reduced to 

an edge-disjoint path problem in a cycle network. 

Given a routing problem with inner rectangle Z and outer rectangle 0 define an 

associated cycle network NcY = (Gcy, P). The nodes of G,, are the grid points on the 

inner boundary of Z, and the edges of G,, are the grid edges between nodes along 

Z, denoted by E(Z). For an edge eeE(Z) define the associated semicut as the set of 

edges intersecting the line segment perpendicular to e that connects e and some edge 

on 0 and does not intersect any other edge in Z (see Fig. 1). Let the capacity of an 

edge e in NcY be the number of edges in the associated semicut. Note that G,, can 

be obtained from the grid graph by first contracting all edges that do not participate 

in semicuts, and then replacing an edge with 1 parallel copies by a single edge with 

capacity 1. 

The following theorem, due to Gallai [3], will be useful in converting solutions 

for the cycle network problem to knock-knee free edge-disjoint paths in the grid 

graph G. 

Theorem 3.1 [3]. Given a set of closed intervals .F= {(ai, bi): i= 1, . . ..s} on a line, 
9’ can be partitioned into m sets of disjoint intervals gi if and only if no m + 1 in- 
tervals share a point. 

Proof. The theorem can be proved by constructing the partition by a greedy 

algorithm. Order the intervals according to the left end points. Consider the inter- 



368 A. Frank et al. 

vals in this order and add each of them to one of the sets ,!Ji containing no interval 

intersecting it. This procedure will produce m sets of disjoint intervals unless for 

some interval (ai, bi) none of the sets constructed SO far is disjoint from (ai, bi). By 

the order in which intervals are considered this implies that all of the m sets have 

an interval containing the point ai, contradicting to the assumption that no point 

is contained in more than m intervals. 0 

This procedure can easily be implemented in O(s) time if the order in which the 

end points of the intervals appear on the line is known in advance. 

Theorem 3.2 There exists knock-knee free edge-disjoint paths connecting terminal 
pairs around a rectangle I in a grid graph defined by I and a surrounding rectangle 
0, if and only if there are edge-disjoint paths connecting the terminals in the 
associated cycle network NC,, . 

Proof. Given a set of edge-disjoint paths in the grid graph a solution to the cycle 

network problem can be obtained by contracting all edges that do not participate 

in semicuts. This proves the only if direction. 

Next we prove the if direction. Consider a solution of the edge-disjoint cycle prob- 

lem. Assume, without loss of generality, that the paths are simple. Let Ij for 

j=l , . . . ,4 denote the four sides of the rectangle I (two horizontal and two vertical) 

with the corners included in both sides. Let E(4) denote the set of edges in the 

cycle network connecting nodes in Ij. Break each path in the solution of the cycle 

network problem into intervals parallel to the four sides (see Fig. 2). A set of paths 

defines four sets of intervals. The end points of these intervals are the terminals and 

the four corners of the rectangle I. 

For a side Ij of the rectangle I, let hj denote the number of grid lines parallel to 

Ji on the corresponding side of I, or equivalently the number of edges in the 
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Fig. 2. Paths connecting corresponding terminals in the cycle network, the associated sets of intervals 

with the knock-knee free routing. 
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semicuts associated with an edge in E(Zj). An edge e participates in exactly as many 

intervals as the number of paths through e. Hence the interval system associated 

with side Zj will not contain any edge in more than hj intervals. 

Use the previous theorem to partition the set of intervals associated with side Zj 

into hj sets of edge-disjoint intervals for every j. Assign these sets to the grid lines 

parallel to side Zj of the rectangle. The intervals corresponding to different 

segments of the same path can be connected by extending both intervals until they 

meet. The beginning of each path can be connected to the corresponding terminals 

by a line orthogonal to the corresponding side of the rectangle I. See Fig. 2. 0 

4. Routing on three layers 

We extend some of the results from the previous section to problems where the 

outside boundary 0 is connected, but not necessarily a rectangle. First we find edge- 

disjoint paths connecting the paired terminals in the grid graph. The paths will not 
be knock-knee free. Therefore this path system does not correspond to a two layer 

routing. Next we show that the proof can be extended to yield a routing using three 

layers. 

We define the associated cycle network NcY = (Gcy, P) in a way similar to the 

definition in the previous section. The cycle is the boundary of the rectangle Z, as 

before. The difference is in the capacity of an edge e. For a corner u of Z let e, 

denote the next edge after u going clockwise around Z as shown in Fig. 4. The 

semicut associated with an edge in E(Z) is defined as before. For an edge e, that is 

not one of the edges e,, the capacity is defined to be the number of edges in the 

associated semicut. 

Consider a corner u of I. We define G,, the corner subgraph of the grid graph 

G, as follows (see also Fig. 3). Consider the horizontal and vertical lines through o 

and delete every node that is on the same side of one of these lines as the rectangle 

Z. Let I(u) denote the distance of u from the outside boundary 0 in G,. The capaci- 

ty of the edge e, is defined to be the minimum of Z(o) + 1 and the number of edges 

in the associated semicut. 

Fig. 3. The corner subgraph G,. 
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Fig. 4. Dividing a three layer routing problem into four subproblems. 

Analogously to the algorithm in the previous section we shall divide the problem 

into four subproblems (parallel to the four sides of I) and solve these problems 

separately. However one has to be somewhat more careful in the way the sub- 

problems are defined (see Fig. 4). 

The following analog of Gallai’s theorem (Theorem 3.1) will be used to solve the 

four subproblems. Let N= (G, P) be a grid graph defined by the grid points inside 

a boundary B, such that B contains the horizontal line segment connecting the origin 

to point (x,0), is between the two vertical lines passing through the origin and the 

point (x,0), and is in the nonnegative orthant. Assume that pairs of terminals are 

given such that the terminals are on the horizontal and vertical lines through the 

origin, the terminals on the vertical side are the nodes (0, i) for i=O, 1, . . . , m for 

some m, every node is the terminal of at most one pair, and a pair has at most one 

terminal on the vertical part of the boundary B. 
Analogously to the cycle network associated with routing around a rectangle we 

define the line network N~i = (Gli, P) associated with the above problem N= (G, P). 

The nodes of the line network are the integers on the line segment from the origin 

to (x, 0). The network is obtained by contracting all vertical edges, and then replac- 

ing parallel copies of an edge by a single one with the appropriate capacity. 

Lemma 4.1. There exist edge-disjoint paths connecting terminal pairs in the net- 
work problem defined above if and only if there are paths connecting the terminals 
in the associated line network N,i. 

Proof. The only ifpart is trivial. Given a solution to the problem in the grid graph 

a solution in the line network can be constructed by contracting all vertical edges. 

The if part can be shown by a simple greedy construction. We assume that the 

paths in the line graph are simple. The paths in the grid graph can be constructed 
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(i,O) (i,O) 

(a) 09 

Fig. 5. The paths above (i,O): (a) (i0) is not a terminal; (b) (10) is a terminal. 

from left to right, so that if r paths use an edge e in the line graph, then the edge- 

disjoint paths in the grid graph will use the bottom r parallel copies of e. If a point 

(i,O), O~ilx is not a terminal, then no path will bend above this point; if it is a 

terminal, then at most one path, in addition to the one ending at (i,O), will bend 

above (i,O) (see Fig. 5). n 

Theorem 4.2. There exist edge-disjoint paths connecting terminal pairs around a 
rectangle I in a grid graph defined by I and a connected boundary 0 surrounding 
I if and only if there are edge-disjoint paths connecting the terminals in the 
associated cycle network NCY. 

Proof. The necessity is trivial. To prove the sufficiency assume that we have a solu- 

tion for the problem in the cycle network NCY = (Gcy, P). One may assume without 

loss of generality that the paths in NCY are simple. For a corner u of I let e, denote 

the edge along I in the clockwise direction after u (as was used in the definition of 

NC,,). Assign the paths using this edge to the parallel copies of e, in the grid graph 

closest to e,. We will show the existence of edge-disjoint paths in the grid graph 

where a path using the edge e, in NCY uses the assigned parallel copy of e, in the 

grid graph (see Fig. 4). Deleting the parallel copies of the edges e, for every corner 

u divides the problem into four problems of the form considered by the previous 

lemma (with the considered region turned). Using the lemma four times gives the 

edge-disjoint paths in N. 0 

The resulting edge-disjoint paths are not knock-knee free. Therefore these paths 

may not give rise to a two layer routing. Next we use the proof of Lemma 4.1 to 

construct a three layer routing. We need a version of the lemma that constructs 

routings rather than edge-disjoint paths. In fact, we shall need two different 

routings, one will be used on the two horizontal subproblems, the other one on the 

two vertical subproblems. 
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Lemma 4.3. Consider the network problem defined before Lemma 4.1. If there are 
edge-disjoint paths connecting the terminals in the associated line network Nli, then 
there exists a three layer routing satisfying either one of the following two sets of 
properties. 

l The horizontal edges between nodes (0, i) and (1, i) (for any i) are assigned to 
the second layer, and every vertical edge is either assigned to the first or the third 
layer. 

l Any assignment of the edges between nodes (0, i) and (1, i) to the first and third 
layer can be extended to a three layer routing where the edges between nodes (j, 1) 

and (j,O) used by a path to enter terminal (j,O) are assigned to the second layer. 

Proof. Both routings can be constructed greedily along the same line as the proof 

of the previous lemma. We leave some of the details to the reader. 

For constructing the first kind of routing one can use the same edge-disjoint paths 

as used for the previous lemma with maintaining the additional property that for 

every edge e of the line graph all but at most one parallel copies of e are assigned 

to the second layer. 

The second routing can also be constructed along the same lines as the proof of 

the previous lemma. Here the resulting edge-disjoint paths are going to be slightly 

different than in that lemma. We maintain the additional property, that all horizon- 

tal edges are assigned to the first and third layer, and for every node o in the line 

graph all but at most one of the vertical edges on the vertical line through u are 

assigned to the second layer. For this routing one has to slightly modify the natural 

construction for the previous lemma. If the path ending at terminal (j, 0) reaches 

the vertical line through (j, 0) at (j, I) then the path at (j, I+ 1) might also have to 

be bent at this point and continued horizontally from (j, /). This construction also 

maintains that for every edge e the paths use the lowest parallel copies of e. 0 

Theorem 4.4. A set of terminal pairs on a rectangle I can be connected by edge- 
disjoint paths routed in three layers in a grid graph defined by I and a connected 
boundary 0 surrounding I if and only if there are edge-disjoint paths connecting 
the terminals in the associated cycle network N,,. 

Proof. Let us assume that we are given a solution to the problem in NCY. We use 

the construction in the proof of Theorem 4.2 to break the problem into four sub- 

problems. Use the first kind of routing established in Lemma 4.3 on the two sub- 

problems along the two horizontal boundaries of I. Then use the second kind of 

routing established by the lemma (turned around by 90 degrees) along the two ver- 

tical sides. 0 

One can easily verify that the procedure used for proving the theorem can be im- 

plemented in O(k + no) time where no is the size of the boundary 0. 
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5. Minimum area routing 

The minimum area routing problem is given by a rectangle Z and k pairs of ter- 

minals P in I, so that every node on Z is the terminal of at most one pair and the 

corners of Z are not terminals. A rectangle 0 surrounding Z is called feasible if the 

grid network defined by Z and 0 and the set of pairs P has a two layer routing. The 

results in Section 3 give an easy way to check whether a given rectangle 0 is feasible. 

Here we shall use some of the ideas from that section to present an algorithm for 

finding a minimum area feasible rectangle 0. 

Let I, denote the top horizontal side of the rectangle Z, and analogously let Zj for 

i = 2,3,4 denote the ith side, where the sides are numbered clockwise around I. The 

corners are considered as part of both adjacent sides. Indices will be meant modulo 

4. Let E(Z;) denote the set of edges in the cycle network NcY connecting nodes in Z;. 

A rectangle 0 can be defined by four numbers h, for i= 1, . . . ,4, where hi is the 

number of edges in a semicut associated with an edge eeE(Zi). If a rectangle Z has 

height h, and length I1 the area of the rectangle 0 is 

Area(O) = (h,+ h1-t h3 - 2)(11+ h, + h4 - 2). 

We will show that there is a feasible rectangle that minimizes both h, + h, and 

h, + h, simultaneously. 

Recall the notion of the demand. For two edges e and e’ of the cycle d(e,e’) 

denotes the number of terminal pairs separated by the cut (e, e’}. For i, j such that 

1 <i, j54 let 

dj,j=max{d(e,e’): eeE(Zi), e’EE(Z;)}. 

Combining Theorems 2.2 and 3.2 we get that four integers (h,, hZ, h,, h4) define a 

rectangle 0 such that two layer routing is feasible if and only if the corresponding 

cycle network NcY satisfies the cut criterion and the parity criterion. The cut 

criterion in the cycle network is equivalent to the following inequalities 

hi+ hjrd,j for every 1 si, js4. (3) 

The two inequalities for i = 1, j= 3 and i= 2, j= 4 imply lower bounds on the size 

of the rectangle 0. However, there might not exist a feasible rectangle 0 matching 

these lower bounds. A tighter lower bound can be established using parity 

arguments. For every i and j we consider the set of edges in E(Z,) on which the 

maximum defining di,j is attained. These are the edges that participate in tight cuts 

if hi+h/=di,j. 

Di,j={eEE(Zi): 3e’EE(Z,) such that d(e,e’)=d;,j}. (4) 

The set D,j is defined to be even if each connected component of I-D,j contains 

an even number of terminals. Otherwise it is odd. An easy parity argument shows 

that D,,, is even if and only if Q1 is, and an analogous statement holds for D2,4 
and D,, 2. Edges in tight cuts must be used by as many paths as their capacity, 
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whereas every odd cut must contain at least one edge that is not used up to its capaci- 

ty. This implies the following improved lower bound. 

h,+h,> 
d1.3 3 if D,,, is even, 

4,3+1, if D1,3 is odd; 

h,+h,z 
du, if O2,4 is even, 

d,,,+l, if D2,4 is odd. 

(5) 

(6) 

Theorem 5.1. There exists a feasible rectangle 0 whose sizes h, , h2, h3 and h, 
match the lower bounds in the inequalities (5) and (6) with equality. 

The proof of the theorem will be given at the end of this section. In the next sec- 

tion we are going to present a simple algorithm that for every x and y finds all the 

feasible rectangles with sizes h,+ h4 =x and hl + h3 =y. This algorithm and the 

above theorem can be used to find a minimum area feasible rectangle. However, the 

proof of the theorem is also algorithmic. Define h,*, h,*, h: and h: as follows 

h’=dl,2+d1,4-(d2.3+d3,4)+2dl,3 
1 4 

, 

h;= 
d,,z+dz,-(d,,4+d3,4)+2dz,4 

4 
3 

h:= d2,3+d3,4-(d,,2+dd1,4)+2d,,3 
4 

, 

hi= 
d,,,+d,,,-(d,,,+d,,,)+2d,,, 

4 

Note that h: + h;” = d,, 3 and h; + h: = d2,4, but h,Y is not 

following theorem establishes that hi* can be used as a 

of the optimal hi. 

(7) 

necessarily an integer. The 

fairly close approximation 

Theorem 5.2. There exists a minimum area feasible rectangle 0 whose sizes h, , h,, 
h3 and h4 satisfy 1 hi - hall 4 for every 1 I is 4. 

The following lemma will be useful in establishing the inequalities in (3). 

Lemma 5.3. For any i (1 <i~4), 

(8) 
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Proof. It is easy to check that for four edges e,, . . ..e4eE(Z) that appear in this 

order around I, 

To establish the second inequality choose ejEE(1j) such that d(ej, ej+l) =dj,j+l for 

j=i and j=i+2. We have the following chain of inequalities: di,iil +d;+l,;+J= 

d(e;,ei+l)+d(e;+2,ei+3)~d(ei,ei+2)+d(ei+l,ei+3)1di,i+*+di+l,i+3. The first ine- 
quality can be established similarly. q 

Corollary 5.4. h 7 + h;” = dl, 3, h:+ h:= d2,4 and the numbers h:, h,*, h;, h: satisfy 

the inequalities (3). 

Let us recall some ideas from the proof of Theorem 2.2. Independent of the 

choice of h,, . . . , h4 all terminals will be odd nodes in the associated cycle network 

NCY. This suggests adding some pairs of these as additional pairs of terminals to the 

cycle network. For a set of nodes I/‘= {ui, . . . , v2,} occurring in this order around 

the rectangle I, we consider the cycle network with the additional pairs of terminals 

(U*i_i, Uzi) for i= 1, . . . , 1. Denote by N’ the cycle network defined in this way, and 

let d’(e, f) denote its demand function, and let dlj and hj (for 1~ i,jl4) be defined 

by equalities (2) and (7) with N’ in place of NC,,. 

Lemma 5.5. There exists a set V’ = { ol, u2, . . . } numbered around the rectangle I, 
such that V’ consists of all the terminals and a subset V, of the four corners of I, 
dljIdi,,+2 for every 1 (i, j<4 and for i= 1 and 2, 

d;r+2 = 
di,,+z 3 if Di,i+z is even, 

d,i+2+1, otherwise. 

Proof. The inequalities di’s di,j + 2 are satisfied for any choice of V’. The ap- 

propriate set V, can be defined depending on the parities of D1,3, D2,4, d1,3 and 

d2,4. For example, consider the case when both D,,, and D,,, are odd. Let Ci denote 

the corner of I between sides Zi an li_, . The set V, can be defined as 

: 

{c1,c3}, if dl,3 and d2,4 are both even, 

v,= 
{ci,~}, if d1,3 is even and d2,4 is odd, 

{C2,C319 if dl,3 is odd and d2,4 is even, 
(9) 

0, if di, 3 and d2,4 are both odd. 

The resulting set V’ satisfies the requirements of the lemma if its nodes are ordered 

around I. To prove this first notice that the only nodes in the cycle network N’ that 

can have an odd number of terminals are the corners. Therefore the parity of 

d’(e, e’) for e EE(li) and e’EE(Zj) depends only on i and j. Now consider a pair of 

edges eEE(I,) and e’EE(Zi+,) such that di,i+2 =d(e,e’). Both components of 
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I- (e, e’} contain an odd number of terminals in I”. Therefore d’(e, e’) = d(e, e’) + 1. 

This implies that d:i+2=di,i+2+1. 

The cases when one or both of D,,, and D,,, are even can be dealt with similarly. 

This is left to the reader. q 

Let N’denote the cycle network defined by the additional set of terminals as given 

by the above lemma. 

Corollary 5.6. h~-l~h~zzh~++ and h*+hi*,,-lIhj+hj+,<h,?+hi*,,+2 for 
every 15i54. 

Lemma 5.7. The two sides of the inequalities (8) with di,j replaced by di:j have the 
same parity. The corner ci between sides ZiPI and Ii is in V, if and only if d:_ ,,; 
is odd. 

Proof. The only nodes that can have an odd number of terminals in N’ are the four 

corners of I. This implies that, for eeE(l;) and e’EE(4) the parity of d’(e, e’) 
depends only on i and j. Therefore the parity of d/_ l,i is the same as the parity of 

d’(e;, ej) if e; and ei are the two edges incident to the corner Ci. This latter number 

is odd if and only if ci is a terminal. This proves the second statement. To prove 

the first statement observe that for every four edges el, . . . , e4 the two numbers 

d(e,,e3) +d(e,,e,) and d(e,,e,) +d(e,,e,) have the same parity. 0 

Lemma 5.8. The numbers h’ ,, . . . . hi are either all integers or are all odd multiples 
ofi. 

Proof. By Lemma 5.7 all of d;,,+di,,, d;,+di,, and d;,+di,, have the same 

parity. This implies the lemma. 0 

Proof of Theorems 5.1 and 5.2. First note that dili is even for every i. Next con- 

sider the two numbers hj+ hi,, - d:i+, and hi+ hj_, -di_, i. By the previous lem- 

ma both are integers. By Corollary 5.4 and Lemma 5.7 their sum has the same parity 

as 2hi-dli. Consequently, the two numbers have the same parity if and only if hi 
is an integer. 

For any quadruple h=(hl,..., h4) let Nh denote the cycle network corresponding 

to the rectangle 0 with these sizes, and the enlarged set of terminals. For any h all 

nodes of the cycle network are even except some of the four corners. We will define 

numbers hi for i= 1, . . . , 4 such that h,+h,=h;+h;, h,+h,=h;+hi, Ihi-h*lS+ 
and the cycle network N,, is even and satisfies the cut criterion. This will establish 

both theorems. 

Case 1: AN of hi hi, hi, hi are integers. This implies that hj+ hi+l - dii+l have 

the same parity for every 1 ~i~4. If these numbers are even, then every corner is 

even in NhJ, SO we can choose hi=hi for i=1,...,4. 
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Otherwise we have that all corners are odd in Nh, and hj+ hj,, - d[‘+ 1 2 1 for 

every 1 I i~4. This implies that 

2h; = (hi+ hi+ 1) + (h;+ h;_ ,) - (h;, 1 + h;_ ,) 

The quadruple h is defined by decreasing hj by 1 and increasing hj+2 by 1 for some 

i. The resulting network N,, satisfies the cut criterion and is even. By Corollary 5.6 

one of the four possible choices also satisfies / hj - h,? 5 4 for every j. 

Case 2: All of hi, hi, hi, hi are odd multiples oft. In this case 2h:-di, is odd, 

and hence at least 1 for every 1~ is4. Furthermore, the parities of hi+ hj+l - di’+l 
and hj+hj-, - dl;_, are different. Either both hi + hi - d12 and hi + hi - d;,4 or 

both hi + hi -d& and hi + hi - d14 are positive odd integers. Consider the first 

case (the second case can be treated analogously). We can decrease hi and hi and 

at the same time increase hi and hi by + (or increase hi and hi and decrease hi and 

hi) without violating the cut criterion. Both of the resulting networks Nh are even. 

By Corollary 5.6 one of the two possible choices also satisfies /hi-hjCl I+. q 

6. Finding all feasible rectangles of a given size 

Finally, we consider the problem when both I and the size of the outside rectangle 

0 are given and we are interested in finding the feasible relative positions of these 

two rectangles. More formally, given integers x and y, and a rectangle Z and k pairs 

of terminals P in Z, so that every node in I is the terminal of at most one pair and 

the corners of I are not terminals. Find all feasible rectangles whose size satisfies 

h,+ h,=x and h, + h3 =y. We call a pair of integers (h,, h2) feasible if hl, hZ, h,= 
y-h, and h4 =x- h, define a feasible rectangle 0. 

Combining Theorems 2.2 and 3.2 we see that integers hl, hZ, h3 =y- h, and 

h, =x - h2 define a feasible rectangle 0 if and only if the inequalities (3) are satis- 

fied and certain parity conditions hold. Inequalities (3) define a two-dimensional 

polytope Q so that all feasible pairs (h,, h2) are in Q. We shall call two pairs of 

integers (h,, h2) and (hi, hi) in Q equivalent if they are on the same face of Q (i.e., 

they satisfy the same set of inequalities from (3) with equation). 

Theorem 6.1. Let (h,, h,), (hi, hi) be equivalent pairs in Q. If one is feasible and 
the other one is not then hl + h, and hi + hi have different parity, 

Proof. Consider the two rectangles 0 and 0’ and the two corresponding cycle net- 

works NcY and NiY. By Theorem 3.2 we can concentrate on the corresponding 

problems in the cycle network. The two pairs are equivalent. Therefore the same 

cuts are tight in the two cycle networks. This implies that one must satisfy the parity 

criterion and the other one must not. Hence there must be a cut (e,e’) that is even 
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in one problem and odd in the other one. Consequently, the parity of hi+ hj and 

hi+ /I, must be different for some i and j, which is only possible if the parities of 

h, + h2 and hi + hi are different. 0 

This theorem can be used to find all feasible vectors in linear time by checking 

two points on each of the at most eight facets of Q and the vertices. Note that all 

of the interior points in Q are feasible. 
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