Many combinatorial problems can be efficiently solved in parallel for series-parallel multigraphs. The edge-coloring problem is one of a few combinatorial problems for which no NC parallel algorithm has been obtained for series-parallel multigraphs. This paper gives an NC parallel algorithm for the problem on series-parallel multigraphs G. It takes $O(\log n)$ time with $O(D_n^r \log n)$ processors, where n is the number of vertices and D is the maximum degree of G.

1. INTRODUCTION

This paper deals with the edge-coloring problem, which asks that all edges of a given graph G be colored, using the minimum number of colors, so that no two adjacent edges are colored with the same color. The minimum number is called the chromatic index of G, and denoted by $\chi'(G)$. It is known that many combinatorial problems can be solved very efficiently, say in linear time, for series-parallel multigraphs or partial k-trees [2–4, 8, 17]. Such a class of problems has been characterized in terms of “forbidden subgraphs” or “extended monadic second-order logic” [2–4, 8, 17]. The edge-coloring problem does not belong to such a class of the “maximum (or minimum) subgraph problems,” and is indeed one of the “edge-partitioning problems” which do not appear to be efficiently solved for series-parallel multigraphs or partial k-trees [4]. However, the

$$\chi'(G)$$

359
current authors have recently obtained a linear-time sequential algorithm for series-parallel multigraphs in the companion paper [21]. On the other hand, He [12] has shown that there exist NC parallel algorithms for many “vertex-type” problems on series-parallel simple graphs, such as vertex-coloring, maximum independent set, and vertex-cover. However, his method is not valid for the edge-coloring problem. Thus NC parallel edge-coloring algorithms have not been obtained so far for series-parallel multigraphs, but NC parallel algorithms have been obtained for the following classes of graphs: planar graph with maximum degree \(\geq 9 \) [7]; outerplanar graphs [5, 11]; series-parallel simple graphs [6]; and partial \(k \)-trees [20]. The algorithm for series-parallel simple graphs in [6] takes \(O(\log \Delta n) \) time with \(O(n) \) processors and is not an optimal parallel algorithm. Every series-parallel simple graph except odd cycles can be edge-colored with \(\Delta \) colors, where \(\Delta \) denotes the maximum degree of a graph [16, 18]. However, this is not the case for series-parallel multigraphs, and the edge-coloring problem for series-parallel multigraphs is much more difficult than for simple graphs. On the other hand, the algorithm for partial \(k \)-trees in [20] takes \(O(\log n) \) time with \(O((6k)^{k(k+1)/2} n / \log n) \) processors for any \(k \), and is an optimal parallel algorithm for bounded \(k \) although the constant \((6k)^{k(k+1)/2}\) is large, say 1728 for the case \(k = 2 \). Note that a series-parallel simple graph is a partial 2-tree but a series-parallel multigraph is not always a partial 2-tree.

In this paper, using a “tree contraction” technique, we give an efficient parallel implementation of our linear sequential algorithm in the companion paper [21] for the edge-coloring problem on series-parallel multigraphs. The parallel computation model we use is an exclusive-read and exclusive-write parallel random access machine (EREW PRAM). Our parallel algorithm takes \(O(\log n) \) time with \(O(\Delta n / \log n) \) processors. This is the first NC algorithm for series-parallel multigraphs and is an optimal parallel algorithm if \(\Delta \) is bounded. Furthermore, combining our algorithm in this paper and the algorithm for a partial \(k \)-tree in [20], one can easily obtain a truly practical and optimal parallel algorithm for series-parallel simple graphs. It takes \(O(\log n) \) time with \(O(n / \log n) \) processors, and hence greatly improves the complexity or the constant over the previously best known ones for series-parallel simple graphs [6, 20]. An early version of this paper was presented at [22].

2. PRELIMINARIES

In this section we give some basic definitions and present some lemmas which were proved in the companion paper [21].
We denote by \(G = (V, E) \) a graph with vertex set \(V \) and edge set \(E \). The set of vertices and the set of edges of \(G \) are often denoted by \(V(G) \) and \(E(G) \), respectively. A \((\text{two-terminal})\) \textit{series–parallel multigraph} is defined recursively as follows:

1. A graph \(G \) of a single edge is a series–parallel multigraph. The ends \(v_s \) and \(v_t \) of the edge are called the \textit{terminals} of \(G \) and denoted by \(v_s(G) \) and \(v_t(G) \).

2. Let \(G_1 \) be a series–parallel multigraph with terminals \(v_s(G_1) \) and \(v_t(G_1) \), and let \(G_2 \) be a series–parallel multigraph with terminals \(v_s(G_2) \) and \(v_t(G_2) \).

 (a) A graph \(G \) obtained from \(G_1 \) and \(G_2 \) by identifying vertex \(v_s(G_2) \) with vertex \(v_t(G_2) \) is a series–parallel multigraph whose terminals are \(v_s(G) = v_s(G_1) \) and \(v_t(G) = v_t(G_2) \). Such a connection is called a \textit{series connection}, and \(G \) is denoted by \(G = G_1 \cdot G_2 \).

 (b) A graph \(G \) obtained from \(G_1 \) and \(G_2 \) by identifying \(v_s(G_1) \) with \(v_s(G_2) \) and \(v_t(G_1) \) with \(v_t(G_2) \) is a series–parallel multigraph whose terminals are \(v_s(G) = v_s(G_1) = v_s(G_2) \) and \(v_t(G) = v_t(G_1) = v_t(G_2) \). Such a connection is called a \textit{parallel connection}, and \(G \) is denoted by \(G = G_1 \parallel G_2 \). (See Fig. 1.)

A series–parallel multigraph \(G \) can be represented by a “binary decomposition tree” \[17\]. Figure 2 illustrates a series–parallel multigraph \(G \) and its binary decomposition tree \(T_b \). Labels s and p attached to internal nodes in \(T_b \) indicate series and parallel connections, respectively, and nodes labeled s and p are called \(s \)- and \(p \)-nodes, respectively. A node \(u \) of tree \(T_b \) corresponds to a subgraph of \(G \), which is denoted by \(G_u \). A leaf of \(T_b \), in particular, represents a subgraph of \(G \) induced by two vertices, that is, a set of multiple edges. The set of multiple edges joining vertices \(u \) and \(v \) is denoted by \(E(u, v) \).

The terminals \(v_s(G) \) and \(v_t(G) \) of \(G \) are often denoted simply by \(v_s \) and \(v_t \). We denote by \(d(v) \) the degree of vertex \(v \in V \) in \(G \). The maximum

\[d(v) = \text{degree of vertex } v \in V \text{ in } G \]

\[\text{maximum degree} \]
degree of \(G \) is denoted by \(\Delta \). Let \(d(G) = d(v_i) + d(v_j) \), \(\delta\gamma_i(G) = \min(d(v_i), d(v_j)) \) and \(\Delta_k(G) = \max(d(v_i), d(v_j)) \). Thus \(d(G) = \delta\gamma_i(G) + \Delta_k(G) \).

An edge-coloring of \(G \) is an assignment of colors to the edges in \(G \) such that no two adjacent edges have the same color. Figure 3 depicts an edge-coloring of a graph \(G \) in Fig. 2a. The chromatic index \(\chi'(G) \) of a graph \(G \) is the minimum number of colors used by an edge-coloring of \(G \). The number of colors used by an edge-coloring \(\varphi \) is denoted by \(\#\varphi \). Let \(r(\varphi) \) be the number of colors appearing at both \(v_i \) and \(v_j \). For the edge-coloring \(\varphi \) in Fig. 3, only colors 1, 2, and 3 appear at both \(v_i \) and \(v_j \), and hence \(r(\varphi) = 3 \).

The chromatic index \(\chi'(G) \) of a series–parallel multigraph \(G \) cannot be computed directly from \(\chi'(G_1) \) and \(\chi'(G_2) \) when \(G = G_1 \parallel G_2 \) or \(G = G_1 \cdot G_2 \). So we introduced a new invariant \(\chi'(G, i) \) to compute \(\chi'(G) \) by means of a dynamic programming algorithm [21]. For a nonnegative integer \(i \), \(\chi'(G, i) \) is defined to be the minimum number of colors used by an edge-coloring of \(G \) such that exactly \(i \) common colors appear at both \(v_i \) and \(v_j \), that is, \(\chi'(G, i) = \min(\#\varphi \mid \varphi \) is an edge-coloring of \(G \) with
\(r(\phi) = i\) if there exists such a coloring; otherwise, define \(\chi'(G, i) = \infty\).

Clearly \(\chi'(G) = \min \{ \chi'(G, i) \mid 0 \leq i \leq \delta'_n(G) \}\), and \(\chi'(G, i) = \infty\) if \(i < \|E_{\nu_p, r}\|\) or \(i > \delta'_n(G)\). For the graph \(G\) depicted in Fig. 2a, \(\chi'(G, 0) = \infty\), \(\chi'(G, 1) = 7\), \(\chi'(G, 2) = 6\), \(\chi'(G, 3) = 6\), \(\chi'(G, 4) = 7\), \(\chi'(G, 5) = \infty\), and consequently \(\chi'(G) = 6\).

We showed in the companion paper [21] that \(\chi'(G, i)\) is a convex and “unit-staircase” function with respect to \(i\), as illustrated in Fig. 4. Therefore one can consider a kind of inverse functions of \(\chi'(G, i)\), which are called \(i_{\min}(G, j)\) and \(i_{\max}(G, j)\) and defined for an integer \(j\) as follows:

\[
i_{\min}(G, j) = \begin{cases} \min \{ i \mid \chi'(G, i) \leq j \} & \text{if } j \geq \chi'(G); \\ +\infty & \text{otherwise}, \end{cases}
\]

and

\[
i_{\max}(G, j) = \begin{cases} \max \{ i \mid \chi'(G, i) \leq j \} & \text{if } j \geq \chi'(G); \\ -\infty & \text{otherwise}. \end{cases}
\]

Then \(\chi'(G, i) \leq j\) if and only if \(i_{\min}(G, j) \leq i \leq i_{\max}(G, j)\). The current authors proved that if \(\chi'(G, i) \neq \infty\) then \(\chi'(G, i) \leq \chi'(G) + \delta'_n(G)\) [21]. Therefore it suffices to compute \(i_{\min}(G, j)\) and \(i_{\max}(G, j)\) only for all \(j\) such that \(\chi'(G) \leq j \leq \chi'(G) + \delta'_n(G)\).

Define a \(\min\)-\(\max\) \(\text{triple set} \mathcal{T}(G)\) as follows:

\[
\mathcal{T}(G) = \{(j, i_{\min}(G, j), i_{\max}(G, j)) \mid \chi'(G) \leq j \leq \chi'(G) + \delta'_n(G)\}.
\]

Then one can compute \(\chi'(G)\) from \(\mathcal{T}(G)\) since \(\chi'(G) = \min \{ j \mid (j, i_{\min}(G, j), i_{\max}(G, j)) \in \mathcal{T}(G) \}\). Therefore it suffices to give an NC parallel algorithm to compute \(\mathcal{T}(G)\).

![Illustration for functions \(\chi'(G, i), i_{\min}(G, j), \) and \(i_{\max}(G, j)\).](image-url)
The following two lemmas proved in [21] imply that $\mathcal{R}(G)$ can be found from $\mathcal{R}(G_1)$ and $\mathcal{R}(G_2)$ when $G = G_1 \parallel G_2$ or $G_1 \cdot G_2$.

Lemma 2.1. Let $G = G_1 \parallel G_2$ and $j \geq \chi'(G)$; then the following hold:

(a) $i_{\min}(G, j) = \max(i_{\min}(G_1, j) + i_{\min}(G_2, j), d(G) - j)$;

(b) $i_{\max}(G, j) = \min(\delta_s(G), d(G_1) - i_{\min}(G_2, j) + i_{\max}(G_2, j), d(G) - i_{\min}(G_2, j) + i_{\max}(G_1, j))$;

(c) $\chi'(G) = \min\{i \geq b_2 \mid i \geq d(G_1) - i_{\max}(G_2, i) + i_{\min}(G_2, i)\}$, where $b_2 = \max(\Delta_s(G), \chi'(G_1), \chi'(G_2))$ is a trivial lower bound on $\chi'(G)$.

Lemma 2.2. Let $G = G_1 \cdot G_2$, $v = v_i(G_1) = v_i(G_2)$, and $j \geq \chi'(G)$; then the following hold:

(a) $i_{\min}(G, j) = \max(j, d(G), d(G_1) - i_{\max}(G_2, j) + i_{\min}(G_2, j), d(G_2) - i_{\max}(G_2, j) + i_{\min}(G_1, j)) - j$;

(b) $i_{\max}(G, j) = \min(\delta_s(G), d(G) - i_{\min}(G_1, j) - i_{\min}(G_2, j), d(G) - i_{\min}(G_1, j) - i_{\min}(G_2, j), j - d(v) + i_{\max}(G_2, j) + i_{\max}(G_1, j))$; and

(c) $\chi'(G) = \max(\chi'(G_1), \chi'(G_2), d(v))$.

3. NC Parallel Algorithm

In this section we give a parallel algorithm which decides the chromatic index $\chi'(G)$ of a series–parallel multigraph G in $O(\log n)$ time with $O(n \Delta/\log n)$ processors if a decomposition tree of G is given. The parallel computation model we use is an exclusive-read and exclusive-write parallel random access machine (EREW PRAM). It is known that the binary decomposition tree T_b of G can be found either in $O(\log^2 n + \log |E|)$ time with $O(n + |E|)$ EREW processors [12] or in $O(\log n)$ time with $O(|E| \alpha(|E|, n)/\log n)$ CRCW processors [9], where α is the inverse Ackermann function.

Although the algorithm in this section only decides the chromatic index of G, it can be easily modified so that it actually edge-colors G with $\chi'(G)$ colors.

We use a tree contraction algorithm. The tree contraction algorithm originally introduced by Miller and Reif [15] takes $O(\log n)$ time with $O(n)$ processors, where n is the number of nodes in the tree. Several authors [1,
[10, 12–14] have improved the algorithm as follows so that it takes \(O(\log n)\) time with \(O(n/\log n)\) processors. A structure is a triple \((\mathcal{L}, F_{\text{node}}, F_{\text{edge}})\) consisting of a set \(\mathcal{L}\), a node function set \(F_{\text{node}} \subseteq \{f : \mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}\}\), and an edge function set \(F_{\text{edge}} \subseteq \{f : \mathcal{L} \rightarrow \mathcal{L}\}\). A bottom-up algebraic computation tree on \((\mathcal{L}, F_{\text{node}}, F_{\text{edge}})\) is a binary tree \(T_b\) such that: each leaf node \(v\) of \(T_b\) is labeled by an element \(L(v) \in \mathcal{L}\); each internal node \(u\) of \(T_b\) is labeled by a function \(f_u \in F_{\text{node}}\); and each edge \(e\) of \(T_b\) is labeled by a function \(f_e \in F_{\text{edge}}\). The label \(L(u) \in \mathcal{L}\) of each internal node \(u\) of \(T_b\) is recursively defined as

\[
L(u) = f_u\left(f_{e_1}(L(v_1)), f_{e_2}(L(v_2))\right),
\]

where \(v_1\) and \(v_2\) are the left and right children of \(u\) in \(T_b\), \(e_1 = (v_1, u)\), and \(e_2 = (v_2, u)\). The bottom-up algebraic tree computation (BATC) problem on \(T_b\) is to compute \(L(u)\) for the root \(u\) of \(T_b\). In order to solve the BATC problem in parallel, He and Yesha introduced the following shunt operation [13]. Let \(u\) be a node of \(T_b\) with left child \(v_1\), right child \(v_2\), and parent \(w\). Let \(e_1 = (v_1, u)\), \(e_2 = (v_2, u)\), and \(e_0 = (u, w)\). Suppose \(v_1\) is a leaf node (Fig. 5). A shunt operation on \(v_1\) is defined as follows: delete \(v_1\) and \(u\) from \(T_b\); make \(v_2\) the left child of \(w\) with a new edge \(e = (v_2, w)\); and assign to \(e\) a function \(f_e\) defined by

\[
f_e(L) = f_{e_0}(f_{e_1}(L(v_1)), f_{e_2}(L(v_2)))
\]

for variable \(L \in \mathcal{L}\). If the right child \(v_2\) of \(u\) is a leaf node, then a shunt operation performed on \(v_2\) is defined similarly. Clearly a shunt operation does not affect subsequent evaluation on \(T_b\). The following elegant tree-
contraction algorithm solves the BATC problem [1, 10, 12–15]:

Tree Contraction Algorithm

for each leaf \(v \), in parallel, do

\[
\text{index}(v) \leftarrow \text{left-to-right leaf index } v;
\]

(the leaves are numbered in left-to-right order)

repeat \([\log n] - 1\) times

for each leaf \(v \) with odd index(\(v \)) which is the left child of \(v \)'s parent, in parallel, do

if the \(v \)'s parent is not the root of \(T_b \) then shunt \(v \);

for each leaf \(v \) with odd index(\(v \)) which is the right child of \(v \)'s parent, in parallel, do

if the \(v \)'s parent is not the root of \(T_b \) then shunt \(v \);

for each leaf \(v \), in parallel, do

\[
\text{index}(v) \leftarrow \text{index}(v)/2
\]

end-repeat

compute the label of the root in \(T_b \) \(\{T_b \text{ has only three nodes}\} \).

The following theorem was proved in [1, 10, 12–14].

Theorem 3.1. The tree contraction algorithm correctly solves the BATC problem. Moreover, if the evaluation of node and edge functions and the shunt operation can be done by \(p \) processors in \(O(1) \) time, this algorithm can be implemented in \(O(\log n) \) time with \(O \left(p n/\log n \right) \) processors, where \(n \) is the number of nodes in \(T_b \).

We are now ready to use the tree contraction algorithm to decide the chromatic index of series–parallel multigraphs \(G \). We assume that a binary decomposition tree \(T_b \) of \(G \) is given. Furthermore we may assume that \(d(v_i(G_u)), d(v_j(G_u)), d(G_u), \delta_u(G_u), \text{ and } \Delta_u(G_u) \) have been known for each node \(u \) of \(T_b \) since they can be easily computed in \(O(\log n) \) time with \(O(n/\log n) \) processors. In order to decide \(\chi'(G) \), we make a “bottom-up” traversal on \(T_b \). We compute the label \(L(u) = (\chi'(G_u), \mathcal{A}(G_u)) \) when we visit a node \(u \) of \(T_b \). This computation can be translated to a bottom-up algebraic tree computation on \(T_b \) as follows. Since \(\chi'(G) \leq 2\Delta \), we have \(\chi'(G, i) \leq \chi'(G) + \Delta \leq 3\Delta \) if \(\chi'(G, i) \neq \infty \). We modify the definition of \(\mathcal{A}(G) \) so that \(L(u) \) can be efficiently computed in parallel, as follows:

\[\mathcal{A}(G) = \{ (j, i_{\min}(G, j), i_{\max}(G, j)) \mid 1 \leq j \leq 3\Delta \} \]

Let \(I = \{0, 1, \ldots, \Delta, -\infty, +\infty\} \) and \(J = \{1, 2, \ldots, 3\Delta\} \), then \(\mathcal{L} = J \times (J \times I)^{3\Delta} \) since \(\chi'(G) \in J \text{ and } \mathcal{A}(G) \in (J \times I)^{3\Delta} \). For each leaf node \(u \) of \(T_b \), \(\chi'(G_u) \) is equal to the number of edges in \(G_u \) and \(\mathcal{A}(G_u) = \{ (j, i_n, i_x) \mid 1 \leq j \leq 3\Delta \} \) can be decided as follows: if \(j \geq \chi'(G_u) \) then \(i_n = i_x = \chi'(G_u) \); otherwise \(i_n = +\infty \) and \(i_x = -\infty \). (The subscript “\(n \)” indicates min, and “\(x \)” max.) For an edge \(e \) of \(T_b \), the edge function \(f_e \) is initially an identity function, that is, \(f_e(L) = L \) for variable \(L \in \mathcal{L} \). The node function \(f_u \) of a \(p \)-node \(u \)
in T_b is a function given in Lemma 2.1, which computes $L(u) = \{ \chi'(G_u), \mathcal{G}_u \}$ from $L(v_1) = \{ \chi'(G_{v_1}), \mathcal{G}_{v_1} \}$ and $L(v_2) = \{ \chi'(G_{v_2}), \mathcal{G}_{v_2} \}$ where v_1 and v_2 are the two children of u in T_b. Similarly the node function f_u of an s-node u in T_b is a function given in Lemma 2.2, which computes $L(u)$ from $L(v_1)$ and $L(v_2)$.

Clearly the size of the binary decomposition tree T_b is $O(n)$ [21]. By Theorem 3.1 the algorithm takes $O(\log n)$ time with $O(\Delta n / \log n)$ processors if the evaluation of node and edge functions and the shunt operation, which involves the composition of two edge functions and one node function, can be done in $O(1)$ time with $O(\Delta)$ processors. We have the following two lemmas.

Lemma 3.2. The node function of the algorithm above can be evaluated in $O(1)$ time with $O(\Delta)$ processors.

Proof. Let u be a node of the current decomposition tree, and let v_1 and v_2 be the left child and the right child of u in the original decomposition tree. Let $f_u(L_1, L_2) = \{ \chi'_u, \mathcal{F}_u \}$ for variables $L_1, L_2 \in \mathcal{L}$, where $\chi'_u = \chi'(G_u)$ and $\mathcal{F}_u = \mathcal{G}_u$. The node function u is either an s-node or a p-node. If u is an s-node, then by Lemma 2.2 both χ'_u and \mathcal{F}_u can be computed from $L_1 = L(v_1) = \{ \chi'_1, \mathcal{F}_1 \}$ and $L_2 = L(v_2) = \{ \chi'_2, \mathcal{F}_2 \}$ in $O(1)$ time with $O(\Delta)$ processors. Therefore we may assume that u is a p-node. By Lemma 2.1, \mathcal{F}_u can be computed from \mathcal{F}_1 and \mathcal{F}_2 in $O(1)$ time with $O(\Delta)$ processors. Thus it suffices to prove that χ'_u can be computed from L_1 and L_2 in $O(1)$ time with $O(\Delta)$ processors.

Let

$$J_u = \{ j \mid (j, i_{n_1}, i_{n_2}) \in \mathcal{F}_1, (j, i_{n_2}, i_{n_2}) \in \mathcal{F}_2, j \geq \chi'_1, j \geq \chi'_2, j \geq d(G_{v_1}) - i_{n_1}, j \geq d(G_{v_1}) - i_{n_2} + i_{n_1} \}.$$

Then $\chi'_u = \min\{ j \mid j \in J_u \}$ by Lemma 2.1. Clearly J_u can be found from L_1 and L_2 in $O(1)$ time with $O(\Delta)$ processors. Values i_{n_1} and i_{n_2} do not increase and i_{n_1} and i_{n_2} do not decrease when j increases. Therefore J_u is a set of consecutive integers, and hence $\chi'_u = \min\{ j \mid j \in J_u \}$ can be computed in $O(1)$ time with $O(\Delta)$ processors.

Q.E.D.

Lemma 3.3. The following (i)–(iii) hold at all points in the execution of the tree contraction algorithm.

(i) Every edge function $f_e(L) = \{ \chi'_e, \mathcal{F}_e \}$ takes the following form for variable $L = \{ \chi' \}$:

(a) $\chi'_e = \min\{ j \mid (j, i_e, i_s) \in \mathcal{F}, j \geq c_1(j), j \geq \chi', j \geq c_2(j) + i_e, j \geq c_3(j) - i_s \}$, and
(b) $\mathcal{T}_e = \{(j, i_n, i_s) \mid (j, i_n, i_s) \in \mathcal{T}\}$, $i_{ne} = \max(c_4(j), c_5(j) + i_n, c_6(j) - i_s)$, and $i_{xe} = \min\{c_7(j), c_8(j) - i_n, c_9(j) + i_s\}$, where $c_1(j)$, $c_2(j)$, $c_3(j)$, $c_4(j)$, $c_5(j)$, $c_6(j)$, $c_7(j)$, $c_8(j)$, $c_9(j)$ are constants determined by j, and furthermore $c_1(j)$, $c_2(j)$, $c_3(j)$, $c_4(j)$ do not increase and $c_7(j)$, $c_8(j)$ and $c_9(j)$ do not decrease when j increases.

(ii) Every edge function can be evaluated in $O(1)$ time with $O(\Delta)$ processors.

(iii) At each shunt operation the composition of edge function $f_e(L)$ can be done in $O(1)$ time with $O(\Delta)$ processors.

Proof. (i) We prove (i) by an induction on the number k of shunt operations which have been performed.

The lemma trivially holds when $k = 0$; in this case every edge function f_e is an identity function; let $c_1(j), c_2(j), c_3(j), c_4(j)$, and $c_5(j)$ be $-\infty$, let $c_7(j)$ and $c_8(j)$ be 0, and let $c_5(j)$ and $c_9(j)$ be ∞, then $\chi_e' = \chi'$ and $\mathcal{T}_e = \mathcal{T}$.

Assuming that (i) holds just after the $(k - 1)$th shunt operation is performed, we prove that (i) holds just after the kth shunt operation is performed.

Let u be a node of the current decomposition tree T_b with left child v_1, right child v_2 and parent w. Let $e_1 = (v_1, u)$, $e_2 = (v_2, u)$ and $e_0 = (u, w)$. Let v'_1 and v'_2 be the left child and the right child of u in the original decomposition tree. Then either $G_u = G_{v'_1} \parallel G_{v'_2}$ or $G_u = G_{v'_1} \cdot G_{v'_2}$. We give a proof only for the case when $G_u = G_{v'_1} \parallel G_{v'_2}$, the proof for the case when $G_u = G_{v'_1} \cdot G_{v'_2}$ is similar to that for the case when $G_u = G_{v'_1} \parallel G_{v'_2}$. One may assume that v_1 is a leaf node of T_b. Then $L(v_1)$ has been computed, and hence $f_{e_1}(L(v_1))$ can be evaluated in $O(1)$ time with $O(\Delta)$ processors as we claim in (ii). On the other hand, by the inductive hypotheses the edge function $f_{e_2}(L) = \{\chi_e', \mathcal{T}_e\}$ takes the following form for variable $L = (\chi', \mathcal{T})$:

$$\chi_e' = \min\{j \mid (j, i_n, i_s) \in \mathcal{T}, j \geq c_1(j), j \geq \chi', j \geq c_2(j) + i_n \text{ and } j \geq c_3(j) - i_s\},$$

$$\mathcal{T}_e = \{(j, i_{ne}, i_{se}) \mid (j, i_n, i_s) \in \mathcal{T}\},$$

$$i_{ne} = \max\{c_4(j), c_5(j) + i_n, c_6(j) - i_s\},$$

$$i_{se} = \min\{c_7(j), c_8(j) - i_n, c_9(j) + i_s\}.$$

By Lemma 2.1 one can easily know that, for a constant $f_{e_1}(v_1) = \{\chi_e', \mathcal{T}_e\} = L(v_1)$ and a variable $f_{e_2}(L) = \{\chi_e', \mathcal{T}_e\}$, the node function $f_n(f_{e_2}(L(v_1)))$,
\[f_{e_1}(L) = \{ \chi', \mathcal{T}_u \} \text{ satisfies:} \\
\chi' = \min \{ j \mid (j, k_1(j), k_2(j)) \in \mathcal{T}_{e_1}, (j, i_{n_e}, i_{x_e}) \in \mathcal{T}_{e_2}, j \geq k_3 - k_4, \]
\[j \geq \chi', j \geq \chi', j \geq k_5 - k_2(j) + i_{x_e}, \text{ and} \]
\[j \geq k_6 - i_{x_e} + k_1(j) \}, \]
\[\mathcal{T}_u = \{ (j, i_{n_u}, i_{x_u}) \mid (j, i_{n_e}, i_{x_e}) \in \mathcal{T}_{e_2} \}; \]
\[i_{n_u} = \max\{k_1(j) + i_{n_e}, k_3 - j \}; \text{ and} \]
\[i_{x_u} = \min\{k_4, k_5 - k_1(j) + i_{x_e}, k_6 - i_{n_e} + k_2(j) \}, \]
where \(k_1(j) = i_{\min}(G_{x_1}, j), k_2(j) = i_{\max}(G_{x_1}, j), k_3 = d(G_u), k_4 = \delta_{\min}(G_u), k_5 = \Delta_{\min}(G_u), k_6 = d(G_{x_2}), \) and \(k_7 = d(G_{x_2}). \) Note that \(k_3, \ldots, k_6 \) are constants, \(k_3(j) \) and \(k_6(j) \) are constants determined by \(j \), and \(k_3(j) \) does not increase and \(k_6(j) \) does not decrease when \(j \) increases. Substitute (1)–(4) into (5)–(8), then we have
\[f_u(f_{e_1}(L(v_1)), f_{e_2}(L)) = \{ \chi', \mathcal{T}_u \}, \]
\[\chi' = \min \{ j \mid (j, i_{n}, i_{x}) \in \mathcal{T}, j \geq a_1(j), \]
\[j \geq \chi', j \geq a_2(j) + i_{n}, j \geq a_3(j) - i_{x} \}, \]
\[\mathcal{T}_u = \{ (j, i_{n_u}, i_{x_u}) \mid (j, i_{n}, i_{x}) \in \mathcal{T} \}, \]
\[i_{n_u} = \max\{a_4(j), a_5(j) + i_{n}, a_6(j) - i_{x} \}, \text{ and} \]
\[i_{x_u} = \min\{a_1(j), a_8(j) - i_{n}, a_9(j) + i_{x} \}, \]
where
\[a_1(j) = \max\{k_3 - k_4, \chi', c_4(j), k_5 - k_2(j) + c_4(j), k_6 - c_2(j) + k_1(j) \}, \]
\[a_2(j) = \max\{c_2(j), k_5 - k_2(j) + c_5(j), k_6 - c_5(j) + k_1(j) \}, \]
\[a_3(j) = \max\{c_3(j), k_5 - k_2(j) + c_5(j), k_6 - c_5(j) + k_1(j) \}, \]
\[a_4(j) = \max\{k_1(j) + c_4(j), k_3 - j \}, \]
\[a_5(j) = k_1(j) + c_5(j), \]
\[a_6(j) = k_1(j) + c_6(j), \]
\[a_7(j) = \min\{k_2, k_5 - k_1(j) + c_7(j), k_6 - c_4(j) + k_2(j) \}, \]
\[a_8(j) = \min\{k_5 - k_1(j) + c_8(j), k_6 - c_8(j) + k_2(j) \}, \text{ and} \]
\[a_9(j) = \min\{k_5 - k_1(j) + c_9(j), k_6 - c_9(j) + k_2(j) \}. \]
Clearly $a_1(j), a_2(j), \ldots, a_9(j)$ are constants determined by j, and $a_1(j), a_2(j), \ldots, a_8(j)$ do not increase and $a_7(j)$, $a_9(j)$ do not decrease when j increases.

By the inductive hypothesis, the edge function $f_e(L(u)) = \{ \chi'_e, \mathcal{T}_e \}$ takes the following form for variable $L(u) = \{ \chi'_u, \mathcal{T}_u \}$:

\[
\chi'_e = \min \{ j \mid (j, i_{nu}, i_{ux}) \in \mathcal{T}_u, j \geq b_1(j), j \geq \chi'_u, j \geq b_2(j) + i_{nu} \text{ and } j \geq b_3(j) - i_{ux} \},
\]

\[
\mathcal{T}_e = \{ (j, i_{ne}, i_{xe}) \mid (j, i_{nu}, i_{ux}) \in \mathcal{T}_u \},
\]

\[
i_{ne} = \max \{ b_4(j), b_5(j) + i_{nu}, b_6(j) - i_{ux} \}, \quad \text{and} \quad i_{xe} = \min \{ b_7(j), b_8(j) - i_{nu}, b_9(j) + i_{ux} \},
\]

where $b_4(j), b_5(j), \ldots, b_9(j)$ are constants determined by j, and $b_4(j), b_5(j), b_6(j), b_7(j), b_8(j), b_9(j)$ do not increase when j increases. Substitute (9)–(13) into (14)–(17), then for variable $L = \{ \chi', \mathcal{T} \}$ we have

\[
f_e(L) = f_e \left(f_e(L(v_1)), f_e(L) \right) = \{ \chi'_e, \mathcal{T}_e \},
\]

\[
\chi'_e = \min \{ j \mid (j, i_n, i_x) \in \mathcal{T}, j \geq d_1(j), j \geq \chi'_u, j \geq d_2(j) + i_n, j \geq d_3(j) - i_x \},
\]

\[
\mathcal{T}_e = \{ (j, i_{ne}, i_{xe}) \mid (j, i_n, i_x) \in \mathcal{T} \},
\]

\[
i_{ne} = \max \{ d_4(j), d_5(j) + i_n, d_6(j) - i_x \}, \quad \text{and} \quad i_{xe} = \min \{ d_7(j), d_8(j) - i_n, d_9(j) + i_x \},
\]

where

\[
d_1(j) = \max \{ b_1(j), a_1(j), b_2(j) + a_4(j), b_3(j) - a_7(j) \},
\]

\[
d_2(j) = \max \{ a_2(j), b_2(j) + a_5(j), b_3(j) - a_9(j) \},
\]

\[
d_3(j) = \max \{ a_3(j), b_2(j) + a_6(j), b_3(j) - a_9(j) \},
\]

\[
d_4(j) = \max \{ b_4(j), b_3(j) + a_4(j), b_6(j) - a_7(j) \},
\]

\[
d_5(j) = \max \{ b_5(j) + a_5(j), b_6(j) - a_8(j) \},
\]

\[
d_6(j) = \max \{ b_7(j) + a_4(j), b_9(j) - a_9(j) \},
\]

\[
d_7(j) = \min \{ b_7(j), b_9(j) - a_4(j), b_9(j) + a_7(j) \},
\]

\[
d_8(j) = \min \{ b_8(j) - a_4(j), b_9(j) + a_6(j) \}, \quad \text{and} \quad d_9(j) = \min \{ b_9(j) - a_6(j), b_9(j) + a_9(j) \}.
\]
Clearly $d_1(j), d_2(j), \ldots, d_9(j)$ are constants determined by j, and $d_1(j), d_2(j), \ldots, d_9(j)$ do not increase and $d_1(j), d_3(j)$ and $d_9(j)$ do not decrease when j increases.

(iii) By (i) above the edge function $f_e(L) = \{\chi_e, \mathcal{T}_e\}$ takes the following form for variable $L = (\chi', \mathcal{T})$:

\[
\chi_e' = \min\{j \mid (j, i_n, i_x) \in \mathcal{T}, j \geq c_2(j), j \geq \chi', j \geq c_2(j) + i_n \text{ and } j \geq c_3(j) - i_x\}, \tag{18}
\]

\[
\mathcal{T}_e = \{(j, i_n, i_x) \mid (j, i_n, i_x) \in \mathcal{T}\}, \tag{19}
\]

\[
i_{ne} = \max\{c_4(j), c_5(j) + i_n, c_6(j) - i_x\}, \quad \text{and} \tag{20}
\]

\[
i_{se} = \min\{c_7(j), c_8(j) - i_n, c_9(j) + i_x\}. \tag{21}
\]

where $c_1(j), c_2(j), \ldots, c_9(j)$ are constants determined by j, and furthermore $c_2(j), c_4(j), \ldots, c_9(j)$ do not increase and $c_3(j), c_5(j)$, and $c_7(j)$ do not decrease when j increases. Clearly \mathcal{T}_e can be computed from L in $O(1)$ time with $O(\Delta)$ processors. Therefore it suffices to show that χ_e' can be computed from L in $O(1)$ time with $O(\Delta)$ processors.

Let

\[
J_e = \{j \mid (j, i_n, i_x) \in \mathcal{T} \}
\]

Then $\chi_e' = \min\{j \mid j \in J_e\}$ by (18). Clearly set J_e can be found from L in $O(1)$ time with $O(\Delta)$ processors. Values $c_4(j), c_5(j)$, and i_n do not increase and i_n does not decrease when j increases. Therefore J_e is a set of consecutive integers, and hence $\chi_e' = \min\{j \mid j \in J_e\}$ can be computed in $O(1)$ time with $O(\Delta)$ processors.

(iii) As shown in the proof of (i), one can compute the intermediate parameters $a_1(j), a_2(j), \ldots, a_2(j)$ and $d_1(j), d_3(j), \ldots, d_9(j)$ for all $j, 1 \leq j \leq 3\Delta$, total in $O(1)$ time using $O(\Delta)$ processors, and hence at each shunt operation the composition of edge function $f_e(L)$ can be done in $O(1)$ time with $O(\Delta)$ processors. Q.E.D.

By Theorem 3.1, Lemmas 3.2 and 3.3, we conclude the following theorem.

Theorem 3.4. Let G be a series-parallel multigraph with maximum degree Δ given by its binary decomposition tree. Then the chromatic index of G can be decided in $O(\log n)$ time with $O(\Delta n/\log n)$ processors.
4. CONCLUSION

In this paper we have given an NC parallel algorithm for the edge-coloring problem on series-parallel multigraphs $G = (V, E)$. Our algorithm is the first NC algorithm for the problem, and takes $O(\log n)$ time with $O(\Delta n / \log n)$ processors. The time complexity is optimal within a constant factor, but the number of processors is expected to be improved to $O(|E| / \log n)$.

Zhou, Nakano, and Nishizeki recently obtained a linear sequential algorithm and an optimal parallel algorithm for the edge-coloring problem on partial k-trees for fixed k. The algorithms decompose a partial k-tree with large maximum degree to several edge-disjoint subgraphs with small maximum degrees [19, 20]. The parallel algorithm takes $O(\log n)$ time with $O((6k)^{k(k+1)/2} n / \log n)$ processors. The constant $(6k)^{k(k+1)/2}$ is bounded but large.

Combining our algorithm for series-parallel multigraphs and the parallel algorithm above for partial k-trees [20] one can immediately obtain a truly practical and optimal parallel algorithms to solve the edge-coloring problem for series-parallel simple graphs in $O(\log n)$ time with $O(n / \log n)$ processors. The constant is very small. The combined algorithm is essentially the same as one for partial k-trees except that it finds edge-colorings of decomposed series-parallel simple graphs with small $\Delta (\leq 12)$ in $O(\log n)$ time with $O(\Delta n / \log n)$ processors by the algorithm in this paper in place of the dynamic programming algorithm, which was the obstruction to reducing the constant.

Our algorithm in this paper solves a single particular problem, that is, the edge-coloring problem. However, the methods which we developed in this paper appear to be useful for many other problems, especially for the "edge-partition problem with respect to property π" which asks that the edge set of a given graph can be partitioned into a minimum number of subsets so that the subgraph induced by each subset satisfies the property π. For the edge-coloring problem, π is indeed a matching.

ACKNOWLEDGMENTS

We thank Dr. Shin-ichi Nakano for various comments and for help in preparing this paper. We thank the anonymous referees for many useful comments. This research is partly supported by a Grant in Aid for Scientific Research of the Ministry of Education, Science, and Culture of Japan under General Research (C) 04650300.
REFERENCES

5. Y. Caspi and E. Dekel, A near-optimal parallel algorithm for edge-coloring outerplanar graphs, manuscript, Computer Science Program, University of Texas at Dallas, Richardson, TX, 1992.

