Decompositions to Degree-Constrained Subgraphs
Are Simply Reducible to Edge-Colorings

Xiao Zhou and Takao Nishizeki

Graduate School of Information Sciences, Tohoku University,
Aoba-yama 05, Sendai 980-8579, Japan
E-mail: zhou@eeci.tohoku.ac.jp; nishi@eeci.tohoku.ac.jp
Received October 28, 1997

The degree-constrained subgraphs decomposition problem, such as an \(f \)-coloring, an \(f \)-factorization, and a \([g,f]\)-factorization, is to decompose a given graph \(G=(V,E) \) to edge-disjoint subgraphs degree-constrained by integer-valued functions \(f \) and \(g \) on \(V \). In this paper we show that the problem can be simply reduced to the edge-coloring problem in polynomial-time. That is, for any positive integer \(k \), we give a polynomial-time transformation of \(G \) to a new graph such that \(G \) can be decomposed to at most \(k \) degree-constrained subgraphs if and only if the new graph can be edge-colored with \(k \) colors.

1. INTRODUCTION

A degree-constrained subgraphs decomposition is to decompose a given graph \(G=(V,E) \) to edge-disjoint spanning subgraphs satisfying a degree constraint. For example, an \(f \)-coloring decomposes \(G \) to subgraphs (color classes) in each of which the degree of every vertex \(v \in V \) does not exceed \(f(v) \), where \(f : V \to \mathbb{N} \) is a function assigning a natural number \(f(v) \) to vertex \(v \in V \) \([8, 16]\). Figure 1(a) illustrates an \(f \)-coloring of a graph \(G \) with three colors, that is, a decomposition of \(G \) into three edge-disjoint subgraphs, which are indicated by solid, thick, and dashed lines. The simplest example of such a decomposition is an edge-coloring to color all edges of \(G \) so that no two adjacent edges are colored with the same color: An edge-coloring is an \(f \)-coloring where \(f : V \to \{1\} \) is a constant function. Other examples are the following \(f \)- and \([g,f]\)-factorizations \([2, 4, 12, 19]\). An \(f \)-factorization of \(G \) is a decomposition of \(G \) to edge-disjoint spanning subgraphs in each of which the degree of every vertex \(v \) is exactly equal to \(f(v) \). A \([g,f]\)-factorization of \(G \) is a decomposition of \(G \) to edge-disjoint subgraphs such that the degree \(d(v) \) of each vertex \(v \) satisfies \(g(v) \leq d(v) \leq f(v) \) for each subgraph, where \(g(v) \) is a nonnegative integer assigned to vertex...
The degree-constrained subgraphs decomposition problem is to find a decomposition into the minimum number of subgraphs. Since the edge-coloring problem is NP-complete [10], the degree-constrained subgraphs decomposition problem is also NP-complete in general. Therefore the theory of NP-completeness immediately implies that there exists a polynomial-time reduction of the degree-constrained subgraphs decomposition problem to the edge-coloring problem plausibly through another NP-complete problem, say 3-SAT [1]. However, no simple direct reduction has been known so far.

In this paper we show that the degree-constrained subgraphs decomposition problem can be simply reduced to the edge-coloring problem in polynomial time. We first give a very simple reduction of the f-coloring problem to the ordinary edge-coloring problem. That is, we show that, given a multigraph G together with a function f and a positive integer k, one can directly construct in polynomial-time a new simple graph $G_{f,k}$ such that there is an f-coloring of G with at most k colors if and only if there is an edge-coloring of $G_{f,k}$ with k colors. It should be noted that the theory of NP-completeness does not imply the existence of such a single simple graph $G_{f,k}$. We construct $G_{f,k}$ from G by inserting an appropriate bipartite graph $P(v)$ for each vertex $v \in V$, as illustrated in Fig. 1. We then derive, from the construction above, necessary and sufficient conditions for a graph G to have an f-factorization or a $[g,f]$-factorization. Finding such conditions has been an open problem in graph theory [2]. The conditions immediately imply that the f- and $[g,f]$-factorization problems can be reduced to the edge-coloring problem in polynomial time. The construction also implies that the edge-coloring problem for multigraphs can be easily reduced to the edge-coloring problem for simple graphs. Thus we show that the degree-constrained subgraphs decomposition problem is not more intractable than the ordinary edge-coloring problem although the former
appears to be more difficult than the latter. An early version of the paper has been presented at [21].

2. PRELIMINARIES

In this section we first give some definitions, then review a trivial reduction, and finally observe that the \(f \)-coloring problem with \(k \) colors can be solved in linear time if \(k \leq 2 \).

Let \(G = (V, E) \) denote a graph with vertex set \(V \) and edge set \(E \). We often denote by \(V(G) \) and \(E(G) \) the vertex set and the edge set of \(G \), respectively. We assume that \(G \) has no selfloops but may have multiple edges, that is, \(G \) is a so-called multigraph. If \(G \) has no multiple edges, then \(G \) is called a simple graph. An edge joining vertices \(u \) and \(v \) is denoted by \((u, v)\). The degree of vertex \(v \in V(G) \) is denoted by \(d(v, G) \) or simply by \(d(v) \). The maximum degree of \(G \) is denoted by \(\Delta(G) \) or simply by \(\Delta \). A graph \(G = (V, E) \) is bipartite if \(V \) is partitioned to two partite sets \(U_b \) and \(W_b \) so that \(u \in U_b \) and \(v \in W_b \) for every edge \((u, v) \in E\).

An edge-coloring of a graph \(G = (V, E) \) is to color all the edges of \(G \) so that no two adjacent edges are colored with the same color. The minimum number of colors needed for an edge-coloring is called the chromatic index of \(G \) and denoted by \(\chi'(G) \). Clearly \(\chi'(G) \geq \Delta(G) \). Kőnig showed that \(\chi'(G) = \Delta(G) \) if \(G \) is bipartite [7, 14]. Vizing showed that \(\chi'(G) = \Delta(G) \) or \(\Delta(G) + 1 \) if \(G \) is a simple graph [7, 18]. The edge-coloring problem is to find an edge-coloring of \(G \) with \(\chi'(G) \) colors.

Let \(f : V \to \mathbb{N} \) be a function which assigns a natural number \(f(v) \in \mathbb{N} \) to each vertex \(v \in V \). We assume without loss of generality \(f(v) \leq d(v) \) for every vertex \(v \in V \). Then an \(f \)-coloring of \(G \) is to color all the edges of \(G \) so that, for each vertex \(v \in V \), at most \(f(v) \) edges incident to \(v \) are colored with the same color [8, 16]. Thus an \(f \)-coloring of \(G \) is a partition of \(E \) into subsets, each inducing a spanning subgraph whose vertex-degrees are bounded above by \(f \). An ordinary edge-coloring is a special case of an \(f \)-coloring such that \(f(v) = 1 \) for every vertex \(v \in V \). The minimum number of colors needed for an \(f \)-coloring is called the \(f \)-chromatic index of \(G \) and denoted by \(\chi'_f(G) \). The \(f \)-coloring problem is to find an \(f \)-coloring of \(G \) with \(\chi'_f(G) \) colors for a given graph \(G \). Let \(d_f(v, G) = \lceil d(v, G)/f(v) \rceil \) for \(v \in V \), and let \(\Delta_f(G) = \max \{ d_f(v, G) \mid v \in V(G) \} \). Clearly \(\chi'_f(G) \geq \Delta_f(G) \). It is known that \(\chi'_f(G) = \Delta_f(G) \) for any bipartite graph \(G \) and that \(\chi'_f(G) = \Delta_f + 1 \) for any simple graph \(G \) [8].

We have given the following trivial reduction of an \(f \)-coloring to an edge-coloring [20]. For each vertex \(v \in V \) of a graph \(G \), replace \(v \) with \(f(v) \) copies \(v_1, v_2, \ldots, v_{f(v)} \), and attach to the copies the \(d(v) \) edges which were incident to \(v \) in \(G \); attach \(\lceil d(v)/f(v) \rceil \) or \(\lfloor d(v)/f(v) \rfloor \) edges to each copy \(v_i \),
Let \(G_f \) be the resulting graph. It should be noted that the construction of \(G_f \) is not unique. Figure 2 illustrates \(G \) and an example of \(G_f \), where the number next to vertex \(v \) is \(f(v) \). Clearly \(\Delta(G_f) = \Delta_f(G) \). Since an edge-coloring of \(G_f \) immediately induces an \(f \)-coloring of \(G \) with the same number of colors, we have

\[
\chi'_f(G) \leq \chi'(G_f). \tag{1}
\]

If \(G \) is a simple graph then \(G_f \) is also a simple graph, and if \(G \) is bipartite then \(G_f \) is also bipartite. Therefore, the results of Vizing and König \cite{14, 18} together with the reduction above immediately imply that \(\chi'_f(G) = \Delta_f(G) \) or \(\Delta_f(G) + 1 \) if \(G \) is a simple graph and that \(\chi'_f(G) = \Delta_f(G) \) if \(G \) is bipartite. Thus the reduction is trivial but very useful. However, Eq. (1) does not always hold in equality. For example, \(\chi'_f(G) = 2 \) for a graph \(G \) in Fig. 2(a) as indicated by solid and dashed lines, but \(\chi'(G_f) = 3 \) for a graph \(G_f \) in Fig. 2(b) as indicated by solid, dashed and thick lines.

In the next section, for any positive integer \(k \) we give a sophisticated transformation of a multigraph \(G \) to a new simple graph \(G_{2k} \) such that \(\chi'_f(G) \leq k \) if and only if \(\chi'(G_{2k}) \leq k \). In particular for a simple graph \(G \), we show that Eq. (1) holds in equality: \(\chi'_f(G) = \chi'(G_{2k}) \) when \(k = \Delta_f(G) \).

Clearly a multigraph \(G \) satisfies \(\chi'_f(G) = 1 \) if \(\Delta_f(G) = 1 \). Furthermore one can easily observe the following lemma, whose proof will be given in Appendix A.

Lemma 2.1. Let \(G = (V, E) \) be a connected multigraph with \(\Delta_f(G) = 2 \). Then the following (a) and (b) hold:

(a) \(\chi'_f(G) \) is either 2 or 3; and

(b) \(\chi'_f(G) = 2 \) if and only if

- \(|E| \) is an even number, or
- \(d(v, G) \leq 2(v) - 1 \) for a vertex \(v \in V \).
Thus the f-coloring problem can be easily solved in linear time if $\Delta_f(G) \leq 2$. Therefore, in the remainder of this paper, we may assume that $\Delta_f(G) \geq 3$ and $k \geq 3$.

3. SIMPLE REDUCTION

In this section, for any $k \geq 3$ we give a direct and sophisticated transformation of a graph G to a new graph G_{fk} such that $\chi'_f(G) \leq k$ if and only if $\chi'(G_{fk}) \leq k$.

We use the following graph P_{dk}, called a (d, k)-permutation graph, as a building-block to construct G_{fk} from G. (See Fig. 3.) For positive integers $d \geq 1$ and $k \geq 3$, let P_{dk} be a bipartite simple graph such that:

- there are d input vertices $U = \{u_1, u_2, \ldots, u_d\}$ and d input edges $E_i = \{e_{i1}, e_{i2}, \ldots, e_{id}\}$ incident to input vertices;
- there are d output vertices $W = \{w_1, w_2, \ldots, w_d\}$ and d output edges $E_o = \{e_{o1}, e_{o2}, \ldots, e_{od}\}$ incident to output vertices;
- $d(\mathbf{v}, P_{dk}) = 1$ if $\mathbf{v} \in U \cup W$;
- otherwise.

Thus $\Delta(P_{dk}) = k$. Let $C = \{c_1, c_2, \ldots, c_k\}$ be any set of k colors. We call P_{dk} a (d, k)-permutation graph if the following Properties (i) and (ii) hold for edge-colorings of P_{dk} with k colors in C:

(i) the output color sequence is always a permutation of the input color sequence: more precisely, for any edge-coloring of P_{dk} with k colors, the sequence of colors of output edges is a permutation of that of input edges; and

(ii) the input color sequence can be arbitrarily permuted to the output color sequence: more precisely, for any sequence of colors $C_i = \{c_{i1}, c_{i2}, \ldots, c_{id}\}$ and for any permutation $C_o = \{c_{o1}, c_{o2}, \ldots, c_{od}\}$ of C_i,

![FIG. 3. Permutation graph P_{dk}.](image-url)
there is an edge-coloring of P_{dk} with k colors such that input edge e_{ix} is colored by c_{ix} and output edge e_{ox} is colored by c_{ox} for each x, $1 \leq x \leq d$.

The following lemma holds on P_{dk}.

Lemma 3.1. For any $d \geq 1$ and $k \geq 3$ there is a (d, k)-permutation graph P_{dk} such that $|E(P_{dk})| = O(dk^3 \max\{1, \log_k d\})$.

A proof of Lemma 3.1 and a construction of P_{dk} similar to the well-known Clos switching network [6, 11] will be given in Section 5.

We construct G_{fk} from G and copies of P_{dk} as follows (see Fig. 1):

- (a) for each vertex $v \in V$, replace v by a copy $P(v)$ of $P_{d(v)k}$, and merge the $d(v)$ output vertices $w_1, w_2, ..., w_{d(v)}$ of $P(v)$ to $f(v)$ vertices $v_1, v_2, ..., v_{f(v)}$ so that $d(v_j, G_{fk}) = \lceil d(v, G)/f(v) \rceil$ or $\lceil d(v, G)/f(v') \rceil$ for any j, $1 \leq j \leq f(v)$; and

- (b) for each edge $e = (v, v') \in E$, identify, as a single edge, an input edge of $P(v)$ and an input edge of $P(v')$ which are surrogates of e.

Clearly,

$A(G_{fk}) = \begin{cases} k, & \text{if } k \geq A_f(G); \\ A_f(G), & \text{otherwise}. \end{cases}$

Furthermore G_{fk} is a simple graph even if G has multiple edges. Figure 1(b) illustrates G_{fk} for the graph G in Fig. 1(a).

We have the following theorem on G_{fk} as the main result of the paper.

Theorem 3.2. Let $G = (V, E)$ be any multigraph with $A_f(G) \geq 3$, and let k be any integer with $k \geq 3$. Then

- (a) $\chi'_f(G) \leq k$ if and only if $\chi'(G_{fk}) = k$; and

- (b) the size of G_{fk} is polynomial in $|E|$, more precisely

$|E(G_{fk})| = O(|E| A_f(G)^3 \log A_f A)$.

Proof. (a) For the case $k < A_f(G)$, we have $\chi'_f(G) > A_f(G) > k$, $\chi'(G_{fk}) > A_f(G) = A_f(G) = k$, and hence the claim holds. Thus we may assume that $k \geq A_f(G)$. In this case $A_f(G_{fk}) = k$.

Sufficiency. Suppose that $\chi'(G_{fk}) = k = A_f(G_{fk})$. Then there is an edge-coloring of G_{fk} with k colors, as illustrated in Fig. 1(b). For every vertex $v \in V$, all the edges incident to each of vertices $v_1, v_2, ..., v_{f(v)}$ are colored with different colors, and hence at most $f(v)$ of the $d(v)$ output edges of $P(v)$ are colored with the same color. Therefore, by Property (i) above, at
most $f(v)$ of the input edges are colored with the same color. Thus the coloring of input edges in $G_{f_{k}}$ immediately induces an f-coloring of G with k colors, as illustrated in Fig. 1(a). Hence $\chi'_f(G) \leq k$.

Necessity. Suppose that $\chi'_f(G) \leq k$. Then there is an f-coloring of G with k colors c_1, c_2, \ldots, c_k, as illustrated in Fig. 1(a). Construct a partial edge-coloring of $G_{f_{k}}$ in which every input edge e_{ix} is assigned the same color as the edge of G corresponding to e_{ix}. For every vertex $v \in V$, let $C_i = \{c_{i1}, c_{i2}, \ldots, c_{id(v)}\}$ be the input color sequence of $P(v)$ decided in this way. Since the same color appears in C_i at most $f(v)$ times and $d(v)_{G_{f_{k}}} = \lceil d(v)/f(v) \rceil$ or $\lfloor d(v)/f(v) \rfloor$ for any j, $1 \leq j \leq f(v)$, one can easily observe that there is a permutation $C_o = \{c_{o1}, c_{o2}, \ldots, c_{od(v)}\}$ of C_i such that all colors of the output edges incident to v are distinct from each other for any j, $1 \leq j \leq f(v)$. Therefore, by Property (ii), one can extend the partial edge-coloring above to an edge-coloring of $G_{f_{k}}$ with k colors, as illustrated in Fig. 1(b). Hence $\chi'(G_{f_{k}}) \leq k$. Since $\chi'(G_{f_{k}}) \geq \Delta(G_{f_{k}}) = k$, we have $\chi'(G_{f_{k}}) = k$.

(b) $|E(G_{f_{k}})|$ is polynomial in $|E|$.

Since $A_f(G) \leq \chi'_f(G) \leq 2A_f(G)$ (see Eq. (4) below), one may assume that $A_f(G) \leq k \leq 2A_f(G)$. Therefore by Lemma 3.1 we have

$$|E(P(v))| = O(d(v)(A_f)^3 \max \{1, \log_d A\})$$

for each vertex $v \in V$. Furthermore $d(v) \leq A(G)$ and $\sum_{v \in V} d(v) = 2|E|$. Thus we have

$$|E(G_{f_{k}})| \leq \sum_{v \in V} |E(P(v))| \leq O\left(\sum_{v \in V} d(v)(A_f)^3 \log_d A\right) \leq O(|E| (A_f)^3 \log_d A).$$

Q.E.D

The number of edges joining vertices u and v in a multigraph G is called the **edge-multiplicity** of (u, v), and denoted by $\mu(u, v)$. Let $\mu(u) = \max\{|\mu(u, v)| \mid (u, v) \in E\}$, and let $\mu(G) = \max\{|\mu(u)| \mid u \in V\}$. Let $\mu_f(G) = \max\{|\mu(v)/f(v)| \mid v \in V\}$, then $\mu_f(G) \leq A_f(G)$. Vizing [7, 18] showed that any multigraph G satisfies

$$\chi'(G) \leq A(G) + \mu(G).$$

(2)
On the other hand, Hakimi and Kariv [8] showed that any multigraph G satisfies

$$
\chi'_f(G) \leqslant \max_{v \in V} \left[\frac{d(v) + \mu(v)}{f(v)} \right].
$$

This result immediately implies

$$
\chi'_f(G) \leq A_f(G) + \mu_f(G),
$$

and hence

$$
\chi'_f(G) \leq 2A_f(G).
$$

Eq. (3) can be immediately derived also from Eq. (2) and the trivial reduction illustrated in Fig. 2, because it is easy to construct G_f such that $\Delta(G_f) = A_f(G)$ and $\mu(G_f) \leq \mu_f(G)$.

Theorem 3.2 and Eq. (3) immediately imply the following corollary.

Corollary 3.3. For any multigraph G with $A_f(G) \geq 3$

$$
\chi'_f(G) = \min\{k \mid A_f(G) \leq k \leq A_f(G) + \mu_f(G), \chi'(G_{f_k}) = k\}.
$$

Given an edge-coloring of a simple graph G_{f_k} with $\chi'(G_{f_k}) = k$ colors, one can immediately find an f-coloring of a multigraph G with k colors. Therefore the f-coloring problem for a multigraph is polynomial-time reducible to the ordinary edge-coloring problem for simple graphs. Indeed, by the binary search, one can solve the f-coloring problem for a multigraph G, solving the edge-coloring problem for simple graphs at most $\lceil \log_2(\mu_f(G) + 2) \rceil$ times.

The edge-coloring problem looks to be more intractable for multigraphs than for simple graphs, because $\chi'(G) = A$ or $A + 1$ for simple graphs G, but $A \leq \chi'(G) \leq A + \mu(G)$ for multigraphs G. However, since an edge-coloring is an f-coloring in which $f(v) = 1$ for each vertex $v \in V$, we have the following corollary.

Corollary 3.4. An edge-coloring problem for a multigraph can be easily reduced to an edge-coloring problem for simple graphs in polynomial-time.

We denote G_{f_k} with $k = A_f(G)$ simply by G_{f_k}. Then $\Delta(G_{f_{k+1}}) = k = A_f(G)$, and Eq. (1) holds in equality for simple graphs as follows.
COROLLARY 3.5. For any simple graph G with $A_f(G) \geq 3$

$$\chi'_f(G) = \chi'(G_{fA}).$$

Proof. We first claim $\chi'_f(G) \leq \chi'(G_{fA})$. Since G and G_{fA} are simple graphs, $\chi'(G_{fA}) = A(G_{fA})$ or $A(G_{fA}) + 1$, and $\chi'_f(G) = A_f(G)$ or $A_f(G) + 1$. If $\chi'_f(G_{fA}) = A(G_{fA}) + 1$, then

$$\chi'_f(G) \leq A_f(G) + 1 = A(G_{fA}) + 1 = \chi'(G_{fA}).$$

If $\chi'_f(G_{fA}) = A_f(G_{fA})$, then by Theorem 3.2 $\chi'_f(G) \leq A_f(G) = A(G_{fA}) = \chi'(G_{fA}).$

We next claim $\chi'_f(G) \geq \chi'(G_{fA})$. If $\chi'_f(G) = A_f(G) + 1$, then

$$\chi'_f(G) = A_f(G) + 1 = A(G_{fA}) + 1 \geq \chi'(G_{fA}).$$

If $\chi'_f(G) = A_f(G)$, then by Theorem 3.2 $\chi'_f(G) = A_f(G) = \chi'(G_{fA}).$ Q.E.D

4. FACTORIZATIONS

In this section, using the graph transformation in Section 3, we give necessary and sufficient conditions for a graph to have an f-factorization or a $[g,f]$-factorization.

An f-factor of a graph $G = (V,E)$ is a spanning subgraph H of G such that $d(v,H) = f(v)$ for every $v \in V$ \[9, 17\]. An f-factor in G is drawn in thick lines in Fig. 4(a). Tutte showed that the existence of an f-factor in G can be reduced to the existence of a 1-factor, that is, a perfect matching, in

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{tutte_transformation.png}
\caption{Tutte's transformation.}
\end{figure}
a new graphs G_T constructed from G as follows [17]. For each vertex v of
G, replace v with a complete bipartite graph $K_{d(v),d(v)-f(v)}$ and attach to
each of the $d(v)$ left vertices of $K_{d(v),d(v)-f(v)}$ one of the $d(v)$ edges which
were incident to v in G. Let G_T be the resulting graph. Then one can
observe that G has an f-factor if and only if G_T has a 1-factor. A 1-factor
in G_T is drawn in thick lines in Fig. 4(b). (Tutte’s original construction
replaces each vertex v of G with a complete bipartite graph $K_{d(v),f(v)}$. In this
case, the complement of a 1-factor in a new graph corresponds to an
f-factor in G [17].)

An f-factorization of a graph $G=(V,E)$ is a partition of set E into subsets
each of which induces a f-factor [2]. An f-factorization into 1-factors is
called a 1-factorization. Thus an f-factorization of G into k factors is indeed
an f-coloring with k colors in which each of the color classes induces an
f-factor. The trivial necessary condition for a multigraph G to have an
f-factorization is that all vertices v of G satisfy

$$d(v) = kf(v)$$

for the same integer k. For the case $k = 1$, G itself is an f-factorization of
G. For the case $k = 2$, Lemma 2.1 implies that G has an f-factorization if
and only if every connected component of G has an even number of edges.
For the case $k = 3$, we have the following corollary from Theorem 3.2.

Corollary 4.1. Let G be a multigraph satisfying the trivial condition
Eq. (5) for $k \geq 3$. Then G has an f-factorization if and only if $\varphi(G_{k'}) = k$,
that is, the k-regular graph $G_{k'}$ has a 1-factorization.

Corollary 4.1 has a resemblance to Tutte’s classical result above, and is
interesting in its own right since finding such a necessary and sufficient
condition for a graph to have an f-factorization has been an open problem
in graph theory [2].

Let $G=(V,E)$ be a graph, and let $f: V \rightarrow N$ and $g: V \rightarrow Z$ be functions
which assign to each vertex $v \in V$ a positive integer $f(v)$ and a nonnegative
integer $g(v)$ such that $g(v) \leq f(v)$. A $[g,f]$-factor of a graph $G=(V,E)$ is
a spanning subgraph H of G such that $g(v) \leq d(v,H) \leq f(v)$ for each vertex
$v \in V$ [3, 13]. A $[g,f]$-factorization of G is a partition of set E into subsets
each of which induces a $[g,f]$-factor [4, 12, 19]. The f-coloring is a special case of
the $[g,f]$-factorization in which $g: V \rightarrow \{0\}$ is a constant function.
The trivial necessary condition for a multigraph G to have a
$[g,f]$-factorization into k factors is that for every vertex v in G

$$kg(v) \leq d(v) \leq kf(v).$$
The $[g, f]$-factorization problem is to find a $[g, f]$-factorization of a given graph G into the minimum number of $[g, f]$-factors.

Cai\(^1\) has shown that the $[g, f]$-factorization problem can be reduced to the f-coloring problem, as follows [5]. Let G be a multigraph satisfying the trivial necessary condition Eq. (6) for $k \geq 1$. For each vertex $v \in V$ such that $k(f(v) - d(v, G)) \geq 1$, add to G a new vertex v^* and $kf(v) - d(v, G)$ multiple edges joining v and v^*. Let G^* be the resulting graph. Define a new function $f^* : V(G^*) \to \mathbb{N}$ as follows

$$f^*(v) = f(v) \quad \text{if} \quad v \in V(G);$$

and

$$f^*(v^*) = f(v) - g(v) \quad \text{if} \quad v^* \in V(G^*) - V(G) \quad \text{and} \quad (v^*, v) \in E(G^*).$$

One can observe that G has a $[g, f]$-factorization into k factors if and only if G^* can be f^*-colored with k colors, that is, $\chi'_f(G^*) = k$ [5]. We therefore have the following corollary from Theorem 3.2.

Corollary 4.2. Let G be a multigraph satisfying the trivial condition Eq. (6) for $k \geq 3$. Then a multigraph G has a $[g, f]$-factorization into k factors if and only if $\chi'(G^*_{sk}) = k$.

Thus the f- and $[g, f]$-factorization problems for a multigraph can be reduced to the ordinary edge-coloring problem for simple graphs in polynomial time.

5. CONSTRUCTION OF PERMUTATION GRAPHS

In this section we give a construction of a (d, k)-permutation graph $P_{d,k}$, and prove Lemma 3.1. The difficulty in the construction of $P_{d,k}$ stems from the degree requirement: all vertices v except the input and output vertices must satisfy $d(v, P_{d,k}) = k$, regardless of the number d of input vertices. We first recursively construct $P_{(k-1)^d,k}$, $q \in \mathbb{N}$, as illustrated in Fig. 5. We then construct $P_{d,k}$ from $P_{(k-1)^d,k}$, $d \leq (k-1)^q$, by identifying $(k-1)^q - d$ redundant pairs of input and output edges as single edges, as illustrated in Fig. 6.

For the case $q = 1$, we construct $P_{(k-1)^d,k}$ from a complete bipartite graph $K_{(k-1)^d-1, k-1}$ by attaching $k-1$ input edges to the left vertices and $k-1$ output edges to the right vertices of $K_{(k-1)^d-1, k-1}$. Thus $|E(P_{(k-1)^d,k})| = (k-1)(k+1)$, and $\lambda(P_{(k-1)^d,k}) = k$; all input and output vertices have degree 1 and all others have degree k.

\(^1\) The authors thank Professor M. C. Cai of the Chinese Academy of Science for helpful discussions on the $[g, f]$-factorization problem.
FIG. 5. Construction of a $((k - 1)^q, k)$-permutation graph with $q \geq 2$.

FIG. 6. Construction of P_{dk} from $P_{(k-1)^qk}$.
For the case $q \geq 2$, we recursively construct $P_{(k-1)\varphi k}$ as illustrated in Fig. 5. The construction is similar to that of the well-known Clos switching network [6, 11, 15]. $P_{(k-1)\varphi k}$ consists of three stages connected in cascade. The first stage consists of $(k-1)^{\varphi -1}$ copies $B_{31}, B_{12}, ..., B_{(k-1)^{\varphi -1}}$ of $P_{(k-1)k}$. The second stage consists of $k-1$ copies $B_{32}, B_{22}, ..., B_{2(k-1)}$ of $P_{(k-1)^{\varphi -1}k}$. The third stage consists of $(k-1)^{\varphi -1}$ copies $B_{33}, B_{32}, ..., B_{(k-1)^{\varphi -1}}$ of $P_{(k-1)k}$. Denote by $e_{\alpha}(B)$ the xth input edge and by $e_{\alpha}(B)$ the xth output edge of a permutation graph B. For all integers x and y, 1 $\leq x \leq k-1$ and $1 \leq y \leq (k-1)^{\varphi -1}$, the output edge $e_{\alpha}(B_{1y})$ is identified with the input edge $e_{\alpha}(B_{2x})$, and the input edge $e_{\alpha}(B_{3y})$ is identified with the output edge $e_{\alpha}(B_{2x})$.

One can easily known that $P_{(k-1)\varphi k}$ is a bipartite simple graph and $\Delta(P_{(k-1)\varphi k})=k$; all input and output vertices have degree 1, and all the others have degree k. It is known that such P_{φ}, $d=(k-1)^{\varphi}$, is a so-called switching network: For any permutation $\{j_1, j_2, ..., j_d\}$ of $\{1, 2, ..., d\}$, P_{φ} contains d vertex-disjoint paths, each starting at an input vertex $u_x \in U$ and ending at the output vertex $w_y \in W$, 1 $\leq x \leq d$ [6, 11]. We give a stronger result, that is, we prove that P_{φ} satisfies Properties (i) and (ii), and hence have the following lemma.

Lemma 5.1. For any integers $k \geq 3$ and $q \geq 1$, there is a $((k-1)^{\varphi}, k)$-permutation graph $P_{(k-1)\varphi k}$ such that $|E(P_{(k-1)\varphi k})| < 2qk(k-1)^{\varphi}$.

Proof. (a) We first verify that $|E(P_{(k-1)\varphi k})| < 2qk(k-1)^{\varphi}$. The size of the graph $P_{(k-1)\varphi k}$ is

$$|E(P_{(k-1)\varphi k})| = (k-1) |E(P_{(k-1)^{\varphi -1}k})| + 2(k-1)^{\varphi -1} |E(P_{(k-1)k})|$$

$$- 2(k-1)^{\varphi}$$

$$= (k-1) |E(P_{(k-1)^{\varphi -1}k})| + 2k(k-1)^{\varphi}.$$

Solving the recursive equation above, we have

$$|E(P_{(k-1)\varphi k})| = (2qk - k + 1)(k-1)^{\varphi} < 2qk(k-1)^{\varphi}.$$

(b) We then prove that $P_{(k-1)\varphi k}$ satisfies Property (i). Let U_{φ} and W_{φ} be the partite sets of the bipartite graph $P_{(k-1)\varphi k}$, that is, let $P_{(k-1)\varphi k}=(U_{\varphi} \cup W_{\varphi}, E_{\varphi})$. Since $P_{(k-1)\varphi k}$ is symmetric, $|U_{\varphi}| = |W_{\varphi}|$. Furthermore one may assume that U_{φ} contains all input vertices, and W_{φ} contains all output vertices, that is, $U \subseteq U_{\varphi}$ and $W \subseteq W_{\varphi}$. Consider any edge-coloring of $P_{(k-1)\varphi k}$ with k colors $c_1, c_2, ..., c_k$ in C. Exactly one of the k edges incident to v is colored by c_j for every vertex $v \in (U_{\varphi} - U) \cup (W_{\varphi} - W)$ and every color $c_j \in C$. Therefore, if n_j edges in $P_{(k-1)\varphi k}$ are colored by c_j, then $n_j - |U_{\varphi} - U|$ input edges and
Proof of Lemma 3.1. We now construct a required \((d, k)\)-permutation graph \(P_{dk}\) from \(P_{(k-1)^2k}\). (See Fig. 6.) We choose the first \(d\) input vertices \(u_1, u_2, \ldots, u_d\) of \(P_{(k-1)^2k}\) as the input vertices of \(P_{dk}\) and the first \(d\) output vertices \(w_1, w_2, \ldots, w_d\) of \(P_{(k-1)^2k}\) as the output vertices of \(P_{dk}\). Therefore \(q\) must satisfy \((k-1)^2d \geq q\). Thus we choose \(q = \max\{2, \lceil \log_{k-1} d \rceil\}\). Note that \(k \geq 3\) and \((k-1)^2d \leq (k-1)^2q\) for such \(q\). Then we have
\[
|E(P_{(k-1)^2k})| = O(qk(k-1)^2) = O(dk^3 \max\{1, \log_k d\}).
\]
Identify a redundant pair of input edge \(e_{ix}\) and output edge \(e_{ox}\) as a single edge for each \(x\), \(d+1 \leq x \leq (k-1)^2\). Then clearly the resulting graph is a \((d, k)\)-permutation graph, \(|E(P_{dk})| = O(dk^3 \max\{1, \log_k d\})\), and \(P_{dk}\) has no multiple edges since \(q \geq 2\). (See Figs. 5 and 6.) Thus we have proved Lemma 3.1. Q.E.D

6. CONCLUSION

In this paper we gave a sophisticated transformation of a multigraph \(G\) to a new simple graph \(G_{fk}\) such that \(G\) can be \(f\)-colored with at most \(k\) colors if and only if \(G_{fk}\) can be edge-colored with \(k\) colors, as illustrated in Fig. 1. Thus the \(f\)-coloring problem for a multigraph \(G\) can be directly reduced to an ordinary edge-coloring problem for a new simple graph \(G_{fk}\). The size of \(G_{fk}\) is polynomial in the size of \(G\), and one can transform \(G\) to \(G_{fk}\) sequentially in polynomial-time. It is easy to know that one can transform \(G\) to \(G_{fk}\) in parallel in \(O(\log |V|)\) time with a polynomial number of operations, and hence the \(f\)-coloring problem is NC-reducible to the edge-coloring problem [11]. Although we assumed for simplicity that \(G\) has no selfloops, our transformation works well even if \(G\) has selfloops.

An exact edge-coloring of \(G_{fk}\) with \(k = A(G_{fk})\) colors immediately yields an \(f\)-coloring of \(G\) with \(k\) colors. However, an approximate edge-coloring of the simple graph \(G_{fk}\) with \(A(G_{fk})+1\) colors does not yield any approximate \(f\)-coloring of \(G\) since Properties (i) and (ii) do not always hold for the edge-coloring of \(P_{dk}\) with \(k+1 = A(G_{fk})+1\) colors. Thus our reduction does not preserve the worst-case ratio.

We furthermore showed that \(\chi_f(G) = \chi_f(G_{fk})\) for simple graphs \(G\) and that various other degree-constrained subgraphs decomposition problems
such as an f-factorization and a $[g, f]$-factorization can also be reduced to an ordinary edge-coloring problem.

Our transformation has a resemblance to Tutte's classical one to reduce the existence of an f-factor in a graph G to that of a perfect matching in a new graph G_T as illustrated in Fig. 4; both transformations use bipartite graphs as building blocks to construct a new graph, and reduce the general problems to their simplest versions. However, our building blocks are complicated ones constructed from Clos' switching networks as in Figs. 5 and 6 although Tutte's building blocks are simply complete bipartite graphs. Furthermore the idea behind our construction is different from Tutte's: Our building blocks permute color sequences, while in his transformation, the vertices in a new graph G_T that are not covered by the edges corresponding to an f-factor in G are covered by matchings in complete bipartite graphs.

APPENDICES

Appendix A: Proof of Lemma 2.1.

(a) Since $2 = A_f(G) \leq \chi'_f(G) \leq 3$. If G has a vertex of odd degree, then add a new vertex u to G and join u to each vertex of odd degree. Let G' be the resulting graph. Note that $G = G'$ if G has no vertex of odd degree in G. Since G' is connected and all vertices in G' have even degrees, G' is an Eulerian graph and has an Eulerian circuit. Color all edges of G' alternatively with colors c_1 and c_2 along the Eulerian circuit except the last edge, and color the last edge with color c_3. Then the coloring restricted to the edges of G is an f-coloring of G with at most three colors, because $A_f(G) = 2$ and hence $\lfloor d(v, G)/2 \rfloor \leq f(v)$ and at most $\lfloor d(v, G)/2 \rfloor$ edges incident to vertex v are colored by the same color for every vertex $v \in V$ even if v is the starting vertex of the circuit and $|E|$ is odd. Thus $\chi'_f(G) \leq 3$.

(b) We first prove the necessity. Suppose for a contradiction that $\chi'_f(G) = 2$ but $|E|$ is odd and $d(v, G) = 2f(v)$ for every vertex $v \in V$. Then, in an f-coloring of G with two colors c_1 and c_2, both the number of edges colored by c_1 and that by c_2 are equal to $(\sum_{v \in V} f(v))/2$, and hence $|E|$ must be even, a contradiction.

We next prove the sufficiency: if either $|E|$ is even or $d(v, G) \leq 2f(v) - 1$ for a vertex v, then $\chi'_f(G) = 2$. There are the following three cases.

Case 1. G is not an Eulerian graph.

In this case G has a vertex of odd degree. Add a new vertex u to G and join u to each vertex of odd degree. Let G' be the resulting Eulerian graph.
Color the edges of G alternatively with c_1 and c_2 along an Eulerian circuit starting and ending at u. Then the coloring restricted to the edges of G is an f-coloring of G with two colors c_1 and c_2 since $\lceil d(v)/2 \rceil \leq f(v)$ and at most $\lceil d(v)/2 \rceil$ edges incident to v are colored by the same color for every vertex $v \in V$.

Case 2. G is an Eulerian graph and $d(w, G) \leq 2f(w) - 2$ for a vertex $w \in V$.

Color the edges of G alternatively with c_1 and c_2 along an Eulerian circuit starting and ending at w. Even if $|E|$ is odd, at most $\frac{1}{2}d(w, G) + 1 (\leq f(w))$ edges incident to w are colored by the same color. Therefore the coloring is an f-coloring of G.

Case 3. G is an Eulerian graph, $d(v, G) = 2f(v)$ for every vertex $v \in V$, and $|E|$ is even.

Color the edges of G alternatively with colors c_1 and c_2 along any Eulerian circuit of G. Since $|E|$ is even, the coloring is an f-coloring of G with two colors c_1 and c_2.

Q.E.D.

Appendix B: Proof for (ii)

We prove by induction on q that $P_{(k-1)q}$ satisfies Property (ii).

As the induction base, we first prove that $P_{(k-1)q}$ satisfies Property (ii), that is, for any color sequence $C_i = \{c_{i1}, c_{i2}, ..., c_{i(k-1)}\}$ and any permutation $C_o = \{c_o1, c_o2, ..., c_{o(k-1)}\}$ of C_i, $P_{(k-1)q}$ can be edge-colored with k colors so that input edge e_{ia} is colored by c_{ia} and output edge e_{oa} is colored by c_{oa} for each $x_1 \leq x \leq k-1$. By Property (i) the output color sequence is a permutation of the input color sequence for any edge-coloring of $P_{(k-1)q}$ with k colors. Furthermore both the set of $k-1$ input vertices and the set of $k-1$ output vertices are symmetric each other in graph $P_{(k-1)q}$ since it is constructed from a complete bipartite graph $K_{k-1,k-1}$. Therefore it suffices to show that $P_{(k-1)q}$ can be edge-colored with k colors so that the input color sequence is a permutation of C_i. Since C_i contains at most $k-1$ colors, one of the k colors, say $c \in C_i$, does not appear in C_i. Color $K_{k-1,k-1}$ with the $k-1$ colors in $C - \{c\}$, and color all the input and output edges of $P_{(k-1)q}$ with the color c. Let c' be a color appearing in C_i, n' (\(\geq 1 \)) times. Then $P_{(k-1)q}$ contains at least n' vertex-disjoint cc'-alternating paths whose edges are colored alternately by c and c'. Each of these paths starts at an input edge colored by c, and ends at an output edge colored by c. Choose arbitrarily exactly n' paths among these cc'-alternating paths, and interchange the colors c and c' on the n' paths. Then exactly n' input edges and n' output edges are colored by c' in the resulting coloring of $P_{(k-1)q}$ with k colors. Repeating the operation above for all other colors in C_i one can obtain an edge-coloring of $P_{(k-1)q}$ with k colors such that
the input color sequence is a permutation of \(C_i\). Thus we have verified that \(P_{(k-1)q}^{(k-1)q} \) satisfies Property (ii).

We next assume as the induction hypothesis that \(P_{(k-1)q}^{(k-1)q} \) satisfies Property (ii), and prove that \(P_{(k-1)q}^{(k-1)q} \) satisfies Property (ii): The output color sequence can be an arbitrary permutation \(C_o = \{c_{o1}, c_{o2}, \ldots, c_{o(k-1)q}\}\). We first color the input edge \(e_{ix}\) by \(c_{ix}\) and the output edge \(e_{ox}\) by \(c_{ox}\) for each \(x\), \(1 \leq x \leq (k-1)^q\). We then decide the colors of edges in blocks on the second stage from the following bipartite multigraph \(G_B = (U_B \cup W_B, E_B)\) constructed from \(C_i\) and its arbitrary permutation \(C_o\). The partite sets \(U_B\) and \(W_B\) consist of the blocks on the first and the third stages, respectively:

\[
U_B = \{B_{11}, B_{12}, \ldots, B_{1(k-1)^{q-1}}\};
\]

and

\[
W_B = \{B_{31}, B_{32}, \ldots, B_{3(k-1)^{q-1}}\}.
\]

If the arbitrary permutation above permutes an input color \(c_{ix}\) to an output color \(c_{oy}\), then we join vertices \(B_{1j}\) and \(B_{3l}\) in graph \(G_B\) where \(B_{1j}\) is the block to which the input edge \(e_{ix}\) is connected and \(B_{3l}\) is the block to which the output edge \(e_{oy}\) is connected. Thus

\[
E_B = \{(B_{1j}(x), B_{3l}(x)) \mid 1 \leq x \leq (k-1)^q, \text{ color } c_{ix} \text{ is permuted to color } c_{oy}, \}
\]

\[
\begin{align*}
(j(x) &= \lceil x/(k-1) \rceil, \text{ and } \\
(l(x) &= \lceil y/(k-1) \rceil).
\end{align*}
\]

Since every vertex of the bipartite graph \(G_B\) has degree \(k-1\), \(G_B\) can be edge-colored with \(k-1\) colors. Therefore \(E_B\) can be partitioned into \(k-1\) perfect matchings \(M_1, M_2, \ldots, M_{k-1}\) of \(G_B\), each of which contains \((k-1)^{q-1}\) edges. From \(M_1\) we decide the colors of input and output edges of \(B_{21}\) as follows. For each of the \((k-1)^{q-1}\) edges \((B_{1j}(x), B_{3l}(x))\) of \(M_1\), we color both the first output edge of block \(B_{1j}(x)\) and the first input edge of block \(B_{3l}(x)\) with color \(c_{ix} = c_{oy}\). Then by the construction of \(P^{(k-1)q}\) these edges are input and output edges of \(B_{21}\). (See Fig. 5.) Furthermore the output color sequence of \(B_{21}\) decided in this way is a permutation of the input color sequence of \(B_{21}\). Therefore, by the inductive hypothesis, such a coloring of input and output edges of \(B_{21}\) can be extended to an edge-coloring of \(B_{21}\) with \(k\) colors. Similarly we decide the edge-colorings of \(B_{22}, B_{23}, \ldots, B_{2(k-1)}\) from perfect matchings \(M_2, M_3, \ldots, M_{k-1}\), respectively. We finally decide the coloring of blocks on the first and third stages. Clearly the output color sequence is a permutation of the input color sequence.
for each of blocks \(B_{i1}, B_{i2}, \ldots, B_{(k-1)q}, \ldots, B_{31}, B_{32}, \ldots, B_{3(k-1)q} \). Since \(P_{(k-1)q} \) satisfies Property (ii), these color sequences can be extended to edge-colorings of these blocks with \(k \) colors. Thus we have completed an edge-coloring of \(P_{(k-1)q} \) with \(k \) colors such that the input color sequence is \(C_i \) and the output color sequence is the specified permutation \(C_o \) of \(C_i \).

Q.E.D

REFERENCES

12. M. Kano, \([a, b]\)-factorization of a graph, J. Graph Theory 9 (1985), 129–146.