
Theoretical Computer Science 240 (2000) 407–427
www.elsevier.com/locate/tcs

Algorithms for generalized vertex-rankings
of partial k-trees

Md. Abul Kashema, Xiao Zhoub ; ∗, Takao Nishizekia

aGraduate School of Information Sciences, Tohoku University, Aoba-yama 05, Sendai 980-8579, Japan
bEducation Center for Information Processing, Tohoku University, Aoba-yama 05,

Sendai 980-8579, Japan

Abstract

A c-vertex-ranking of a graph G for a positive integer c is a labeling of the vertices of G
with integers such that, for any label i, deletion of all vertices with labels ¿i leaves connected
components, each having at most c vertices with label i. A c-vertex-ranking is optimal if the
number of labels used is as small as possible. We present sequential and parallel algorithms to
�nd an optimal c-vertex-ranking of a partial k-tree, that is, a graph of treewidth bounded by a
�xed integer k. The sequential algorithm takes polynomial-time for any positive integer c. The
parallel algorithm takes O(log n) parallel time using a polynomial number of processors on the
common CRCW PRAM, where n is the number of vertices in G. c© 2000 Elsevier Science
B.V. All rights reserved.

Keywords: Algorithm; Partial k-tree; Separator tree; Treewidth; Vertex-ranking

1. Introduction

An ordinary vertex-ranking of a graph G is a labeling (ranking) of the vertices of
G with positive integers such that every path between any two vertices with the same
label i contains a vertex with label j¿i [11]. Clearly a vertex-labeling is a vertex-
ranking if and only if, for any label i, deletion of all vertices with labels ¿i leaves
connected components, each having at most one vertex with label i. The integer label
of a vertex is called the rank of the vertex. The vertex-ranking problem, also called
the ordered coloring problem [16], is to �nd a vertex-ranking of a given graph G using
the minimum number of ranks. The vertex-ranking problem has applications in VLSI
layout and in scheduling the parallel assembly of a complex multi-part product from its
components [11]. The vertex-ranking problem is NP-hard in general [3, 21], while Iyer

∗ Corresponding author.
E-mail addresses: kashem@nishizeki.ecei.tohoku.ac.jp (Md.A. Kashem), zhou@ecip.tohoku.ac.jp (X.

Zhou), nishi@ecei.tohoku.ac.jp (T. Nishizeki).

0304-3975/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(99)00240 -6

408 Md.A. Kashem et al. / Theoretical Computer Science 240 (2000) 407–427

et al. presented an O(n log n) time sequential algorithm to solve the vertex-ranking
problem for trees [11], where n is the number of vertices of the input tree. Then
Sch�a�er obtained a linear-time sequential algorithm by re�ning their algorithm and its
analysis [24]. Recently Deogun et al. gave sequential algorithms to solve the vertex-
ranking problem for interval graphs in O(n3) time and for permutation graphs in O(n6)
time [9]. Bodlaender et al. presented a polynomial-time sequential algorithm to solve
the vertex-ranking problem for partial k-trees, that is, graphs of treewidth bounded by a
�xed integer k [3]. Borie gave general frameworks to construct families of algorithms
on partial k-trees [6]. However, his result does not directly imply a polynomial-time
algorithm to solve the vertex-ranking problem for partial k-trees. Very recently Kloks
et al. have presented a sequential algorithm for computing the vertex-ranking number
of an asteroidal triple-free graph in time polynomial in the number of vertices and the
number of minimal separators [17]. On the other hand, de la Torre et al. presented a
parallel algorithm to solve the vertex-ranking problem for trees in O(log n) time using
O(n2=log n) processors on the CREW PRAM [7]. However, no such parallel algorithms
were previously known for the vertex-ranking problem on partial k-trees with k¿2.
A natural generalization of an ordinary vertex-ranking is the c-vertex-ranking [27].

For a positive integer c, a c-vertex-ranking (or a c-ranking for short) of a graph G is
a labeling of the vertices of G with integers such that, for any label i, deletion of all
vertices with labels ¿i leaves connected components, each having at most c vertices
with label i. Clearly an ordinary vertex-ranking is a 1-vertex-ranking. The minimum
number of ranks needed for a c-vertex-ranking of G is called the c-vertex-ranking
number (or the c-ranking number for short), and is denoted by rc(G). A c-ranking of
G using rc(G) ranks is called an optimal c-ranking of G. The c-ranking problem is to
�nd an optimal c-ranking of a given graph. The problem is NP-hard in general, since
the ordinary vertex-ranking problem is NP-hard [3, 21]. Zhou et al. have obtained a
linear-time sequential algorithm to solve the c-ranking problem for trees [27]. Fig. 1(a)
depicts an optimal 2-ranking of a graph G using three ranks, where vertex names are
drawn in circles and ranks next to the circles.
The c-vertex-ranking problem of a graph G is equivalent to �nding a c-vertex-

separator tree of G having the minimum height. Consider the process of starting with
a connected graph G and partitioning it recursively by deleting at most c vertices from
each of the remaining connected components until the graph becomes empty. The tree
representing the recursive decomposition is called a c-vertex-separator tree of G. Thus
a c-vertex-separator tree corresponds to a parallel computation scheme based on the
process above. Fig. 1(b) illustrates a 2-vertex-separator tree of the graph G depicted
in Fig. 1(a), where the vertex names of deleted ones are drawn in ovals.
Let M be a sparse symmetric matrix, and let M ′ be a matrix obtained from M

by replacing each nonzero element with 1. Let G be a graph with adjacency matrix
M ′. Then an optimal c-vertex-ranking of G corresponds to a generalized Cholesky
factorization of M having the minimum recursive depth [10, 20].
The edge-ranking problem [12] and the c-edge-ranking problem [26] for a graph G

are de�ned similarly. The edge-ranking problem, that is, 1-edge-ranking problem, is

Md.A. Kashem et al. / Theoretical Computer Science 240 (2000) 407–427 409

Fig. 1. (a) An optimal 2-ranking of a graph G and (b) a 2-vertex-separator tree of G.

NP-hard in general [18], while de la Torre et al. obtained a sequential algorithm to
solve the edge-ranking problem for trees in O(n3 log n) time [8]. On the other hand,
Zhou et al. presented an O(n2 log�) time sequential algorithm to solve the c-edge-
ranking problem on trees T for any positive integer c, where � is the maximum
degree of T [26]. Recently Lam and Yue presented a linear-time algorithm to solve
the edge-ranking problem for trees [19].
In this paper we �rst give a polynomial-time sequential algorithm to solve the

c-vertex-ranking problem for any partial k-tree with bounded k and any positive in-
teger c. It is the �rst polynomial-time sequential algorithm for the c-vertex-ranking
problem on partial k-trees. We next give a parallel algorithm for the c-vertex-ranking
problem. It is the �rst parallel algorithm, which takes O(log n) time using a polynomial
number of processors on the common CRCW PRAM. Note that the common CRCW
PRAM model allows concurrent writes only when all processors are attempting to
write the same value into the same memory location. The results in this paper imply
a polynomial-time sequential algorithm and an O(log n) time parallel algorithm of the
c-vertex-ranking problem for any class of graphs with a uniform upper bound on the
treewidth, e.g., series-parallel graphs, outerplanar graphs, k-outerplanar graphs, Halin
graphs, graphs with bandwidth 6k, graphs with cutwidth 6k, chordal graphs with
maximum clique-size k, and graphs that do not contain some �xed planar graph as a
minor [1]. The early conference versions of this paper appear in [14, 15].
The remainder of this paper is organized as follows. Section 2 gives preliminary

de�nitions and easy observations. Section 3 de�nes an equivalence class to solve the
c-ranking problem for a partial k-tree. Section 4 gives a sequential algorithm, veri�es
the correctness of the algorithm, and analyzes its complexity. Section 5 gives a parallel
algorithm with its correctness and complexity analysis. Finally, Section 6 concludes
with a more generalized vertex-ranking problem.

2. Preliminaries

In this section we de�ne some terms and present easy observations. Let G=(V; E)
denote a graph with vertex set V and edge set E. We often denote by V (G) and

410 Md.A. Kashem et al. / Theoretical Computer Science 240 (2000) 407–427

Fig. 2. (a) A partial 3-tree and (b) a tree-decomposition.

E(G) the vertex set and the edge set of G, respectively. We denote by n the number
of vertices in G. An edge joining vertices u and v is denoted by (u; v). We will use
notions as: leaf, node, child, father, root, height, and level in their usual meaning.
A tree-decomposition of a graph G=(V; E) is a pair (T; S), where T =(VT ; ET) is a

tree and S = {Xx | x∈VT} is a collection of subsets of V satisfying the following three
conditions [23]:
• ⋃

x∈VT Xx =V ;
• for every edge e=(v; w)∈E, there exists a node x∈VT with v; w∈Xx; and
• for all x; y; z ∈VT , if node y lies on the path from node x to node z in T , then

Xx ∩ Xz ⊆Xy.
Fig. 2(b) depicts a tree-decomposition of a graph in Fig. 2(a). The width of a tree-
decomposition (T; S) is maxx∈VT |Xx| − 1. The treewidth of a graph G is the minimum
width of a tree-decomposition of G, taken over all possible tree-decompositions of G.
A graph G with treewidth 6k is called a partial k-tree. Every partial k-tree G has a
tree-decomposition (T; S) with width 6k and nT6n, where nT is the number of nodes
in T [2, 25].
For any �xed integer k, determining whether the treewidth of a graph G is at

most k and �nding a corresponding tree-decomposition can be done in O(n) sequen-
tial time [2, 5]. Let (T; S) be a tree-decomposition of G with width 6k and nT6n.
We transform it to a binary tree-decomposition as follows [1]: regard T as a rooted
tree by choosing an arbitrary node as the root, and replace every internal node x
having d children, say y1; y2; : : : ; yd, with d + 1 new nodes x1; x2; : : : ; xd+1 such that
Xx =Xx1 =Xx2 = · · · =Xxd+1 , where xi, 16i6d, is the father of xi+1 and the ith child
yi of x, and xd+1 is a leaf of the tree (see Fig. 3). This transformation can be done
in O(n) sequential time. The resulting tree-decomposition (T; S) of G=(V; E) has the
following characteristics:
• the width of (T; S) is 6k, and the number nT of nodes in T is O(n);
• each internal node x of T has exactly two children, say y and z, and either Xx =Xy

or Xx =Xz; and
• for each edge e=(v; w)∈E, there is at least one leaf x in T such that v; w∈Xx.
On the other hand, for any �xed integer k, one can determine whether the treewidth

of a graph G is k and �nd a corresponding tree-decomposition in O(log22 n) parallel

Md.A. Kashem et al. / Theoretical Computer Science 240 (2000) 407–427 411

Fig. 3. Illustration of the binary transformation.

time using O(n) operations on the EREW PRAM [4, 5, 22]. Furthermore, from such
a tree-decomposition, one can compute a binary tree-decomposition of G with height
O(log2 n) and width at most 3k + 2 in O(log2 n) parallel time using O(n) operations
on the EREW PRAM [4].
We next show that the c-ranking number rc(G) of a partial k-tree G is O(logc+1 n).

We �rst cite Lemma 2.1 from [27].

Lemma 2.1. Let T be a tree of nT (¿1) nodes; and let � be any positive integer.
Then T has at most � nodes whose removal leaves subtrees each having at most nT =q
nodes; where

q=2blog2 (�+3)c−1¿(�+ 3)=4

and hence q¿2.

We then have the following lemma on rc(G).

Lemma 2.2. Let k and c be any positive integers which are not always bounded; and
let G be a partial k-tree of n vertices. Then

rc(G)61 + a logc+1 n;

where

a6

⌈
k+1
c

⌉
log2(c + 1) if c6k;

2 + 2 log2(k + 1) if k + 16c64(k + 1)2 − 1; and

4 if c¿4(k + 1)2:

Proof. Let (T; S) be a tree-decomposition of G with width 6k which is not necessarily
binary. Then one may assume that nT6n [2].
Recursively applying Lemma 2.1 to T , we �rst construct an �-vertex-separator tree

T�(T) of tree T , where �=max{1; bc=(k + 1)c}. The height hT�(nT) of tree T�(T)

412 Md.A. Kashem et al. / Theoretical Computer Science 240 (2000) 407–427

satis�es the following recurrent relation

hT�(nT)61 + hT�

(⌊
nT

q

⌋)
; (1)

where q=2blog2(�+3)c−1¿(�+3)=4. Solving the recurrence (1) with hT�(1)= 0, we have

hT�(nT)6logq nT : (2)

We next claim that the �-vertex-separator tree T�(T) of T can be transformed to a
c-vertex-separator tree Tc(G) of G with height

hTc(n)6
⌈
k + 1

c

⌉
logq n:

First consider the case in which c¿k + 1. In this case �= bc=(k + 1)c, and any node
of T�(T) contains at most � nodes of T , each corresponding to a separator of G having
at most k + 1 vertices of G. Thus any node of T�(T) corresponds to a separator of G
having at most c vertices of G, and hence T�(T) immediately yields a c-vertex-separator
tree Tc(G) whose height hTc(n) is at most hT�(nT). Then by (2) we have

hTc(n)6hT�(nT)6logq nT6logq n=
⌈
k + 1

c

⌉
logq n:

Next, consider the case in which c6k. Then �=1. Let s= d(k + 1)=ce, and replace
each node x of T�(T) with s new nodes x1; x2; : : : ; xs; node xj is the father of xj+1,
16j6s − 1, in a new tree; let node x correspond to a set Xx ⊆V , then each node
xj, 16j6s, contains at most c vertices in Xx, and every vertex in Xx is contained in
some xj. The resulting tree has height d(k + 1)=cehT�(nT), and immediately yields a
c-vertex-separator tree Tc(G). The height hTc(n) of Tc(G) satis�es

hTc(n)6
⌈
k + 1

c

⌉
hT�(nT)6

⌈
k + 1

c

⌉
logq nT6

⌈
k + 1

c

⌉
logq n:

Thus we have veri�ed the claim above.
We �nally obtain a c-ranking of G from the c-vertex-separator tree Tc(G) of G as

follows: for each i, 06i6hTc(n), label by rank i+1 all vertices of G corresponding to
the nodes of Tc(G) at level i, as illustrated in Fig. 1. Then the resulting vertex-labeling
is a c-ranking of G using 1 + hTc(n) ranks. Therefore we have

rc(G)6 1 + hTc(n)

6 1 +
⌈
k + 1

c

⌉
logq n

= 1 +
⌈
k + 1

c

⌉
logq(c + 1) logc+1 n

6 1 + a logc+1 n;

where a= d(k + 1)=ce logq(c + 1).

Md.A. Kashem et al. / Theoretical Computer Science 240 (2000) 407–427 413

Depending upon the value of c, we have the following three cases.
Case 1: c6k.
In this case �=1 and q=2. Therefore

a=
⌈
k + 1

c

⌉
logq(c + 1)=

⌈
k + 1

c

⌉
log2(c + 1):

Case 2: k + 16c64(k + 1)2 − 1.
In this case �¿1, q¿2, d(k + 1)=ce=1, and c + 164(k + 1)2. Therefore

a=
⌈
k + 1

c

⌉
logq(c + 1)= logq(c + 1)62 + 2 log2(k + 1):

Case 3: c¿4(k + 1)2.
We have �¿bc=(k + 1)c¿(c − k)=(k + 1). Therefore in this case we have

q¿
�+ 3
4

¿
1
2

(
1 +

c + 1
2(k + 1)

)

¿
(

c + 1
2(k + 1)

)1=2

=
(c + 1)1=4

(2(k + 1))1=2
(c + 1)1=4

¿
(2(k + 1))1=2

(2(k + 1))1=2
(c + 1)1=4

= (c + 1)1=4:

Therefore a= d(k + 1)=ce logq(c + 1)6logq(c + 1)6log(c+1)1=4 (c + 1)=4.

In the remaining paper we assume that the value of a is given as in Lemma 2.2.
It should be noted that a=O(1) and hence rc(G)=O(logc+1 n) even if c is not a
bounded integer, because k is assumed to be a bounded integer.
Let ’ be a vertex-labeling of a partial k-tree G with positive integers. The la-

bel (rank) of a vertex v∈V is denoted by ’(v). The number of ranks used by a
vertex-labeling ’ is denoted by #’. One may assume without loss of generality that
’ uses consecutive integers 1; 2; : : : ; #’ as the ranks. For a rank i, 16i6#’, denote
by V (G;’; i) the set of vertices v in G with ’(v)= i, and let n(G;’; i)= |V (G;’; i)|.
Then ’ is a c-ranking of G if and only if n(D;’; i)6c for any i, 16i6#’, and any
connected component D of the graph obtained from G by deleting all vertices with
ranks ¿i.

414 Md.A. Kashem et al. / Theoretical Computer Science 240 (2000) 407–427

Fig. 4. Graph Gx .

Consider hereafter a binary tree-decomposition (T; S) of a partial k-tree G. We
associate a subgraph Gx =(Vx; Ex) of G with each node x of T , where

Vx =
⋃ {Xy |y= x or y is a descendant of x in T}

and

Ex = {(v; w)∈E | v; w∈Vx}:

(Fig. 4 depicts graph Gx, where Xx is indicated by an oval drawn in a thick line.)
Thus G is associated with the root of T .
For a subgraph Gx =(Vx; Ex) of G, x∈VT , we denote by ’|Gx the restriction of ’

to Gx: let �=’|Gx, then �(v)=’(v) for v∈Vx. A vertex u∈Vx is said to be visible
from a vertex v∈Vx under ’ in Gx if Gx has a path P from u to v every vertex of
which has a rank 6’(u). (See Fig. 4.) The rank ’(u) of u is also said to be visible
from v under ’ in Gx if the vertex u is so. Thus the smallest rank visible from v is
equal to ’(v). We then have the following lemma which characterizes the c-ranking
of a partial k-tree by the number of visible vertices.

Lemma 2.3. Let (T; S) be a binary tree-decomposition of a partial k-tree G; and let
x be a node in T . Then a vertex-labeling ’ of Gx is a c-ranking of Gx if and only if
(a) at most c vertices of the same rank are visible from any vertex v∈Xx under ’

in Gx; and
(b) if x is an internal node in T and has two children y and z; then ’|Gy and ’|Gz

are c-rankings of Gy and Gz; respectively.

Proof. Since the necessity is trivial, we give a proof only for the su�ciency.
Suppose for a contradiction that a vertex-labeling ’ satis�es (a) and (b), but ’ is

not a c-ranking of Gx. Then there exists a rank i such that deletion of all vertices with
labels ¿i from Gx leaves a connected component D such that n(D;’; i)¿c. Since (a)
and (b) hold, x is an internal node of T and D is neither a subgraph of Gy nor a
subgraph of Gz. Furthermore, Gy and Gz have common vertices only in Xx. Therefore
D has a vertex v∈Xx. Then all vertices with label i in D are visible from v in Gx.

Md.A. Kashem et al. / Theoretical Computer Science 240 (2000) 407–427 415

Therefore, more than c vertices of rank i are visible from v under ’ in Gx, contrary
to (a).

3. Equivalence class

Many algorithms on partial k-trees use dynamic programming. On each node of the
tree-decomposition, a table of all possible partial solutions of the problem is computed,
where each entry in the table represents an equivalence class. The time complexity of
a sequential algorithm and the number of operations needed for a parallel algorithm
mainly depends on the size of the table. Therefore, we shall �nd a suitable equivalence
class for which the table has a polynomial size. The table of our sequential algorithm
has a size O(n(k+1)(a+1) logk(k+1)=22 n), and the table of our parallel algorithm has a
size O(n3(k+1)(a+1) log3(k+1)(3k+2)=22 n). Before de�ning the equivalence class, we need
to de�ne a few terms.
Let (T; S) be a binary tree-decomposition of a partial k-tree G=(V; E). Let R= {1; 2;

: : : ; m} be the set of ranks. Let x be a node in T , and let ’ :Vx →R be a vertex-
labeling of the subgraph Gx =(Vx; Ex). For an integer i∈R, we denote by count(’; v; i)
the number of vertices ranked by i and visible from v∈Xx under ’ in Gx. If ’ is
a c-ranking of Gx, then by Lemma 2.3 count(’; v; i)6c for any vertex v∈Xx and
any integer i∈R. If i¡’(v), then count(’; v; i)= 0. On the other hand, if i¿’(v),
then count(’; v; i)= n(D;’; i), where D is the connected component containing v in
the graph obtained from Gx by deleting all vertices w with ’(w)¿i.
Iyer et al. introduced an idea of a “critical list” to solve the ordinary vertex-ranking

problem for trees [11], while we de�ne a count-list L(’; v) and a list-set L(’) as
follows:

L(’; v)= {(i; count(’; v; i)) | rank i∈R is visible from v under ’ in Gx};
and

L(’)= {L(’; v) | v∈Xx}:
For a vertex-labeling ’ of Gx, de�ne a function �’ :Xx ×Xx →R∪{0; ∞} as follows:

�’(v; w) = min{�|Gx has a path P from v∈Xx to w∈Xx such

that ’(u)6� for each internal vertex u of P}:
Let �’(v; w)= 0 if (v; w)∈Ex or v=w, and let �’(v; w)= ∞ if Gx has no path from
v to w. Clearly �’(v; w)= �’(w; v). Thus, if �’(v; w) 6=∞, then v and w are connected
by a path in Gx each internal vertex of which has a rank 6�’(v; w), but are not
connected by a path each internal vertex of which has a rank ¡�’(v; w). If vertex
u∈Vx is visible from w and ’(u)¿max{’(v); �’(v; w); ’(w)}, then u is visible from
v, as illustrated in Fig. 4.
We next de�ne a pair R(’) as follows:

R(’)= (L(’); �’):

416 Md.A. Kashem et al. / Theoretical Computer Science 240 (2000) 407–427

Fig. 5. Graph G.

We call such a pair R(’) the vector of ’ on node x. R(’) is called a feasible vector
if the vertex-labeling ’ is a c-ranking of Gx.
A c-ranking of Gx, x∈VT , is de�ned to be extensible if it can be extended to a

c-ranking of G without changing the labeling of vertices in Gx. We then have the
following lemma.

Lemma 3.1. Let ’ and � be two c-rankings of Gx such that R(’)=R(�). Then ’
is extensible if and only if � is extensible.

Proof. It su�ces to prove that if ’ is extensible then � is extensible. Suppose that
’ is extensible. Then ’ can be extended to a c-ranking ’′ of G=(V; E) such that
’′(v)=’(v) for any vertex v∈Vx. Let V∗=V −Vx, and let G∗ be the subgraph of G
induced by V∗. Extend the c-ranking � of Gx to a vertex-labeling �′ of G as follows:

�′(v)=

{
�(v) if v∈Vx; and

’′(v) if v∈V∗:

Then it su�ces to prove that �′ is a c-ranking of G, that is, n(H�′ ; �′; i)6c for any
rank i∈R and any connected component H�′ =(V�′ ; E�′) of the graph obtained from
G by deleting all vertices v∈V with �′(v)¿i. Fig. 5 depicts a graph G, where its
subgraphs Gx and G∗ are indicated by a solid line and a dotted line, respectively, and
H�′ is drawn in a shaded region. There are the following two cases to consider.
Case 1: H�′ has no vertex in Xx.
In this case H�′ is a subgraph of either Gx or G∗, since Gx is connected with G∗ only

through the vertices in Xx. Furthermore, �′|Gx = � and �′|G∗=’′|G∗ are c-rankings
of Gx and G∗, respectively. Therefore n(H�′ ; �′; i)6c.
Case 2: H�′ has a vertex w in Xx as illustrated in Fig. 5.

Md.A. Kashem et al. / Theoretical Computer Science 240 (2000) 407–427 417

In this case obviously �′(w)6i. The smallest ranks in the count-lists L(’; w) and
L(�; w) are equal to ’(w) and �(w), respectively. Since R(’)=R(�), we have L(’; w)
=L(�; w), and hence ’(w)= �(w). Therefore ’′(w)=’(w)= �(w)= �′(w)6i. Hence,
deletion of all vertices v∈V with ’′(v)¿i from G leaves a connected component
H’′ =(V’′ ; E’′) containing the vertex w. Since ’′ is a c-ranking of G, n(H’′ ; ’′; i)6c.
Therefore it su�ces to prove that n(H�′ ; �′; i)= n(H’′ ; ’′; i).
Since R(�)=R(’), we have �(v)=’(v) for each vertex v∈Xx and ��(u;

v)= �’(u; v) for each pair of vertices u; v∈Xx. Furthermore, �′|G∗=’′|G∗. Therefore
one can observe that V�′ ∩Xx =V’′ ∩Xx and V�′ ∩V∗=V’′ ∩V∗ although V�′ ∩Vx =
V’′ ∩Vx does not necessarily hold. Let H�x be the subgraph of H�′ induced by V�′ ∩Vx,
and let H∗

�′ be the subgraph of H�′ induced by V�′ ∩V∗. Similarly, let H’x be the
subgraph of H’′ induced by V’′ ∩Vx, and let H∗

’′ be the subgraph of H’′ induced
by V’′ ∩V∗. Then n(H�′ ; �′; i)= n(H�x; �; i)n(H∗

�′ ; �
′; i) and n(H’′ ; ’′; i)= n(H’x; ’; i)+

n(H∗
’′ ; ’′; i). Since V�′ ∩V∗=V’′ ∩V∗ and �′|G∗=’′|G∗, we have n(H∗

�′ ; �
′; i)=

n(H∗
’′ ; ’′; i). Therefore it su�ces to prove that n(H�x; �; i)= n(H’x; ’; i).
We next show that each of the connected components of H�x and H’x contains at

least one vertex in Xx. Suppose for a contradiction that a connected component D
of H�x or H’x, say H�x, contains no vertex in Xx. Since H�′ is a connected graph
containing w∈Xx, w is connected to a vertex of D by a path in H�′ . However, it is
impossible because D has no vertex in Xx and H�x is connected with H∗

�′ only through
the vertices in Xx.
Let u be any vertex in V (H�x)∩Xx =V (H’x)∩Xx (=V�′ ∩Xx), let D� be the con-

nected component of H�x that contains u, and let D’ be the connected component
of H’x that contains u. We now claim that V (D�)∩Xx =V (D’)∩Xx and n(D�; �; i)=
n(D’; ’; i). Let v be any vertex in V (D’)∩Xx. Then obviously ’(v)6i and �’(u; v)6i.
Since R(�)=R(’), we have �(v)=’(v)6i and ��(u; v)= �’(u; v)6i. Therefore v∈V
(D�)∩Xx. Similarly, we can show that v∈V (D’)∩Xx for any vertex v∈V (D�)∩Xx.
Hence we have proved that V (D�)∩Xx =V (D’)∩Xx. Clearly n(D�; �; i)= count(�; u; i)
and n(D’; ’; i)= count(’; u; i). Since L(�; u)=L(’; u), we have count(�; u; i)= count
(’; u; i) and hence n(D�; �; i)= n(D’; ’; i). Thus we have veri�ed the claim.
The claim above implies that H�x and H’x have the same number of connected

components D�1 ; D�2 ; : : : ; D�p and D’1 ; D’2 ; : : : ; D’p , respectively. (In Fig. 5 D�1 ; D�2 ; : : : ;
D�p are drawn in darkly shaded regions.) Furthermore, one may assume that n(D�j ; �; i)
= n(D’j ; ’; i) for each j, 16j6p. Since n(H�x; �; i)=

∑p
j=1 n(D�j ; �; i) and n(H’x; ’; i)

=
∑p

j=1 n(D’j ; ’; i), we have n(H�x; �; i)= n(H’x; ’; i).

Thus a feasible vector R(’) of ’ on x can be seen as an equivalence class of
extensible c-rankings of Gx.

4. Sequential algorithm

The main result of this section is the following theorem.

418 Md.A. Kashem et al. / Theoretical Computer Science 240 (2000) 407–427

Theorem 4.1. For any positive integer c and any bounded integer k; an optimal
c-ranking of a partial k-tree G with n vertices can be found in time

O(n2(k+1)(a+1)+2 logk(k+1)+12 n log2 log2 n):

In the remaining section we give an algorithm to �nd an optimal c-ranking of
a partial k-tree G in time O(n2(k+1)(a+1)+2 logk(k+1)+12 n log2 log2 n). Let (T; S) be a
binary tree-decomposition of G with width 6k. We �rst give an algorithm to de-
cide, for a given positive integer m, whether G has a c-ranking ’ with #’6m. We
use dynamic programming and bottom-up tree computation on the binary tree T : for
each node x of T from leaves to the root, we construct all (equivalence classes of)
c-rankings of Gx from those of two subgraphs Gy and Gz associated with the children
y and z of x. Then, by using a binary search over the range of m, 16m61+a logc+1 n,
we determine the minimum value of m such that G has a c-ranking ’ with m=#’,
and �nd an optimal c-ranking of G.
A feasible vector R(’) of ’ on x can be seen as an equivalence class of ex-

tensible c-rankings of Gx. Remember that R= {1; 2; : : : ; m} is the set of ranks. Since
|R|=m and 06count(’; v; i)6c for a c-ranking ’ and a rank i∈R, the number of
distinct count-lists L(’; v) is at most (c + 1)m for each vertex v∈Xx. Furthermore
|Xx|6k + 1. Therefore, the number of distinct list-sets L(’) is at most (c+ 1)(k+1)m.
On the other hand, the number of distinct functions �’ :Xx ×Xx →R∪{0; ∞} is at most
(m+ 2)k(k+1)=2, since �’(v; v)= 0 and �’(v; w)= �’(w; v) for any v; w∈Xx. Therefore,
the total number of di�erent feasible vectors on node x is at most (c + 1)(k+1)m

(m+ 2)k(k+1)=2. One may assume that c6n and m61 + a logc+1 n=O(log2 n) by
Lemma 2.2. Therefore, the total number of di�erent feasible vectors on x is O(n(k+1)(a+1)

logk(k+1)=22 n) for any �xed integer k.
The main step of our algorithm is to compute a table of all feasible vectors on the

root of T by means of dynamic programming and bottom-up tree computation on T .
If the table has at least one feasible vector, then the partial k-tree G corresponding to
the root of T has a c-ranking ’ such that #’6m.
We �rst show how to �nd the table of all feasible vectors R(’)= (L(’); �’) on a

leaf x of T . This can be done as follows:
(1) enumerate all vertex-labelings ’ :Vx →R of Gx; and
(2) compute all feasible vectors R(’) on x from the vertex-labelings ’ of Gx.
Since |Vx|= |Xx|6k+1 and |R|=m, the number of vertex-labelings ’ :Vx →R is at most
mk+1. For each vertex-labeling ’, �’ can be computed in time O(1). Furthermore, the
count-lists L(’; v), v∈Xx =Vx, can be computed in time O(1). Then checking whether
a vertex-labeling ’ is a c-ranking of Gx can be done by Lemma 2.3 in time O(1), and
if so, computing L(’) can be done in time O(1). Therefore, steps (1) and (2) can be
executed for leaf x in time O(mk+1)=O(logk+12 n), and hence the table on x can be
found in time O(logk+12 n).
We next show how to compute all feasible vectors on an internal node x of T from

those on two children y and z of x. One may assume that Xx =Xy. By the de�nition

Md.A. Kashem et al. / Theoretical Computer Science 240 (2000) 407–427 419

Fig. 6. Graphs Gx , Gy and Gz .

Fig. 7. Graphs G(�), G(), G′(’) and G(’).

of Gx =(Vx; Ex), we have Vx =Vy ∪Vz and Ex =Ey ∪Ez. Let � and , respectively, be
c-rankings of Gy and Gz such that �(v)= (v) for any vertex v∈Xy ∩Xz, and let ’
be the vertex-labeling of Gx extended from � and . Then ’ |Gy = � and ’ |Gz = .
Fig. 6 illustrates Gx, Gy and Gz where Xx, Xy and Xz are drawn by ovals.
We �rst show how to compute �’ from vectors R(�) and R(). Let G(�) be a

�-graph de�ned for � as follows: let K|Xy| be a complete graph of the vertices in Xy;
assign a weight of �(v) to each vertex v in K|Xy|; place a dummy vertex on each edge
(v; w) in K|Xy|; and assign a weight of ��(v; w) to the dummy vertex, as illustrated in
Fig. 7(a) where Xy = {v1; v2; : : : ; v5} and the vertices in Xy are drawn by white circles,
the dummy vertices by �lled circles, and the weights next to the circles. Then the total
number of vertices in G(�) is at most k+1+k(k+1)=2= (k+1)(k+2)=2 and the total
number of edges is at most k(k+1). Similarly de�ne a �-graph G() for . Fig. 7(b)
illustrates G(), where Xz = {v3; v4; : : : ; v7}. Identify each pair of the same vertices in
Xy ∩Xz, one in G(�) and the other in G(), as illustrated in Fig. 7(c). Let G′(’) be the
resulting weighted graph. Then the total number of vertices in G′(’) is at most (k +
1)(k+2) and the total number of edges is at most 2k(k+1). Then, by the construction
of G′(’), the function �’ :Xx ×Xx →R∪{0; ∞} can be computed as follows:

�’(v; w) = min{� |G′(’) has a path from v∈Xx to w∈Xx every

internal vertex of which has a weight 6�}:

420 Md.A. Kashem et al. / Theoretical Computer Science 240 (2000) 407–427

Since G′(’) has a constant number of vertices and edges, �’ can be computed in time
O(1). It is also easy to construct a �-graph G(’) from G′(’). Fig. 7(d) illustrates
G(’), where Xx =Xy = {v1; v2; : : : ; v5}.
We next show how to compute L(’) from � and . Let v be any vertex in

Xx. No vertex with a rank i¡’(v) is visible from v under ’ in Gx. Let i∈R be
any rank such that i¿’(v). Delete all vertices with ranks ¿i from Gx. Among the
connected components of the resulting graph, let H’ be the one containing v. Then
count(’; v; i)= n(H’; ’; i). Since |Ex|=O(n) and |R|=m=O(log2 n), the count-lists
L(’; v), v∈Xx, can be computed in time O(n ·m)=O(nlog2 n). Then checking whether
a vertex-labeling ’ is a c-ranking of Gx can be done by Lemma 2.3 in time O(log2 n),
and if so, computing L(’) can be done in time O(n log2 n).
Thus each vector on an internal node can be computed in time O(n log2 n). The

table of all feasible vectors on an internal node x can be obtained from the pairs
of tables of all feasible vectors on the two children of x, and the number of these
pairs is O(n2(k+1)(a+1) logk(k+1)2 n). Therefore the table on x can be computed in time
O(n2(k+1)(a+1)+1 logk(k+1)+12 n).
We thus have the following algorithm CHECK to determine whether G has a c-

ranking ’ with #’6m for a positive integer m.

Algorithm CHECK;
begin
1 compute a table of all feasible vectors on each leaf x of T , and keep a c-ranking

’ of Gx arbitrarily chosen from the c-rankings having the same feasible vector;
2 for each internal node x of T , compute a table of all feasible vectors from those
on the two children of x, and keep a c-ranking ’ of Gx arbitrarily chosen from
the c-rankings having the same feasible vector;

3 repeat line 2 up to the root of T ;
4 check whether there exists a feasible vector in the table at the root;
end.

Line 1 can be done in O(logk+12 n) time for each leaf as mentioned before. Since
there are O(n) leaves, line 1 can be done in O(n logk+12 n) time in total for all leaves.
As mentioned above, line 2 can be done in O(n2(k+1)(a+1)+1 logk(k+1)+12 n) time per
node. Note that we keep a c-ranking ’ of Gx for each feasible vector to compute
count(’; v; i) and check condition (a) in Lemma 2.3. Since line 2 is executed for
O(n) nodes in total in line 3, line 3 can be done in O(n2(k+1)(a+1)+2 logk(k+1)+12 n)
time in total. Line 4 can be done in O(n(k+1)(a+1) logk(k+1)=2+12 n) time in total. Thus
checking whether a partial k-tree G has a c-ranking ’ such that #’6m can be done
in O(n2(k+1)(a+1)+2 logk(k+1)+12 n) time.
Using the binary search technique over the range of m, 16m61 + a logc+1 n =

O(log2 n), one can �nd the smallest integer rc(G) such that G has a c-ranking ’ with
#’= rc(G) by calling CHECK O(log2 log2 n) times. Therefore, an optimal c-ranking of
a partial k-tree G of n vertices can be found in time O(n2(k+1)(a+1)+2 logk(k+1)+12 n log2

Md.A. Kashem et al. / Theoretical Computer Science 240 (2000) 407–427 421

log2 n) for any positive integer c and any bounded integer k. This completes the proof
of Theorem 4.1.
For the particular case c=1, our algorithm �nds an optimal ordinary ranking of a

partial k-tree G in time O(n2(k+1)
2+2 logk(k+1)+12 n log2 log2 n). Thus the algorithm takes

essentially nO(k
2) time, while the algorithm of Bodlaender et al. takes nO(k

3) time [3].
The improvement is due to the fact that our equivalent classes are di�erent from those
in [3].

5. Parallel algorithm

In this section we prove the following theorem.

Theorem 5.1. Let G be a partial k-tree of n vertices given by its tree-decomposition
with height O(log2 n) and width 63k + 2. Then an optimal c-ranking of G can be
found in O(log2 n) parallel time using O(n

6(k+1)(a+1)+1 log3(k+1)(3k+2)+22 n) operations
on the common CRCW PRAM for any positive integer c and any bounded integer
k.

Thus the c-ranking problem for partial k-trees is in NC. The following general lemma
is well known [3].

Lemma 5.2. Let A be a given algorithm with O(log2 n) parallel computation time.
If A involves a total number of q operations; then A can be implemented using p
processors in O(q=p+ log2 n) parallel time.

If there is an algorithm A which solves the c-ranking problem in O(log2 n) parallel
time using a total of q=O(n6(k+1)(a+1)+1 log3(k+1)(3k+2)+22 n) operations, then by adapt-
ing Lemma 5.2 with choosing p= q=log2 n one can know that A can be implemented
using O(q=log2 n) processors in O(log2 n) parallel time.
Thus by Theorem 5.1 and Lemma 5.2 we have the following corollary.

Corollary 5.3. For any positive integer c and any bounded integer k; the c-ranking
problem for partial k-trees can be solved in O(log2 n) parallel time with a polynomial
number of processors on the common CRCW PRAM.

The following lemma is also well known [13].

Lemma 5.4. Given a parallel algorithm that can be implemented to run in time t
on a p-processor common CRCW PRAM; this algorithm can be implemented on a
p-processor EREW PRAM to run in O(t logp) time.

Thus by Corollary 5.3 and Lemma 5.4 we have the following corollary.

422 Md.A. Kashem et al. / Theoretical Computer Science 240 (2000) 407–427

Corollary 5.5. For any positive integer c and any bounded integer k; the c-ranking
problem for partial k-trees can be solved in O(log22 n) parallel time with a polynomial
number of processors on the EREW PRAM.

In the remaining section we prove Theorem 5.1. Let (T; S) be a binary tree decom-
position of G with height O(log2 n) and width 63k + 2. Checking condition (a) in
Lemma 2.3 requires O(log2 n) parallel time for each internal node x of T , because
�nding the connected components of a graph obtained from Gx by deleting all vertices
with ranks ¿i needs O(log2 n) parallel time for each rank i∈R. Thus the straightfor-
ward implementation of our sequential algorithm in the preceding section would yield
a parallel algorithm of O(log22 n) time, since the height of T is O(log2 n). However, as
we show below, checking condition (a) can be done in O(1) parallel time, and hence
an optimal c-ranking can be found in O(log2 n) parallel time. More precisely, we give
a parallel algorithm to �nd an optimal c-ranking of a partial k-tree G in O(log2 n) par-
allel time using O(n6(k+1)(a+1)+1 log3(k+1)(3k+2)+22 n) operations on the common CRCW
PRAM.
We �rst give a parallel algorithm to decide, for a given positive integer m, whether

G has a c-ranking ’ with #’6m. We use parallel dynamic programming and bottom-
up tree computation on the binary tree T : for each node x of T from leaves to the
root, we construct all (equivalence classes of) c-rankings of Gx from those of two
subgraphs Gy and Gz associated with the children y and z of x. Then, by using a
parallel search over the range of m, 16m61+ a logc+1 n, we determine the minimum
value of m such that G has a c-ranking ’ with m=#’, and �nd an optimal c-ranking
of G.
A feasible vector R(’) of ’ on x can be seen as an equivalence class of extensible

c-rankings of Gx. The number of distinct count-lists L(’; v) is at most (c+1)m for each
vertex v∈Xx as mentioned in Section 4. Since |Xx|63(k+1), the number of distinct list-
sets L(’) is at most (c+1)3(k+1)m. On the other hand, the number of distinct functions
�’ :Xx ×Xx → R∪{0;∞} is at most (m+ 2)3(k+1)(3k+2)=2. Therefore, the total number
of di�erent feasible vectors on node x is at most (c + 1)3(k+1)m(m + 2)3(k+1)(3k+2)=2.
One may assume that c6n and m61+a logc+1 n=O(log2 n) by Lemma 2.2. Thus the
total number of di�erent feasible vectors on x is O(n3(k+1)(a+1) log3(k+1)(3k+2)=22 n) for
any �xed integer k.
We �rst compute the table of all feasible vectors R(’)= (L(’); �’) on a leaf x of T

by the same method as described in Section 4. Since |Vx|63(k+1) and |R|=m; R(’)
can be computed for a leaf in O(1) parallel time using O(m3(k+1))=O(log3(k+1)2 n)
operations on the EREW PRAM.
We next compute all feasible vectors on an internal node x of T from those on two

children y and z of x. One may assume that Xx =Xy. Let � and , respectively, be
c-rankings of Gy and Gz such that �(v)= (v) for any vertex v∈Xy ∩Xz, and let ’
be the vertex-labeling of Gx extended from � and as in the case of the sequential
algorithm.

Md.A. Kashem et al. / Theoretical Computer Science 240 (2000) 407–427 423

We �rst compute �’ by constructing the graph G′(’) as described in Section 4. Since
G′(’) has a constant number of vertices and edges, �’ can be computed in O(1) time
using O(1) operations on the EREW PRAM for each vector R(’)= (L(’); �’).
We next show how to compute L(’). For the purpose we shall show how to

compute count(’; v; i). Let v be any vertex in Xx. No vertex with a rank i¡’(v) is
visible from v under ’ in Gx. Let i∈R be any rank such that i¿’(v). Delete all
vertices with ranks ¿i from Gx. Among the connected components of the resulting
graph, let H’ be the one containing v. Let H� be the subgraph of H’ induced by
V (H’)∩Vy, and let H be the subgraph of H’ induced by V (H’)∩Vz. In Fig. 6 both
H� and H have two connected components, and H’ and the connected components
of H� and H are drawn by �lled regions. Since V (H’)=V (H�)∪V (H), we have

V (H’; ’; i)=V (H�; �; i)∪V (H ; ; i): (3)

Let

Q’(v; i)=V (H�; �; i)∩V (H ; ; i): (4)

Since count(’; v; i)= n(H’; ’; i)= |V (H’; ’; i)|; n(H�; �; i)= |V (H�; �; i)| and n(H ; ; i)
= |V (H ; ; i)|, by (3) and (4) we have

count(’; v; i)= n(H�; �; i) + n(H ; ; i)− |Q’(v; i)|: (5)

Since

Q’(v; i)= {w∈Xy ∩Xz |’(w)= i and �’(v; w)6i};
Q’(v; i) can be found in O(1) parallel time for all v∈Xx and i∈R. Thus we shall show
how to compute n(H�; �; i) and n(H ; ; i). For the purpose we consider the weighted
graph G′(’). (See Fig. 7.) Delete all vertices with weights ¿i from G′(’). Among the
connected components of the resulting graph, let F’ be the one containing v. Let F� be
the subgraph of F’ induced by V (F’)∩V (G(�)), and let F be the subgraph of F’ in-
duced by V (F’)∩V (G()). Fig. 8 depicts F’, F� and F for G′(’) in Fig. 7(c), where
v= v2 and i=5. By the construction of G′(’), we have V (H�)∩Xy =V (F�)∩Xy. H�

and F� may have more than one connected components, but each of them has at least
one vertex in Xy. Furthermore, there is a one-to-one correspondence between the sets
of connected components of H� and F�: for each connected component D of H� there
exists exactly one connected component CD of F� such that V (D)∩Xy =V (CD)∩Xy,
and vice versa. For each connected component D of H�, we choose an arbitrary vertex
wD in V (D)∩Xy =V (CD)∩Xy and call wD the representative vertex of both D and
CD. Clearly, all vertices in D that have rank i and are visible from wD under � in Gy

are also visible from any other vertex in V (D)∩Xy under � in Gy. Let S�(v; i) be the
set of representative vertices wD of all connected components D of H�. Then S�(v; i)
is the same as the set of representative vertices of all connected components of F�.
We then have

n(H�; �; i)=
∑

wD∈S�(v; i)
count(�; wD; i): (6)

424 Md.A. Kashem et al. / Theoretical Computer Science 240 (2000) 407–427

Fig. 8. Graphs F’, F� and F .

Similarly, we de�ne S (v; i) for H . Then we have

n(H ; ; i)=
∑

wD∈S (v; i)
count(; wD; i): (7)

Therefore, by (5)–(7) we have

count(’; v; i)=
∑

wD∈S�(v; i)
count(�; wD; i) +

∑
wD∈S (v; i)

count(; wD; i)− |Q’(v; i)|:

Thus one can easily compute count(’; v; i) from R(�) and R().
We now have the following lemma.

Lemma 5.6. Let � and ; respectively; be c-rankings of Gy and Gz such that �(v)=
 (v) for any vertex v∈Xy ∩Xz, and let ’ be the vertex-labeling of Gx extended from
� and . Let Q’(v; i); S�(v; i) and S (v; i) be the sets as de�ned before. Then
(a) for any vertex v∈Xx and any rank i∈R

count(’; v; i)=
∑

wD∈S�(v; i)
count(�; wD; i) +

∑
wD∈S (v; i)

count(; wD; i)− |Q’(v; i)|;

(b) ’ is a c-ranking of Gx if and only if count(’; v; i)6c for any vertex v∈Xx and
any rank i∈R; and

(c) L(’) can be computed in O(1) parallel time using O(log2 n) operations on the
EREW PRAM.

Proof. (a) Has been proved above.
(b) Immediate from Lemma 2.3.
(c) Since |Xx|; |Xy|; |Xz|63k + 2, the numbers of the vertices and edges in the

weighted graphs G(�); G(); G′(’) and G(’) are O(k2)=O(1). Therefore the sets
Q’(v; i); S�(v; i) and S (v; i) can be computed in O(1) time using O(1) operations for
each rank i∈R. Since |R|=m=O(log2 n), the count-lists L(’; v), v∈Xx, can be com-
puted by (a) in O(1) parallel time using O(m)=O(log2 n) operations. Then checking
whether a vertex-labeling ’ is a c-ranking of Gx can be done by (b) in O(1) paral-
lel time using O(log2 n) operations, and if so, computing L(’) can be done in O(1)
parallel time using O(log2 n) operations on the EREW PRAM.

Md.A. Kashem et al. / Theoretical Computer Science 240 (2000) 407–427 425

Thus each feasible vector R(’)= (L(’); �’) on an internal node can be computed
in O(1) parallel time using O(log2 n) operations on the EREW PRAM. The table of
all feasible vectors on an internal node x can be obtained from the pairs of tables of
all feasible vectors on the two children y and z of x, and the number of these pairs
is O(n6(k+1)(a+1) log3(k+1)(3k+2)2 n). To compute the table on x in O(1) parallel time,
we need a common CRCW PRAM model. A concurrent read capability is needed,
because each feasible vector of the table on y needs to be simultaneously accessed
by all the O(n3(k+1)(a+1) log3(k+1)(3k+2)=22 n) processors corresponding to the table on z
and each feasible vector of the table on z needs to be simultaneously accessed by
all the O(n3(k+1)(a+1) log3(k+1)(3k+2)=22 n) processors corresponding to the table on y. A
concurrent write up of the same value is required, because di�erent pairs of feasible
vectors on y and z may compute the same feasible vector on x. Thus the table on x can
be computed in O(1) parallel time using O(n6(k+1)(a+1) log3(k+1)(3k+2)+12 n) operations
on the common CRCW PRAM.
We thus have the following parallel algorithm Ranking to �nd an optimal c-ranking

of a partial k-tree G, where h is the height of tree T .

Algorithm Ranking;
begin
1 for m := 1 to 1 + a logc+1 n in parallel do

begin
2 compute a table of all feasible vectors on each leaf of T for

R= {1; 2; : : : ; m} in parallel;
3 for l := 1 to h do
4 for each internal node x in T at level l in parallel do
5 compute a table of all feasible vectors from those on the two children

of x;
6 check whether there exists a feasible vector in the table at the root;

end
7 �nd the smallest integer m such that there exists a feasible vector in the table

at the root for R= {1; 2; : : : ; m}, and output m as rc(G).
end.

Lines 2–6 are executed for all m in parallel in Line 1. We now show that Lines 2–6
can be done in O(log2 n) parallel time using O(n

6(k+1)(a+1)+1 log3(k+1)(3k+2)+12 n) opera-
tions on the common CRCW PRAM for each m. Line 2 can be done in O(1) parallel
time using O(log3(k+1)2 n) operations on the EREW PRAM for each leaf as mentioned
before. Since there are O(n) leaves, Line 2 can be done in O(1) parallel time using
O(n log3(k+1)2 n) operations on the EREW PRAM for all leaves. As mentioned above,
Line 5 can be done in O(1) parallel time using O(n6(k+1)(a+1) log3(k+1)(3k+2)+12 n) oper-
ations on the common CRCW PRAM for each node. Since h=O(log2 n), Line 3 and
Line 4 can be done in O(log2 n) parallel time using O(n

6(k+1)(a+1)+1 log3(k+1)(3k+2)+12 n)
operations on the common CRCW PRAM. Line 6 can be done in O(1) parallel time
using O(n3(k+1)(a+1) log3(k+1)(3k+2)=2+12 n) operations on the common CRCW PRAM.

426 Md.A. Kashem et al. / Theoretical Computer Science 240 (2000) 407–427

Thus Lines 2–6 can be done in O(log2 n) parallel time using O(n6(k+1)(a+1)+1

log3(k+1)(3k+2)+12 n) operations on the common CRCW PRAM. Therefore Line 1 can
be done in O(log2 n) parallel time using O(n

6(k+1)(a+1)+1 log3(k+1)(3k+2)+22 n) operations
on the common CRCW PRAM. Then Line 7 can be done in O(log2 n) time using
O(log2 n) operations on the EREW PRAM.
Thus an optimal c-ranking of a partial k-tree G of n vertices can be found in

O(log2 n) parallel time using O(n
6(k+1)(a+1)+1 log3(k+1)(3k+2)+22 n) operations on the com-

mon CRCW PRAM for any positive integer c and any bounded integer k. This com-
pletes the proof of Theorem 5.1.

6. Conclusion

We �rst give a polynomial-time sequential algorithm for �nding an optimal c-ranking
of a given partial k-tree with bounded k. The algorithm takes time O(n2(k+1)(a+1)+2

logk(k+1)+12 n log2 log2 n) for any positive integer c, where a=O(1) is given in
Lemma 2.3. This is the �rst polynomial-time sequential algorithm for the generalized
vertex-ranking problem on partial k-trees.
We next give a parallel algorithm for �nding an optimal c-ranking of a given

partial k-tree for any positive integer c and any bounded integer k. The algorithm
takes O(log2 n) parallel time using O(n

6(k+1)(a+1)+1 log3(k+1)(3k+2)+12 n) processors on
the common CRCW PRAM. This is the �rst parallel algorithm for the generalized
vertex-ranking problem on partial k-trees. Note that our algorithm can be implemented
in O(log22 n) parallel time using the same number of processors on the EREW PRAM
[13].
We may replace the positive integer c by a function f : {1; 2; : : : ; n} → N to de�ne

a more generalized vertex-ranking of a graph as follows: an f-ranking of a graph G is
a labeling of the vertices of G with integers such that, for any label i, deletion of all
vertices with labels ¿i leaves connected components, each having at most f(i) vertices
with label i [27]. By minor modi�cations of our sequential and parallel algorithms for
the c-ranking of a partial k-tree, one can obtain algorithms for �nding an optimal
f-ranking of a given partial k-tree in the same complexity.

References

[1] H.L. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees,
J. Algorithms 11 (1990) 631–643.

[2] H.L. Bodlaender, A linear-time algorithm for �nding tree-decompositions of small treewidth, SIAM
J. Comput. 25 (1996) 1305–1317.

[3] H.L. Bodlaender, J.S. Deogun, K. Jansen, T. Kloks, D. Kratsch, H. M�uller, Zs. Tuza, Rankings of
graphs, SIAM J. Discrete Math. 21 (1998) 168–181.

[4] H.L. Bodlaender, T. Hagerup, Parallel algorithms with optimal speedup for bounded treewidth, Proc.
22nd Int. Colloq. on Automata, Languages and Programming, Lecture Notes in Computer Science, Vol.
944, Springer, Berlin, 1995, pp. 268–279.

Md.A. Kashem et al. / Theoretical Computer Science 240 (2000) 407–427 427

[5] H.L. Bodlaender, T. Kloks, E�cient and constructive algorithms for the pathwidth and treewidth of
graphs, J. Algorithms 21 (1996) 358–402.

[6] R. Borie, Generation of polynomial time algorithms for some optimization problems on tree-
decomposable graphs, Algorithmica 14 (1995) 123–137.

[7] P. de la Torre, R. Greenlaw, T.M. Przytycka, Optimal tree ranking is in NC, Parallel Process. Lett. 2
(1992) 31–41.

[8] P. de la Torre, R. Greenlaw, A.A. Sch�a�er, Optimal edge ranking of trees in polynomial time,
Algorithmica 13 (1995) 592–618.

[9] J.S. Deogun, T. Kloks, D. Kratsch, H. M�uller, On vertex ranking for permutation and other graphs, Proc.
11th Ann. Symp. on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science,
Vol. 775, Springer, Berlin, 1994, pp. 747–758.

[10] I.S. Du�, J.K. Reid, The multifrontal solution of inde�nite sparse symmetric linear equations, ACM
Trans. Math. Software 9 (1983) 302–325.

[11] A.V. Iyer, H.D. Ratli�, G. Vijayan, Optimal node ranking of trees, Inform. Process. Lett. 28 (1988)
225–229.

[12] A.V. Iyer, H.D. Ratli�, G. Vijayan, On an edge-ranking problem of trees and graphs, Discrete Appl.
Math. 30 (1991) 43–52.

[13] J. J�aJ�a, An Introduction to Parallel Algorithms, Addison-Wesley, New York, 1992.
[14] M.A. Kashem, X. Zhou, T. Nishizeki, Generalized vertex-rankings of partial k-trees, Proc. 3rd. Ann. Int.

Computing and Combinatorics Conf. (COCOON’97), Lecture Notes in Computer Science, Vol. 1276,
Springer, Berlin, 1997, pp. 212–221.

[15] M.A. Kashem, X. Zhou, T. Nishizeki, An NC parallel algorithm for generalized vertex-rankings of
partial k-trees, Proc. Int. Symp. on Parallel Architectures, Algorithms and Networks (I-SPAN’97),
pp. 105–111.

[16] M. Katchalski, W. McCuaig, S. Seager, Ordered colorings, Discrete Math. 142 (1995) 141–154.
[17] T. Kloks, H. M�uller, C.K. Wong, Vertex ranking of asteroidal triple-free graphs, Proc. 7th Int. Symp.

on Algorithms and Computation (ISAAC’96), Lecture Notes in Computer Science, Vol. 1178, Springer,
Berlin, 1996, pp. 174–182.

[18] T.W. Lam, F.L. Yue, Edge ranking of graphs is hard, Discrete Appl. Math. 85 (1998) 71–86.
[19] T.W. Lam, F.L. Yue, Optimal edge ranking of trees in linear time, Proc. Ninth ACM-SIAM Symp.

Discrete Algorithms, 1998, pp. 436–445.
[20] J.W.H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal. Appl. 11 (1990)

134–172.
[21] A. Pothen, The complexity of optimal elimination trees, Technical Report CS-88-13, Pennsylvania State

University, USA, 1988.
[22] B.A. Reed, Finding approximate separators and computing tree-width quickly, Proc. 24th Ann. ACM

Symp. on Theory of Computing, 1992, pp. 221–228.
[23] N. Robertson, P.D. Seymour, Graph minors. II. Algorithmic aspect of tree-width, J. Algorithms 7 (1986)

309–322.
[24] A.A. Sch�a�er, Optimal node ranking of trees in linear time, Inform. Process. Lett. 33 (1989=90) 91–96.
[25] J. van Leeuwen, Graph algorithms, in: Handbook of Theoretical Computer Science, A: Algorithms and

Complexity Theory, North-Holland, Amsterdam, 1990, pp. 527–631.
[26] X. Zhou, M.A. Kashem, T. Nishizeki, Generalized edge-rankings of trees, Proc. 22nd. Int. Workshop

on Graph-Theoretic Concepts in Computer Science (WG’96), Lecture Notes in Computer Science,
Vol. 1197, Springer, Berlin, 1997, pp. 390–404, also IEICE Trans. on Fundamentals of Electronics,
Commun. Comput. Sci. E81-A (2) (1998) 310–320.

[27] X. Zhou, H. Nagai, T. Nishizeki, Generalized vertex-rankings of trees, Informat. Process. Lett. 56 (1995)
321–328.

