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Abstract

Many combinatorial problems are NP-complete for general graphs. However, when restricted
to series–parallel graphs or partial k-trees, many of these problems can be solved in polynomial
time, mostly in linear time. On the other hand, very few problems are known to be NP-complete
for series–parallel graphs or partial k-trees. These include the subgraph isomorphism problem
and the bandwidth problem. However, these problems are NP-complete even for trees. In this
paper, we show that the edge-disjoint paths problem is NP-complete for series–parallel graphs
and for partial 2-trees although the problem is trivial for trees and can be solved for outerplanar
graphs in polynomial time. ? 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Many combinatorial problems are NP-complete for general graphs, and are unlikely
to be solvable in polynomial time. However, many “natural” problems de=ned on un-
weighted graphs can be e>ciently solved for series–parallel graphs or partial k-trees
(graphs of treewidth bounded by a constant k) in polynomial time or mostly in lin-
ear time [1–4,23,24,29]. On the other hand, very few problems are known to be
NP-complete for series–parallel graphs or partial k-trees. These include the subgraph
isomorphism problem and the bandwidth problem [5,11,15,22]. However, these prob-
lems are NP-complete even for ordinary trees [8].

The edge-disjoint paths problem asks whether there exist p pairwise edge-disjoint
paths Pi, 16 i6p, connecting terminals si and ti in a given graph G with p terminal
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Fig. 1. Three edge-disjoint paths P1, P2 and P3 in a series–parallel graph.

pairs (si; ti), 16 i6p, assigned to vertices of G. Fig. 1 illustrates three edge-disjoint
paths P1, P2 and P3 in a series–parallel graph. The vertex-disjoint paths problem is
similarly de=ned. These problems come up naturally when analyzing connectivity ques-
tions or generalizing (integral) network Iow problems. Another reason for the grow-
ing interest is the variety of applications, e.g. in VLSI-design and communication
[12,13,16,20,21,28]. If p=O(1), then the vertex-disjoint paths problem can be solved
in polynomial time for any graph by Robertson and Seymour’s algorithm based on their
series of papers on graph minor theory [17,18]. The edge-disjoint paths problem on a
graph G can be reduced in polynomial time to the vertex-disjoint paths problem on a
new graph similar to the line graph of G. Therefore, the edge-disjoint paths problem
can also be solved in polynomial time for general graphs if p=O(1). However, if
p is not bounded, then both the edge-disjoint and vertex-disjoint paths problems are
NP-complete even for planar graphs [14,26]. For a survey, see [7,25].

A natural question is whether the vertex-disjoint and edge-disjoint paths problems
can be e>ciently solved for a restricted class of graphs, say series–parallel graphs
or partial k-trees. Indeed ScheMer showed that the vertex-disjoint paths problem can
be solved in linear time for partial k-trees even if p is not bounded [19]. Frank
obtained a necessary and su>cient condition for the existence of edge-disjoint paths in
a class of planar graphs [6]. His result together with the algorithms in [13,28] yields a
polynomial-time algorithm for the edge-disjoint paths problem on outerplanar graphs.
Note that outerplanar graphs are series–parallel.

On the other hand, Zhou et al. showed that the edge-disjoint paths problem can
be solved in polynomial time for partial k-trees if either p=O(log n) or the location
of terminals satis=es some condition, where n denotes the number of vertices in a
given partial k-tree [32]. However, it has not been known whether the edge-disjoint
paths problem is NP-complete for series–parallel graphs or partial k-trees if there is no
restriction on the number of terminal pairs or the location of terminals.

In this paper we show that the edge-disjoint paths problem is NP-complete for
series–parallel graphs and for partial 2-trees. To the best of our knowledge this is
the =rst example of problems which are e>ciently solvable for outer-planar graphs but
NP-complete for series–parallel graphs or partial 2-trees.
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2. Main theorem

In this section, we =rst give some de=nitions. The paper deals with undirected graphs
without self-loops. A graph is called a simple graph if it has no parallel edges. Let
G= (V; E) denote a graph with vertex set V and edge set E. We often denote by V (G)
and E(G) the vertex set and the edge set of G, respectively. For two disjoint subsets U
and W of V (G), we denote by EG(U;W ) a set of edges e in G such that an end of e is
in U and the other end is in W . An edge joining vertices u and v is denoted by {u; v}.
It is well-known that a graph is series–parallel if and only if it can be constructed
from a single edge by two operations: doubling an edge and subdividing an edge [23].
Furthermore, a simple graph is a partial 2-tree (or, equivalently, has tree-width at most
2) if and only if each biconnected component is series–parallel. Thus, a series–parallel
graph having no parallel edges is a partial 2-tree.

Our main result is the following theorem.

Theorem 2.1. The edge-disjoint paths problem is NP-complete for series–parallel
graphs.

In the remainder of this section we will give a proof of Theorem 2.1. The Minimum
Graph Bisection problem is de=ned as follows: Given an undirected graph H with
2n vertices and a positive integer c, does there exist a partition V (H) =U ∪̇W with
|U |= |W |= n and |EH (U;W )|6 c? This problem was shown to be NP-complete by
Garey et al. [9]. Clearly the edge-disjoint paths problem is in NP [8]. Therefore it
su>ces to show that the Minimum Graph Bisection problem can be transformed in
polynomial time to the edge-disjoint paths problem for series–parallel graphs.

Given a graph H and a positive integer c (i.e. an instance of Minimum Graph Bi-
section), we construct an instance of the edge-disjoint paths problem. It will consist of
a series–parallel graph G, and some number of terminal pairs, say p pairs (s1; t1); (s2; t2);
: : : ; (sp; tp). We shall prove that there are edge-disjoint paths P1; P2; : : : ; Pp from s1 to
t1, from s2 to t2 and so on if and only if an instance (H; c) of Minimum Graph Bisection
is an yes-instance, i.e. H has a bisection with at most c edges.

To describe our construction, we need a gadget Gj de=ned for each j¿ 1 as follows:
Gj consists of a graph, a subset T of j vertices in the graph, and j − 1 terminal pairs
(s1; t1); (s2; t2); : : : ; (sj−1; tj−1). The graph in each gadget can be constructed from a
single edge {a; b} by doubling and subdividing edges, so it will be series–parallel.

For j= 1, we just subdivide an edge {a; b}, obtain a new vertex c, and set T :={c}.
The resulting gadget is G1. (See Fig. 2(a) where the vertex c in T is drawn by a white
circle.)

For j= 2, we double an edge {a; b}, and subdivide each of the two resulting edges;
let c and d be the two new vertices. We set T :={c; d}, s1:=c, and t1:=d. The resulting
gadget is G2. (See Fig. 2(b).)

For j¿ 2, we start with the graph depicted in Fig. 3, with a terminal pair (sj−1; tj−1).
The numbers at the edges {a; c}, {d; b}, {a; e} and {f; b} indicate that many parallel
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Fig. 2. Gadgets G1; G2 and G3 where the vertices in T are drawn by white circles.

Fig. 3. Construction of Gj .

edges. Now we replace the edges {c; d} and {e; f} by the gadgets G�j=2� and G�j=2�,
respectively. We get a total of (�j=2�−1)+(�j=2	−1)+1 = j−1 terminal pairs and a
set T of �j=2�+ �j=2	= j vertices. Clearly Gj is obtained from a single edge {a; b} by
two operations: doubling an edge and subdividing an edge. Thus Gj is a series–parallel
graph. One can easily observe that Gj has O(j) vertices.

This completes the description of the gadgets. The gadgets G3 and G7 are illustrated
in Figs. 2(c) and 4, respectively.

Now the graph G is constructed as follows: We start from a cycle C4 of length 4,
with vertices A; B; D; C in this order. (See Fig. 5.) Then we replace the edge {A; C}
of C4 by 2n parallel edges, each of which corresponds to one of the 2n vertices in
H . Now, for each vertex v∈V (H), the edge {A; C} corresponding to v is replaced
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Fig. 4. The gadget G7.

Fig. 5. Construction of graph G.

by the gadget G2n−1, and the 2n − 1 vertices in T of G2n−1 are marked by s(v;w),
w∈V (H) \ {v} (in addition to the marks these vertices have already received by the
gadget construction). These 2n gadgets G2n−1 are called vertex gadgets. (See Fig. 6.)

On the other hand, we replace the edge {B;D} of C4 by 2n(2n − 1) − |E(H)| + c
parallel edges. For each edge e= {v; w}∈E(H), we take one of these edges {B;D}
and replace it by the gadget G2, marking the two vertices in T of G2 by t(v;w) and
t(w;v). These |E(H)| gadgets G2 are called edge gadgets. Moreover, for each ordered
pair (v; w) of vertices v; w∈V (H) such that v �=w and {v; w} �∈ E(H), we take one of
these edges {B;D} and replace it by G1 (i.e. subdivide it) and mark the vertex in T
of G1 by t(v;w). These 2n(2n− 1) − 2|E(H)| gadgets G1 are called non-edge gadgets.
The remaining c parallel edges joining B and D are left unchanged.
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Fig. 6. Paths in G for terminals in edge gadgets and non-edge gadgets.

Finally we replace the edge {A; B} of C4 by n(2n−1) parallel edges, and we replace
{C;D} by n (2n− 1) parallel edges. This completes the construction of graph G; see
Figs. 5 and 6. Clearly G is obtained from C4 by two operations: doubling an edge
and subdividing an edge. Hence G is a series–parallel graph. Furthermore, both the
number of vertices in G and the number p of terminal pairs are clearly bounded
by a polynomial in n; more precisely, |V (G)|=O(n2) and p=O(n2). Thus one can
construct G from H in polynomial time.

The deletion of the 2n (2n− 1) edges {A; B} and {C;D} from G separates exactly
2n (2n − 1) terminal pairs (s(v;w); t(v;w)), each consisting of two terminals in diSerent
gadgets, where v∈V (H) and w∈V (H) \ {v}. Therefore, all the edges {A; B} and
{C;D} in G must be used by the paths for these terminal pairs. It is easy to see that
all terminal pairs introduced within the same vertex gadget can be realized completely
within that gadget, with shortest paths (of length 2 or 4); either all with shortest paths
around the bottom or all with shortest paths around the top. In Fig. 4 the dotted lines
indicate the shortest paths around the bottom.

Suppose that there is a bisection of H into n red vertices in U and n blue vertices
in W such that |EH (U;W )|6 c. Then we can =nd edge-disjoint paths in G as follows.

For each red vertex v∈U , we realize all the 2n−2 terminal pairs introduced with the
vertex gadget G2n−1 for v by shortest paths within the gadget, all around the bottom,
and we let each of the 2n − 1 paths for s(v;w), w∈V (H) \ {v}, pass the gadgets in
which it is contained towards the top, then use an edge {A; B} and =nally use an
edge {B; t(v;w)} in an edge gadget G2 or a non-edge gadget G1. (In Fig. 4 the paths
starting at s(v;w) toward the top in G7 are drawn by thick solid lines. In Fig. 6 the
paths for terminals t(v;w) are drawn by thick solid lines.) For blue vertices in W we do
the opposite: we realize all the 2n− 2 terminal pairs in the vertex gadget by shortest
paths around the top, and we let each of the 2n − 1 paths for s(v;w) pass the gadget
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towards the bottom and use edges {C;D} and {D; t(v;w)}. This can be done because
H has n red vertices and n blue vertices, and G has exactly 2n(2n− 1) terminal pairs
(s(v;w); t(v;w)) separated by the 2n(2n−1) edges {A; B} and {C;D} where v∈V (H) and
w∈V (H) \ {v}.

If the ends v and w of an edge e= {v; w}∈E(H) have the same color, then the
following (i) and (ii) hold:

(i) both paths, from s(v;w) to t(v;w) and from s(w;v) to t(w;v), enter the edge gadget G2

for e at the same vertex; either both enter the gadget at B or both at D, depending
on whether v is red or blue; and hence

(ii) we can realize the path connecting the two terminals in T of the edge gadget G2

for e by a path of length 2 using none of the c parallel edges {D; B} as indicated
by thick dotted lines in Fig. 6.

On the other hand, if the ends v and w of e have diSerent colors, then we re-
alize the path connecting the two terminals in the edge gadget G2 for e by a path
of length 3 using one of the c edges {D; B} as indicated by thin dotted lines in
Fig. 6. This can be done because the cut of the bisection of H has at most c edges
whose ends have diSerent colors. (In Fig. 6 thick lines indicate (a) paths for termi-
nals in an edge gadget for an edge with two red ends, (b) paths for terminals in an
edge gadget for an edge with a red end and a blue end, and (c) paths for terminals
in two non-edge gadgets, while dotted lines indicate paths for terminal pairs within
edge-gadgets.)

Conversely, suppose that G has edge-disjoint paths connecting the terminal pairs.
Clearly all the edges {A; B} and {C;D} in G are used by paths for terminal pairs
(s(v;w); t(v;w)) where v∈V (H) and w∈V (H) \ {v}. One can easily observe that

(i) all terminal pairs introduced within the same vertex gadget are realized completely
within that gadget with shortest paths (of length 2 or 4); either all with shortest
paths around the bottom or all with shortest paths around the top; and

(ii) all the 2n−2 terminal pairs within the vertex gadget G2n−1 for a vertex v∈V (H)
are connected by shortest paths around the bottom if and only if all the 2n − 1
terminals s(v;w), w∈V (H) \ {v}, in T of the gadget G2n−1 are realized by paths
towards the top.

Thus, for each vertex v∈V (H), the 2n− 1 paths starting at s(v;w), w∈V (H) \ {v},
either all pass A and B or all pass C and D in G. In the =rst case we call v red,
otherwise blue. (The vertex gadget in Fig. 4 corresponds to a red vertex.) Since there
are n(2n − 1) edges {A; B} and n(2n − 1) edges {C;D} in G, we have n red and n
blue vertices in H , inducing a bisection of H .

We claim that at most c edges are in the cut of this bisection of H . Consider an
edge e= {v; w}∈E(H) and the following three paths in the solution of the edge-disjoint
paths problem: the path from s(v;w) to t(v;w), the path from s(w;v) to t(w;v), and the path
connecting the two terminals in T of the edge gadget G2 for e. If none of these three
paths uses an edge {B;D}, then the third path has length 2 while the other two paths
either both use an edge {A; B} or both {C;D}, and hence v and w have the same color.
Thus, if e is in the cut of H , that is, v and w have diSerent colors, then at least one
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of the three paths uses one of the parallel edges {B;D}. Since there are only c parallel
edges {B;D} in G, there are at most c edges in the cut of H .

Thus we have proved Theorem 2.1.

3. Conclusion

In this paper, we showed that the edge-disjoint paths problem is NP-complete for
series–parallel graphs G. Replace each set of parallel edges in G with the same number
of parallel paths of length 2, then the resulting graph G′ is a series–parallel graph
having no parallel edges and hence is a partial 2-tree. Clearly G has edge-disjoint
paths if and only if the resulting partial 2-tree G′ has edge-disjoint paths. Thus the
edge-disjoint paths problem is NP-complete for partial 2-trees, too.

The edge-disjoint paths problem is a decision problem, i.e., a YES-NO problem. The
optimization version is the maximum edge-disjoint paths problem which asks to =nd
a maximum number of edge-disjoint paths connecting terminal pairs in a given graph.
Garg et al. [10] showed that the maximum multicommodity integral Iow problem is
NP-hard for a tree with edge-capacities 1 or 2. Replace each edge of capacity 2 in the
tree with a pair of parallel paths of length 2, then the resulting graph is an outerplanar
graph and hence is a partial 2-tree. Thus the result in [10] immediately implies that
the maximum edge-disjoint paths problem is NP-hard for outerplanar graphs or partial
2-trees. However, it does not imply our result because the NP-hardness of an optimiza-
tion problem does not always imply the NP-completeness of the decision problem.

Zhou et al. proved the following fact: the edge-disjoint paths problem can be solved
in polynomial time for a partial k-tree G if the augmented graph G+ obtained from
G by adding an edge joining si and ti for each pair of terminals (si; ti) remains to be
a partial k-tree [32]. Our result in this paper does not conIict with the fact above,
because the augmented graph G+ of the graph G constructed by our reduction is not
always a partial k-tree with bounded k.

A class of tractable problems for series–parallel graphs or partial k-trees has been
characterized [1–4,23]. It remains open to characterize a class of intractable problems,
including the edge-disjoint paths problem, the subgraph isomorphism problem, and the
bandwidth problem, for series–parallel graphs or partial k-trees.

AndrUas Frank observed that the f-factor problem reduces to the edge-disjoint paths
problem in double-stars (graphs where two vertices cover all the edges). He raised the
question of =nding a common generalization of f-factors and edge-disjoint paths in out-
erplanar graphs. A natural graph family containing outerplanar graphs and double-stars
are the partial 2-trees. However, our main result shows that this family is already too
big to expect a good characterization.
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