A Linear Algorithm for Compact Box-Drawings of Trees

Masud Hasan*
Department of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Md. Saidur Rahman,* Takao Nishizeki
Graduate School of Information Sciences, Tohoku University, Aoba-yama 05, Sendai 980-8579, Japan

In a box-drawing of a rooted tree, each node is drawn by a rectangular box of prescribed size, no two boxes overlap each other, all boxes corresponding to siblings of the tree have the same x-coordinate at their left sides, and a parent node is drawn at a given distance apart from its first child. A box drawing of a tree is compact if it attains the minimum possible rectangular area enclosing the drawing. We give a linear-time algorithm for finding a compact box-drawing of a tree. A known algorithm does not always find a compact box-drawing and takes time $O(n^2)$ if a tree has n nodes. © 2003 Wiley Periodicals, Inc.

Keywords: algorithm; graph drawing; tree drawing; box-drawing; compact drawing

1. INTRODUCTION

Automatic drawings of trees on a two-dimensional plane have many applications in VLSI layouts, information visualization such as displaying tree-structured diagrams, and hierarchical file structures [2]. The complexity of algorithms for finding a drawing of a tree significantly depends on the aesthetic conditions considered. The problem of finding a drawing of a binary tree on an integer grid of a minimum area is NP-hard for a certain set of aesthetic conditions [8], whereas for a different set of aesthetic conditions, an $O(n \sqrt{n \log n})$ time algorithm is known for finding a drawing of a binary tree on an integer grid of a minimum area [3]. Reingold and Tilford gave a linear-time algorithm for a tidier drawing of trees with a certain set of aesthetic conditions where the nodes are drawn as points and the drawing does not give optimum compactness [6]. In this paper, we consider

a box-drawing of a rooted tree where each node is drawn by a rectangular box of a prescribed size, no two boxes overlap each other, all boxes corresponding to siblings of the tree have the same x-coordinate at their left sides, and a parent node is drawn at a given distance apart from its first child. The size of a node is described by the width and height of a box representing the node.

Figure 1(a) depicts a tree with prescribed width and height for each node; the first integer attached to each node represents the node number, and the two integers written inside the parentheses are the width and height. Two box-drawings of the tree in Figure 1(a) are depicted in Figure 1(b,c), where the y-coordinate of the top side of a parent box is one less than that of its first child if the parent has two or more children; otherwise, the top sides of a parent and the child have the same y-coordinate. Moreover, the ordering of the children of each node in Figure 1(a) is preserved in both Figure 1(b,c). Note that in the box-drawings in Figure 1(b,c) a box is not drawn in the exact scale of the prescribed size, but the width and the height of a drawn box are less than the prescribed size by one-half of one coordinate unit. This amount of gap is used to show the interconnection among a parent and its children. Box-drawings of trees have practical applications in a VLSI layout where a placement is to be found for modules with a prescribed width and height [4, 7].

We call a box-drawing a compact box-drawing if the smallest rectangle enclosing the drawing has the minimum possible area. The box-drawing in Figure 1(c) is a compact box-drawing, whereas the box-drawing of Figure 1(b) is not a compact box-drawing. In this paper, we give a linear-time algorithm for finding a compact box-drawing of a tree. The algorithm in [5] finds a box-drawing of a tree in time $O(n^2)$ if the tree has n nodes, but the drawing found is not always a compact drawing. Walker [9] gave a linear-time algorithm with a set of aesthetic conditions similar to that of Reingold and Tilford [6], where the sizes of all the nodes are variable in only one direction (i.e., either in the horizontal or in the vertical direction) and fixed in the other direction [9].
straightforward implementation of the algorithms in [6] and [9] for nodes with variable sizes is not trivial and it would lead to unaesthetic drawings [1]. Bloesch [1] gave an algorithm for the box-drawing of trees with a similar type of aesthetic conditions, but its time complexity is not linear in the number of nodes and it does not always give a compact drawing. In contrast, our algorithm is very simple and always gives a compact box-drawing of trees in linear time under the given aesthetic conditions.

The rest of the paper is organized as follows: Section 2 introduces some definitions and known results. Section 3 gives our main result on compact box-drawings of trees. Finally, Section 4 is the conclusion.

2. PRELIMINARIES

In this section, we give some definitions and present some known results.

In this paper, a tree T means the so-called rooted ordered tree, in which there is an ordering of the children of each node in T.

We call a drawing of a tree a box-drawing if each node of the tree is drawn as an axis-parallel rectangular box and the drawing satisfies the following three aesthetic conditions:

(C1) No two boxes overlap each other;
(C2) All boxes corresponding to siblings have the same x-coordinate at their left sides, and the x-coordinate is equal to that of their parent plus the width of the parent; and

(C3) A parent node is drawn at a given distance vertically apart from its first child: The y-coordinate of the top side of a parent is smaller than that of its first child by a given integer.

Similarly as in [5], a box is not drawn in the exact scale of the prescribed size, but the width and the height of a drawn box are less than the prescribed size by one-half of one coordinate unit. This amount of gap is used to show the interconnection among a parent and its children. A box is placed in the grid in such a manner that the top-left corner has an integral coordinate value but the bottom-right corner has a half-integral coordinate value. The interconnection among a parent and its children is represented by horizontal and vertical line segments as illustrated in Figure 1(b,c). A horizontal line starts from the point which is on the right side of a parent box and is one-fourth of one coordinate unit lower from the top-right corner of the box, and ends on a vertical line at the middle of the gap. From the vertical line, each child box is connected by a horizontal line segment at one-half of one coordinate unit. This amount of gap is used to show the interconnection among a parent and its children.

3. COMPACT DRAWING

In this section, we give a linear-time algorithm for finding a compact box-drawing of a tree \(T \). It suffices to give a linear-time algorithm for finding a compact box-drawing from an arbitrary box-drawing \(\Gamma \) of \(T \), for example, the initial box-drawing which can be found in linear time by the first phase of the algorithm in [5].

Any box-drawing is compact in the \(x \)-direction. Therefore, our task is to compact the box-drawing \(\Gamma \) in the \(y \)-direction. Our idea is as follows: Let \(l \) be the number of leaves of tree \(T \), and let \(p_1, p_2, \ldots, p_l \) be the ordering of all leaves of \(T \) obtained by a preorder tree-traversal. For the tree \(T \) in Figure 1(a), \(l = 14 \) and all the leaves are ordered as follows: nodes 22, 23, 18, 11, 12, 6, 24, 26, 27, 14, 20, 21, 16, and 9. We decompose tree \(T \) into \(l \) node-disjoint paths \(P_1, P_2, \ldots, P_l \). \(P_i \) starts at the root and ends at leaf \(p_i \); and each path \(P_i \), \(2 \leq i \leq l \), starts at the furthest ancestor of \(p_i \) not in any of paths \(P_1, P_2, \ldots, P_{i-1} \) and ends at leaf \(p_i \). In Figure 1, path \(P_1 \) contains boxes 1, 2, 5, 10, 17, and 22; paths \(P_2, P_3, P_4, P_5, \) and \(P_6 \) contain boxes 23, 18, 11, 12, 6, respectively; and path \(P_7 \) contains boxes 3, 7, 13, 19, and 24. For each \(i, 1 \leq i \leq l \), we denote by \(T_i \) the subtree of \(T \) induced by the \(i \) paths \(P_1, P_2, \ldots, P_i \). The relative positions of all boxes on each path \(P_i \) are fixed in all box-drawings of \(T \), due to Conditions (C2) and (C3). Therefore, the positions of all boxes on \(P_i \) in \(\Gamma \) need not be changed in a compact drawing. We determine the positions of boxes on \(P_2, P_3, \ldots, P_l \) in this order. For each \(i \geq 2 \), all boxes on \(P_i \) should be moved upward by the same amount of distance for compaction because their relative positions are fixed. The distance is denoted by \(\text{dist}(P_i) \). To compute \(\text{dist}(P_i) \), one wishes to know the positions of boxes in the subtree \(T_{i-1} \) which can be seen from boxes on \(P_i \). We construct a “visibility graph” for this purpose.

Two boxes \(u \) and \(v \) in \(\Gamma \) are said visible from each other if a vertical line segment can be drawn so that it connects \(u \) and \(v \) but does not intersect or touch any other box in \(\Gamma \). The upward visibility graph \(G_{up} \) of \(\Gamma \) is defined as follows: Each box \(b \) in \(\Gamma \) corresponds to a vertex \(v_b \) in \(G_{up} \) and there is a directed edge connecting vertex \(v_b \) to vertex \(v_{b'} \) in \(G_{up} \) if and only if in \(\Gamma \) box \(b' \) is visible from box \(b \) and the y-coordinate of the top side of \(b' \) is greater than that of \(b \).

The upward visibility graph \(G_{up} \) is directed because boxes are drawn with a given distance vertically apart. The upward visibility graph of any box-drawing of a tree is planar. We now have the following lemma:

Lemma 1. The upward visibility graph \(G_{up} \) of a box-drawing \(\Gamma \) of a tree \(T \) can be constructed in linear time.

Proof. We give an algorithm to construct \(G_{up} \) in linear time as follows:

We first find the paths \(P_1, P_2, \ldots, P_l \). This can be done in linear time. We then traverse the paths \(P_1, P_2, \ldots, P_l \) in this order and construct the visibility graph \(G_{up} \). For each \(i, 1 \leq i \leq l \), we maintain a list of all boxes in \(T_i \) that can see
Theorem 1. A compact box-drawing of a tree can be obtained in linear time.

Proof. The box-drawing Γ of tree T is optimally compacted in the x-direction. Our task is to compact Γ in the y-direction. For this, we give a linear-time algorithm as follows:

We first find paths P_1, P_2, \ldots, P_l. This can be done in linear time. The positions of all boxes on P_1 in Γ need not be changed in a compact drawing. We now assume that the positions of all boxes in T_{i-1}, $i \geq 2$, have already been determined for a compact drawing. We now determine the positions of all boxes on P_i.

Let u be a box on P_i, let k be the out-degree of u in G_{up}, and let v_1, v_2, \ldots, v_k be the head nodes of edges going out from node u in G_{up}. Let $\text{dist}(u, v_i)$ be the vertical distance from the top side of box u to the bottom side of box v_i, $1 \leq i \leq k$. Then, the possible upward movement $\text{um}(u)$ of box u such that u will not overlap any box in T_{i-1} is $\min\{\text{dist}(u, v_1), \text{dist}(u, v_2), \ldots, \text{dist}(u, v_k)\}$. The distance $\text{dist}(P_i)$ of the possible upward movement of boxes on P_i is equal to the minimum of possible upward movements of all boxes u on P_i; $\text{dist}(P_i) = \min\{\text{um}(u)\}$ u is a node on P_i. We uniformly move upward all boxes on P_i by the distance $\text{dist}(P_i)$.

By Lemma 1, the visibility graph G_{up} can be constructed in time $O(n)$. Using G_{up}, one can compute the possible upward movement $\text{um}(u)$ of a box u on P_i in time proportional to the out-degree of u in G_{up}. Since G_{up} is planar, the sum of out-degrees of all vertices in G_{up} is at most $3n$, and, hence, the possible upward movements of all boxes in Γ can be computed in time $O(n)$. One can compute $\text{dist}(P_i)$, $1 \leq i \leq l$, from the possible upward movements of all boxes on P_i in time $O(\{|V(P_i)|\})$; and, hence, one can compute $\text{dist}(P_i)$ for $i = 1, 2, \ldots, l$ in time $O(\sum_{i=1}^{l}\{|V(P_i)|\}) = O(n)$. Thus, the algorithm takes time $O(n)$.

Clearly, the algorithm above obtains a compact box-drawing of T.

We then have the following theorem:

FIG. 2. (a) A box-drawing Γ of a tree and (b) its upward visibility graph G_{up}.

$-\infty$ in the y-direction; the list contains boxes in the increasing order of x-coordinates of their left sides and the list is called the lower envelope $\text{LE}(T_i)$ of T_i. An entry in the lower envelope is not always a “full” box, but may be a part of a box which can see $-\infty$ in the y-direction. Clearly, the visibility graph of a drawing of the subtree T_i consists of isolated vertices corresponding to the boxes on P_i, and $\text{LE}(T_i)$ consists of all (full) boxes on P_i.

Assume that we have constructed the visibility graph of a drawing of the subtree T_{i-1}, $i \geq 2$, and found the lower envelope $\text{LE}(T_{i-1})$. We now find the edges of G_{up} going out from boxes on P_i. Let u be the starting box of P_i, and let v be the sibling of u immediately above u. Clearly, v is in $\text{LE}(T_{i-1})$. We find all edges of G_{up} going out from boxes on P_i by comparing the x-coordinates of top-left and top-right corners of boxes on P_i with those of (full or partial) boxes in $\text{LE}(T_{i-1})$ starting from v in a manner of comparing two sorted lists for merging. We add the found edges to the visibility graph for T_{i-1} to obtain the visibility graph for T_i. Simultaneously, we update the lower envelope $\text{LE}(T_{i-1})$ to $\text{LE}(T_i)$; all (full) boxes on P_i appear in the lower envelope $\text{LE}(T_i)$ and several consecutive boxes starting from v in $\text{LE}(T_{i-1})$ and possibly a left part of the last one may be hidden by the boxes on P_i and must disappear in $\text{LE}(T_i)$. For the box-drawing in Figure 1(b), the lower envelope $\text{LE}(T_{10})$ of T_{10} is 1, 3, 7, 14, 13, 19, 25, 27, and 24. When we update $\text{LE}(T_{10})$ to $\text{LE}(T_{11})$, boxes 15 and 20 appear in the list and boxes 14 and 13 disappear in $\text{LE}(T_{11})$.

All the boxes in $\text{LE}(T_{j-1})$ that are compared once disappear in $\text{LE}(T_i)$ except the last compared box, a right part of which may remain in $\text{LE}(T_i)$. Therefore, the number of comparisons required throughout the execution of the algorithm is $O(\sum_{i=1}^{l}(|V(P_i)| + 1)) = O(n + l) = O(n)$, where n is the number of nodes in T and $|V(P_i)|$ is the number of nodes in P_i. Thus, we can construct the visibility graph G_{up} in time $O(n)$.

We then have the following theorem:
4. CONCLUSIONS

In this paper, we gave a linear-time algorithm for finding a compact box-drawing of a tree following some aesthetic conditions. The best-known previous algorithm under the same set of aesthetic conditions runs in $O(n^2)$ time [5], but does not always find a compact box-drawing.

REFERENCES