Available online at www.sciencedirect.com

scmncs@pmsc-r. JOURNAL OF
Py DISCRETE
LSEVI Journal of Discrete Algorithms 4 (2006) 142—-154 ALGORITHMS

www.elsevier.com/locate/jda

Partitioning a graph of bounded tree-width
to connected subgraphs of almost uniform size

Takehiro Ito *, Xiao Zhou, Takao Nishizeki

Graduate School of Information Sciences, Tohoku University, Aoba-yama 6-6-05, Sendai, 980-8579, Japan
Available online 29 January 2005

Abstract

Assume that each vertex of a graph G is assigned a nonnegative integer weight and that / and u
are nonnegative integers. One wishes to partition G into connected components by deleting edges
from G so that the total weight of each component is at least / and at most u. Such an “almost
uniform” partition is called an (I, u)-partition. We deal with three problems to find an (/, #)-partition
of a given graph; the minimum partition problem is to find an (/, u)-partition with the minimum
number of components; the maximum partition problem is defined analogously; and the p-partition
problem is to find an (/, u)-partition with a fixed number p of components. All these problems are
NP-complete or NP-hard, respectively, even for series-parallel graphs. In this paper we show that both
the minimum partition problem and the maximum partition problem can be solved in time O(u*n)
and the p-partition problem can be solved in time O(p2u4n) for any series-parallel graph with n
vertices. The algorithms can be extended for partial k-trees, that is, graphs with bounded tree-width.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Algorithm; Lower bound; (/, u)-partition; Maximum partition problem; Minimum partition problem;
Partial k-tree; Series-parallel graph; Upper bound

* Corresponding author.
E-mail addresses: take @nishizeki.ecei.tohoku.ac.jp (T. Ito), zhou@ecei.tohoku.ac.jp (X. Zhou),
nishi @ecei.tohoku.ac.jp (T. Nishizeki).

1570-8667/$ — see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.jda.2005.01.005

http://www.elsevier.com/locate/jda
mailto:take@nishizeki.ecei.tohoku.ac.jp
mailto:zhou@ecei.tohoku.ac.jp
mailto:nishi@ecei.tohoku.ac.jp
http://dx.doi.org/10.1016/j.jda.2005.01.005

T. Ito et al. / Journal of Discrete Algorithms 4 (2006) 142—154 143

1. Introduction

Let G = (V, E) be an undirected graph with vertex set V and edge set E, and let
|V| = n. Assume that each vertex v € V is assigned a nonnegative integer w(v), called
the weight of v. Let I and u be nonnegative integers, called the lower bound and upper
bound on component size, respectively. We wish to partition G into connected components
by deleting edges from G so that the total weights of all components are almost uniform,
that is, the sum of weights of all vertices in each component is at least / and at most u for
some bounds / and u. We call such an almost uniform partition an (I, u)-partition of G.
In this paper we deal with the following three partition problems to find an (/, u)-partition
of a given graph G: the minimum partition problem is to find an (/, u)-partition of G with
the minimum number of components; the minimum number is denoted by puin(G); the
maximum partition problem is defined analogously; and the p-partition problem is to find
an (/, u)-partition of G with a fixed number p of components.

Figs. 1(a) and (b) illustrate two (10, 20)-partitions of the same graph, where each vertex
is drawn as a circle, the weight of each vertex is written inside the circle, and the deleted
edges are drawn as dotted lines. The (10, 20)-partition with four components in Fig. 1(a)
is a solution for the minimum partition problem, and hence ppi,(G) =4 for the graph G
in Fig. 1(a). The (10, 20)-partition with six components in Fig. 1(b) is a solution for the
maximum partition problem.

The three partition problems often appear in many practical situations such as with
image processing [5,8], paging systems of operation systems [11], and political districting
[3,12]. Consider, for example, political districting. Let M be a map of a country, which
is divided into several regions. Let G be the dual graph of the map M. Each vertex v of
G represents a region, and let the weight w (v) represent the number of voters in region v.
Each edge (u, v) of G represents the adjacency of the two regions u# and v. For the political
districting, one wishes to divide the country into electoral zones. Each zone must consist
of connected regions, that is, the regions in each zone must induce a connected subgraph
of G. There must be an almost equal number of voters in each zone, that is, the sum of
w(v) for all regions v in each zone is at least / and at most u for some bounds / and u.
Such electoral zoning corresponds to an (I, u)-partition of the plane graph G.

Two related problems have been studied for trees. One is to partition a tree into the
maximum number of subtrees so that the total weight of each subtree is at least / [9]. The
other is to partition a tree into the minimum number of subtrees so that the total weight of

(@ (b)

Fig. 1. (a) Solution for the minimum partition problem, and (b) solution for the maximum partition problem,
where [= 10 and u = 20.

144 T. Ito et al. / Journal of Discrete Algorithms 4 (2006) 142—154

each subtree is at most # [7]. Both can be solved for trees in linear time. Our three partition
problems are generalizations of these problems. One may expect that there would exist
efficient algorithms for the three partition problems on trees, but our problems are more
difficult than the two problems in [7,9], except for paths; all the three partition problems
can be solved for paths in linear time [8].

An NP-complete problem called the set partition problem PARTITION [4] can be easily
reduced in linear time to our problems for a complete bipartite graph K> ,,—», and K> ,_2 is
a series-parallel graph. (A definition of a series-parallel graph will be given in Section 2.)
Therefore, the p-partition problem for general p is NP-complete and both the minimum
partition problem and the maximum partition problem for general / and u are NP-hard
even for series-parallel graphs. Hence, it is very unlikely that the three partition prob-
lems can be solved for series-parallel graphs in polynomial time, although a number of
combinatorial problems including many NP-complete problems on general graphs can be
solved for series-parallel graphs and partial k-trees in polynomial time or even in linear
time [1,2,10]. One can also observe from the above reduction that, for any ¢ > 0, there is
no polynomial-time e-approximation algorithm for the minimum partition problem or the
maximum partition problem on series-parallel graphs unless P = NP.

A strong NP-complete problem called 3-PARTITION [4] can be easily reduced in
pseudo-polynomial time to our problems for a complete graph. Hence the p-partition prob-
lem is strong NP-complete and both the minimum partition problem and the maximum
partition problem are strong NP-hard for general graphs. Therefore, there is no pseudo-
polynomial-time algorithm for any of our three problems for general graphs unless P = NP.

In this paper we first obtain pseudo-polynomial-time algorithms to solve the three par-
tition problems for series-parallel graphs. More precisely, we show that both the minimum
partition problem and the maximum partition problem can be solved in time O(u*n) and
hence in time O(n) for any bounded constant u, and that the p-partition problem can be
solved in time O(pZu*n). We then show that our algorithms can be extended for partial
k-trees, that is, graphs with bounded tree-width [1,2]. (A definition of a partial k-tree will
be given in Section 5.) An early version of the paper has been presented at [6].

2. Terminology and definitions

In this section we give some definitions.
A (two-terminal) series-parallel graph is defined recursively as follows [10]:

(1) A graph G with a single edge is a series-parallel graph. The end vertices of the edge
are called the ferminals of G and denoted by s(G) and #(G). (See Fig. 2(a).)
(2) Let G’ be a series-parallel graph with terminals s(G’) and #(G’), and let G” be a
series-parallel graph with terminals s(G”) and t(G").
(a) A graph G obtained from G’ and G” by identifying vertex ¢ (G”) with vertex s(G”)
is a series-parallel graph, whose terminals are s(G) = s(G’) and 1(G) = t(G").
Such a connection is called a series connection, and G is denoted by G = G’ ¢ G”.
(See Fig. 2(b).)

T. Ito et al. / Journal of Discrete Algorithms 4 (2006) 142—154 145

HG")
o—o (& G K D (6) s(G) (G)
s(G) HG) =5(G") (G =(G") :s(G'):r(G')

=5(G™) =(G")
(a) (b) (c)

Fig. 2. (a) A series-parallel graph with a single edge, (b) series connection, and (c) parallel connection.

root »

Vi V/p\

S

NN 6y G

5(G) HG) /P\ (3,0 (s,v) (vy,0)
(5,v3)
e \ w

vy v (sv2) (v,v3) v, v,
(@ G (b) T (e) Gy

Fig. 3. (a) A series-parallel graph G, (b) its binary decomposition tree 7', and (c) a subgraph G.

(b) A graph G obtained from G’ and G” by identifying s(G’) with s(G”) and iden-
tifying #(G’) with t(G”) is a series-parallel graph, whose terminals are s(G) =
s(G") =s(G") and t(G) = t(G") = t(G"). Such a connection is called a parallel
connection, and G is denoted by G = G’ || G”. (See Fig. 2(c).)

The terminals s(G) and ¢ (G) of G are often denoted simply by s and ¢, respectively. Since
we deal with partition problems, we may assume without loss of generality that G is a
simple graph and hence G has no multiple edges.

A series-parallel graph G can be represented by a “binary decomposition tree” [10].
Fig. 3(a) illustrates a series-parallel graph G, and Fig. 3(b) depicts a binary decomposition
tree T of G. Labels s and p attached to internal nodes in 7' indicate series and parallel
connections, respectively. Nodes labeled s and p are called s- and p-nodes, respectively.
Every leaf of T represents a subgraph of G induced by a single edge. Each node v of T
corresponds to a subgraph G, of G induced by all edges represented by the leaves that
are descendants of v in 7. Thus G, is a series-parallel graph for each node v of T, and
G = G, for the root r of T. Fig. 3(c) depicts G, for the left child v of the root r of T.
Since a binary decomposition tree of a given series-parallel graph G can be found in linear
time [10], we may assume that a series-parallel graph G and its binary decomposition tree
T are given. We solve the three partition problems by a dynamic programming approach
based on a binary decomposition tree 7.

3. Minimum and maximum partition problems

In this section we have the following theorem.

146 T. Ito et al. / Journal of Discrete Algorithms 4 (2006) 142—154

(@) (b)

Fig. 4. (a) A connected partition, and (b) a separated partition.

Theorem 1. Both the minimum partition problem and the maximum partition problem can
be solved for any series-parallel graph G in time O(u*n), where n is the number of vertices
in G and u is the upper bound on component size.

In the remainder of this section we give an algorithm to solve the minimum partition
problem as a proof of Theorem 1; the maximum partition problem can be analogously
solved. We indeed show only how to compute the minimum number pnin(G). It is easy
to modify our algorithm so that it actually finds an (/, u)-partition having the minimum
number ppin(G) of components.

Every (/, u)-partition of a series-parallel graph G naturally induces a partition of its
subgraph G, for a node v of a binary decomposition tree 7 of G. The induced par-
tition is not always an (/, u)-partition of G, but is either a “connected partition” or
a “separated partition” of G,, which will be formally defined later and are illustrated
in Fig. 4 where s and ¢ represent the terminals of G,. We introduce two functions
f:(G,{0,1,...,u})) > ZT and h:(G,{0,1,...,u},{0,1,...,u}) — Z™*, where G denotes
the set of all series-parallel graphs and Z* denotes the set of all nonnegative integers.
For G, € G and x,y € {0, 1, ..., u}, the values f(G,,x) and h(G,, x, y) represent the
minimum number of components without terminals in connected partitions and separated
partitions of G, respectively, and x and y represent the total weight of non-terminal ver-
tices in a component with a terminal. Our idea is to compute f (G, x) and h(Gy, x, y)
from the leaves of T to the root r of T by means of dynamic programming.

We now formally define the notion of connected and separated partitions of a series-
parallel graph G = (V, E). Let P ={Py, P», ..., P,} be a partition of the vertex set V of
G into m nonempty subsets Py, P», ..., P, for some integer m > 1. Thus |P| = m. The
partition P of V is called a partition of G if P; induces a connected subgraph of G for
eachindex i, 1 <i < m. For aset P C V, we denote by w(P) the total weight of vertices
in P, thatis, o(P) =), .p @ (v). Let wy(G) = w(s) + w(t). We call a partition P of G a
connected partition if P satisfies the following two conditions (see Fig. 4(a)):

(a) there exists a set Py, € P such that s, € Py, and w(Py) < u; and
(b) I <w(P)<uforeachset P € P — {Py}.

Note that the inequality ! < w(Py) does not necessarily hold for Pg. For a connected
partition P, we always denote by Py the set in P containing both s and ¢. A partition P of
G is called a separated partition if P satisfies the following two conditions (see Fig. 4(b)):

T. Ito et al. / Journal of Discrete Algorithms 4 (2006) 142—154 147

(a) there exist two distinct sets Pg, P; € P such that s € P, t € Py, w(Ps) < u, and
w(Py) <u;and
) I <w(P)<uforeachset P € P —{Ps, P}.

Note that the inequalities [< w(Ps) and I < w(P;) do not always hold for P and P;. For a
separated partition P, we always denote by Py the set in P containing s and by P; the set
in P containing ¢.

We then formally define a function f:(G,{0,1,...,u}) — 7+ for a series-parallel
graph G € G and an integer x, 0 < x < u, as follows:

f(G,x)= min{q > 0| G has a connected partition P such that
x =w(Py) — wy(G), and g =|P| — 1}. (1)
If G has no connected partition P such that w (Py) — ws(G) = x, then let f(G, x) = +00.
We now formally define a function 4 : (G, {0,1,...,u},{0,1,...,u}) — Z™ for a series-
parallel graph G € G and a pair of integers x and y, 0 < x, y < u, as follows:
h(G,x,y)= min{q > 0| G has a separated partition P such that
x=w(P) —w(s)and y =w(P) —w(t),
and g = |P| —2}.)
If G has no separated partition P such that w(P;) — w(s) =x and w(P;) — w(t) =y, then
let (G, x,y) = +o0.

Our algorithm computes f (G, x) and h(G, x, y) for each node v of a binary decom-
position tree 7 of a given series-parallel graph G from the leaves to the root r of T by
means of dynamic programming. Since G = G, one can compute the minimum number
Pmin(G) of components from f (G, x) and h(G, x, y) as follows:

Pmin(G) = min{min{ f (G, x) + 1 || <x + wu(G) <u},
min{i(G,x,y) + 2|l <x+w(s) <u, ISy+ow@) <ul}. 3)

Note that pnin(G) = 400 if G has no (I, u)-partition.
We first compute f(G,, x) and h(G, x, y) for each leaf v of T', for which the subgraph
G, contains exactly one edge. For x =0

f(Gy,0) =0,)
and for (x, y) = (0,0)

h(G,,0,0)=0. (5)
For each integer x, 1 < x <u,

f(Gy, x) =400, 6)
and for each pair (x, y), 1 <x,y <u,

h(Gy, x,y) =+o00.)

148 T. Ito et al. / Journal of Discrete Algorithms 4 (2006) 142—154

(b)

(©

Fig. 5. The combinations of a partition P’ of G’ and a partition P” of G” for a partition P of G, = G’ | G”.

By Egs. (4)—(7) one can compute f(G,,x) in time O(u) for each leaf v of T and all
integers x < u, and compute £(G,, x, y) in time O(uz) for each leaf v and all pairs (x, y)
with x, y < u. Since G is a simple series-parallel graph, the number of edges in G is at
most 2n — 3 and hence the number of leaves in T is at most 2n — 3. Thus one can compute
f(Gy, x) and h(G, x, y) for all leaves v of T in time O(u?n).

We next compute f(G,,x) and h(G,, x,y) for each internal node v of T from the
counterparts of the two children of v in T. We first consider a parallel connection. Let
G,=G'"| G”,andlets =5(Gy) and r =t(G,). (See Figs. 2(c) and 5.)

We first explain how to compute 4 (G, x, ¥). The definitions of a separated partition and
h(G,x,y) imply thatif w(P;) =x4w(s) >uorw(P) =y+w(t) >uthen h(G,,x,y) =
+00. One may thus assume that x + w(s) < u and y 4+ w(¢) < u. Then every separated
partition P of G, can be obtained by combining any separated partition P’ of G’ with any
separated partition P” of G”, as illustrated in Fig. 5(a). We thus have

h(Gy, x,y) =min{h(G',x",y) + h(G",x —x',y =y |0< X",y <u}. 8)

T. Ito et al. / Journal of Discrete Algorithms 4 (2006) 142—154 149

We next explain how to compute f(Gy,x). If w(Py) = x + wy(Gy) > u, then
f(Gy, x) = +00. One may thus assume that x + wy(G,) < u. Then every connected parti-
tion P of G, can be obtained by combining a partition P’ of G” with a partition P” of G”,
as illustrated in Figs. 5(b) and (c). There are the following two Cases (a) and (b), and we
define two functions f¢ and f? for the two cases, respectively.

Case (a): both P’ and P" are connected partitions. (See Fig. 5(b).)

Let

FUGy,x) =min{ f(G',x") + f(G",x —x) |0 < x' <ul).)

Case (b): one of P’ and P" is a separated partition and the other is a connected partition.
One may assume without loss of generality that P’ is a separated partition and P” is a
connected partition. (See Fig. 5(c).) Let

PGy, x) = min{i(G',x", y) + f(G",x —x' = y) 10 <X,y <u}. (10)
From f¢ and f? above, one can compute f(G,, x) as follows:

F(Gyox) =min{ f4(Gy,), f(Gyo 1)) (1)

By Eq. (8) one can compute h(G,, x,y) for all pairs (x,y),0 < x,y < u, in time
O"), and by Egs. (9)—(11) one can compute f(G,,x) for all integers x, 0 < x < u,
in time O(x?). Thus one can compute f(Gy, x) and h(Gy, x, y) for each p-node v of T in
time O(u*).

We next consider a series connection. Let G, = G’ ¢ G”, and let w be the vertex of G
identified by the series connection, that is, w = 1 (G") = s(G"). (See Figs. 2(b) and 6.)

We first explain how to compute f (G, x). If x + wy(Gy) > u, then f(G,, x) = +o00.
One may thus assume that x + ws(Gy) < u. Then every connected partition P of G, can
be obtained by combining a connected partition P’ of G’ with a connected partition P” of
G”, as illustrated in Fig. 6(a). We thus have

f(Gv,x) :min{f(G/,)C/) 4 f(G//,X//) |0 gx/’x// <u,
'+ 1"+ ow) =x}. (12)

We next explain how to compute h(Gy, x,y). If x + w(s) > u or y + w(t) > u, then
h(Gy,x,y) = +0o. One may thus assume that x + w(s) < u and y + w(t) < u. Then
every separated partition P of G, can be obtained by combining a partition P’ of G’
with a partition P” of G”, as illustrated in Figs. 6(b) and (c). There are the following
two cases (a) and (b), and we define two functions 4% and h? for the two cases, respec-
tively.

Case (a): one of P' and P" is a connected partition and the other is a separated partition.

One may assume without loss of generality that P’ is a connected partition and P” is a
separated partition. (See Fig. 6(b).) Let

h*(Gy, x,y) =min{ f(G',x") + h(G",x",y) |0 <x", x" <u,
X +x"+ww)=x}. (13)

150 T. Ito et al. / Journal of Discrete Algorithms 4 (2006) 142—154

(b

Fig. 6. The combinations of a partition P’ of G” and a partition P” of G for a partition P of G, = G’ ¢ G”.

Case (b): both P’ and P” are separated partitions. (See Fig. 6(c).)
Let

WP (Gy.x, y) =min{h(G',x.y) +h(G".x".) +110<y . x" <u,
léy'+x”+a)(w)<u}. (14)
From h¢ and h® above one can compute h(G,, x, y) as follows:
h(Gv7-x7y)zmin{ha(Gv7-xvy)ahb(va-x9y)}- (15)

By Eq. (12) one can compute f (G, x) for all integers x, 0 < x < u, in time O(uz), and
by Egs. (13)—(15) one can compute 7 (G, x, y) for all pairs (x, y), 0 < x, y < u, in time
O(u4). Thus one can compute f(Gy, x) and h(G,, x, y) for each s-node v of T in time
O®u™).

In this way one can compute f(G,, x) and h(G,, x, y) for each internal node v of T in
time O(u*). Since 7 is a binary tree and has at most 2n — 3 leaves, T has at most 2n — 4
internal nodes. Since G = G, for the root r of T, one can compute f (G, x) and h(G, x, y)

T. Ito et al. / Journal of Discrete Algorithms 4 (2006) 142—154 151

in time O(u4n). By Eq. (3) one can compute the minimum number ppin (G) of components
in an (I, u)-partition of G from f(G, x) and h(G, x, y) in time O(u?). Thus the minimum
partition problem can be solved in time O(u*n). This completes our proof of Theorem 1.

4. p-partition problem
In this section we have the following theorem.

Theorem 2. The p-partition problem can be solved for any series-parallel graph G in time
O(p2u’n), where n is the number of vertices in G, u is the upper bound on component size,
and p is the fixed number of components.

The algorithm for the p-partition problem is analogous to the algorithm for the mini-
mum partition problem in the previous section. So we present only an outline.

For a series-parallel graph G and an integer ¢, 0 < g < p — 1, we define a set F (G, q)
of nonnegative integers x as follows:

F(G,q) = {x > 0| G has a connected partition P such that
x = (Py) — wu(G), and g = [P| - 1}.

For a series-parallel graph G and an integer ¢, 0 < g < p — 2, we define a set H(G, q) of
pairs of nonnegative integers x and y as follows:

H(G,q)= {(x, ¥) | G has a separated partition P such that
x=w(P) —w(s)and y=w(P;) —w(t), andqg =|P| — 2}.

Clearly |F(G,q)| <u+1and |[H(G,q)| < (u+ 1)2.

We compute F (G, q) and H(G,, g) for each node v of a binary decomposition tree T
of a given series-parallel graph G from the leaves to the root r of T by means of dynamic
programming. Since G = G, the following lemma clearly holds.

Lemma 1. A series-parallel graph G has an (1, u)-partition with p components if and only
if one of the following conditions (a) and (b) holds:

(a) F(G, p — 1) contains at least one integer x such thatl < x + wgx(G) < u; and
(b) H(G, p —2) contains at least one pair of integers x and y such thatl < x + w(s) < u
andl < y+ w(t) < u.

One can compute in time O(p) the sets F (G, q) and H(G,, g) for each leaf v of T
and all integers g (< p — 1), and compute in time O(p2u4) the sets F(Gy, q) and H(Gy, q)
for each internal node v of T and all integers ¢ (< p — 1) from the counterparts of the two
children of v in T'. Since G = G, for the root r of T', one can compute the sets F (G, p — 1)
and H(G, p—2) intime O(p%u*n). By Lemma 1 one can know from the sets in time O®u?)
whether G has an (I, u)-partition with p components. Thus the p-partition problem can be
solved in time O(p?u’n).

152 T. Ito et al. / Journal of Discrete Algorithms 4 (2006) 142—154

5. Partial k-trees
In this section we have the following theorem.

Theorem 3. The minimum and maximum partition problems can be solved in time
O *Dn) and the p-partition problem can be solved in time O(p2u**+tVn) for any
partial k-tree, where k is a constant.

The algorithm for partial k-trees is analogous to those for series-parallel graphs in the
previous sections. So we present only an outline of the algorithm for the minimum partition
problem.

A graph G is a k-tree if either it is a complete graph on k vertices or it has a vertex
v whose neighbors induce a clique of size k and G — {v} is again a k-tree. A graph is a
partial k-tree if it is a subgraph of a k-tree.

A series-parallel graph is a partial 2-tree. A partial k-tree G can be decomposed into
pieces forming a tree structure with at most k + 1 vertices per piece. (See Fig. 7(b).) The
tree structure is called a binary decomposition tree T of G [1,2]. Each node v of T corre-
sponds to a set V (v) of k + 1 or fewer vertices of G, and corresponds to a subgraph G,
of G. For example, Fig. 7 illustrates a partial 3-tree G, its binary decomposition tree T,
and a subgraph G, of G for anode xj of T.

For a series-parallel graph it suffices to consider only two kinds of partitions, a con-
nected partition and a separated partition, while for a partial k-tree we have to consider
many kinds of partitions of G,. Let = be the number of all partitions of set V (v) into pair-
wise disjoint nonempty subsets. Then 77 < (2K71)k*1 and hence 7 is a constant since we
assume k is a constant in the paper. For a partial k-tree G, we consider 7 kinds of partitions

V(xp) = {vi, v, v3, vy}

v V4

V(x) = V(xo) V(xy) = {v1,v3,v4 v}

V3

Vs Vi V(x3) =V (x) Vixy)= V) =V(x,) Vixg)=

{Vla Vo, V3, Vs} {V3,V47 Ves V7}

(a) (b)

Fig. 7. (a) A partial 3-tree G, (b) its binary decomposition tree T, and (c) a subgraph Gy, .

T. Ito et al. / Journal of Discrete Algorithms 4 (2006) 142—154 153

Fig. 8. The partition of G of ith kind.

of Gy. LetV;, 1 <i <, be the ith partition of set V (v), let p(i) be the number of subsets
in the partition V;, and let V; = {V1, V2,..., V). Clearly 1 < p(i) <k + 1. In every
partition of G, of the ith kind, its jth connected component, 1 < j < p(i), contains all the
vertices in the jth subset V;(C V (v)) in V;. (See Fig. 8.) We consider a set of functions
hi(Gy,x1,X2,...,Xp()), 1 <i <, defined analogously to Egs. (1) and (2). Variable x;,
1 < j < p(i), represents the sum of weights of all vertices in the jth component except
for the vertices in V. Thus 0 < x; < u. One can observe that the set of functions for G,
for an internal node v can be computed from the counterparts of the two children of v
in T in time O((u 4+ 1)2**D)_ Thus the set of functions for G can be computed in time
O((u 4 1)>*+Dp). The hidden coefficient in the complexity is 7% (< 22k+D?)

6. Conclusions

In this paper we first obtained pseudo-polynomial-time algorithms for three partition
problems on series-parallel graphs. Both the minimum partition problem and the maximum
partition problem can be solved in time O(u*n), and hence they can be solved in time O(n)
if u = O(1). On the other hand, the p-partition problem can be solved in time O(p?u*n).
Thus these algorithms take polynomial time if « is bounded by a polynomial in 7.

We then showed that our algorithms for series-parallel graphs can be extended for
partial k-trees, that is, graphs of bounded tree-width. The extended algorithm takes
time O(u**+Dp) for the minimum and maximum partition problems, and takes time
O(p2u**+Dp) for the p-partition problem.

We finally remark that, for ordinary trees, one can solve the minimum and maxi-
mum partition problems in time O(x?n) and the p-partition problem in time O(p2u’n) or

Ofn +(,1))-

Acknowledgement

We thank Takeshi Tokuyama for suggesting us the partition problems.

154 T. Ito et al. / Journal of Discrete Algorithms 4 (2006) 142—154

References

[1] S. Arnborg, J. Lagergren, D. Seese, Easy problems for tree-decomposable graphs, J. Algorithms 12 (2)
(1991) 308-340.
[2] H.L. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees,
J. Algorithms 11 (4) (1990) 631-643.
[3] B. Bozkaya, E. Erkut, G. Laporte, A tabu search heuristic and adaptive memory procedure for political
districting, European J. Oper. Res. 144 (1) (2003) 12-26.
[4] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Free-
man, San Francisco, CA, 1979.
[5] R.C. Gonzalez, P. Wintz, Digital Image Processing, Addison-Wesley, Reading, MA, 1977.
[6] T. Ito, X. Zhou, T. Nishizeki, Partitioning a weighted graph to connected subgraphs of almost uniform size,
in: Proc. WG2004, Lecture Notes in Computer Science, vol. 3353, 2004, pp. 365-376.
[7] S. Kundu, J. Misra, A linear tree partitioning algorithm, SIAM J. Comput. 6 (1) (1977) 151-154.
[8] M. Lucertini, Y. Perl, B. Simeone, Most uniform path partitioning and its use in image processing, Discrete
Appl. Math. 42 (2) (1993) 227-256.
[9] Y. Perl, S.R. Schach, Max-min tree partitioning, J. ACM 28 (1) (1981) 5-15.
[10] K. Takamizawa, T. Nishizeki, N. Saito, Linear-time computability of combinatorial problems on series-
parallel graphs, J. ACM 29 (3) (1982) 623-641.
[11] D.C. Tsichritzis, P.A. Bernstein, Operating Systems, Academic Press, New York, 1974.
[12] J.C. Williams Jr., Political redistricting: a review, Papers in Regional Science 74 (1) (1995) 13-40.

	Partitioning a graph of bounded tree-width to connected subgraphs of almost uniform size
	Introduction
	Terminology and definitions
	Minimum and maximum partition problems
	p-partition problem
	Partial k-trees
	Conclusions
	Acknowledgement
	References

