
Discrete Applied Mathematics 157 (2009) 2620–2633

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Partitioning graphs of supply and demand
Takehiro Ito ∗, Xiao Zhou, Takao Nishizeki
Graduate School of Information Sciences, Tohoku University, Aoba-yama 6-6-05, Sendai, 980-8579, Japan

a r t i c l e i n f o

Article history:
Received 1 February 2006
Received in revised form 6 October 2006
Accepted 6 August 2008
Available online 25 November 2008

Keywords:
Demand
Graph partition problem
Series–parallel graph
Supply
Partial k-tree

a b s t r a c t

Assume that each vertex of a graph G is either a supply vertex or a demand vertex and is
assigned a positive integer, called a supply or a demand. Each demand vertex can receive
‘‘power’’ from at most one supply vertex through edges in G. One thus wishes to partition
G into connected components by deleting edges from G so that each component C has
exactly one supply vertex whose supply is no less than the sum of demands of all demand
vertices in C . If G does not have such a partition, one wishes to partition G into connected
components so that each component C either has no supply vertex or has exactly one
supply vertex whose supply is no less than the sum of demands in C , and wishes to
maximize the sum of demands in all components with supply vertices. We deal with such
a maximization problem, which is NP-hard even for trees and strongly NP-hard for general
graphs. In this paper, we show that the problem can be solved in pseudo-polynomial time
for series–parallel graphs and partial k-trees – that is, graphs with bounded tree-width.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) be a graph with vertex set V and edge set E. The set V is partitioned into two sets Vs and Vd. Let |V | = n,
|Vs| = ns and |Vd| = nd, then n = ns + nd. Each vertex u ∈ Vs is called a supply vertex and is assigned a positive integer
sup(u), called a supply of u, while each vertex v ∈ Vd is called a demand vertex and is assigned a positive integer dem(v),
called a demand of v. Each demand vertex can receive ‘‘power’’ from at most one supply vertex through edges in G. One
thus wishes to partition G into connected components by deleting edges from G so that each component C has exactly one
supply vertex whose supply is no less than the sum of demands of all demand vertices in C . However, such a partition does
not always exist. Sowewish to partitionG into connected components so that each component C either has no supply vertex
or has exactly one supply vertex whose supply is no less than the sum of demands of all demand vertices in C , and wish to
maximize the ‘‘fulfillment’’, that is, the sum of demands of the demand vertices in all components with supply vertices. We
call the problem themaximum partition problem. Fig. 1 illustrates a solution of the maximum partition problem for a graph
G, whose fulfillment is (2 + 7) + (8 + 7) + (3 + 6) + 4 = 37, where each supply vertex is drawn as a rectangle and each
demand vertex as a circle, the supply or demand is written inside, the deleted edges are drawn by thick dotted lines, and
each connected component is indicated by a thin dotted line.
The maximum partition problem has some applications to the power supply problem for power delivery networks [4,9,

10,13]. LetG be a graph of a power delivery network. Each supply vertex v represents a ‘‘feeder’’, which can supply atmost an
amount sup(v) of electrical power. Each demand vertex v represents a ‘‘load’’, which requires an amount dem(v) of electrical
power supplied from exactly one of the feeders through a network. Each edge of G represents a cable segment, which can
be ‘‘turned off’’ by a switch. Then the maximum partition problem represents the ‘‘power supply switching problem’’ to
maximize the sum of all loads that can be supplied powers in a network ‘‘reconfigured’’ by turning off some cable segments.
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Fig. 1. Partition P ′ of a series–parallel graph Gwith maximum fulfillment.

Fig. 2. (a) A series–parallel graph with a single edge, (b) series connection, and (c) parallel connection.

The maximum partition problem is a generalization of the maximum subset sum problem and the knapsack
problem [7–9]. The maximum partition problem is NP-hard even for trees, because the maximum subset sum problem
can be easily reduced in linear time to the maximum partition problem for a tree [9]. Thus, it is very unlikely that the
maximumpartition problem can be solved even for trees in polynomial time. However, the problem can be solved in pseudo-
polynomial-time for trees, and there is a fully polynomial-time approximation scheme (FPTAS) for the problem on trees [9].
A strongly NP-complete problem called 3-PARTITION [7] can be easily reduced in polynomial time to themaximumpartition
problem for a complete bipartite graph, and hence the maximum partition problem is strongly NP-hard for general graphs.
Therefore, there is no pseudo-polynomial-time algorithm for the problem on general graphs unless P = NP. One may thus
expect to obtain a pseudo-polynomial-time algorithm for a class of graphs, larger than the class of trees.
In this paper we first give a pseudo-polynomial-time algorithm to solve the maximum partition problem for

series–parallel graphs. (A series–parallel graph will be defined in Section 2.) It takes time O
(
(ms)4n

)
, where ms is the

maximum supply, that is, ms = max{sup(u) | u ∈ Vs}. Thus, the algorithm takes polynomial time if ms is bounded by a
polynomial in n, and takes linear time ifms is a fixed constant. We then show that our algorithm can be extended for partial
k-trees, that is, graphs with bounded tree-width [1,3]. (A partial k-tree will be defined in Section 4.) The algorithm takes
timeO

(
(2ms + 1)2(k+1)n

)
. Telle and Proskurowski present a theory of algorithmdesign for a large class of vertex partitioning

problems restricted to partial k-trees [12], but they deal with only unweighted partial k-trees.Many combinatorial problems
can be efficiently solved for partial k-trees if they can be expressed in extended monadic second-order logic (EMSOL) [5,6].
However, our maximum partition problem is very unlikely to be expressible in EMSOL; if the problem is expressible in
EMSOL, then it would be solvable for partial k-trees in polynomial time.

2. Terminology and definitions

In this section we give some definitions.
A (two-terminal) series–parallel graph is defined recursively as follows [11]:

(1) A graph Gwith a single edge is a series–parallel graph. The ends of the edge are called the terminals of G and denoted by
vs(G) and vt(G). (See Fig. 2(a).)

(2) Let G1 be a series–parallel graph with terminals vs(G1) and vt(G1), and let G2 be a series–parallel graph with terminals
vs(G2) and vt(G2).
(a) A graph G obtained from G1 and G2 by identifying vt(G1)with vs(G2) is a series–parallel graph, whose terminals are

vs(G) = vs(G1) and vt(G) = vt(G2). Such a connection is called a series connection, and G is denoted by G = G1 • G2.
(See Fig. 2(b).)

(b) A graph G obtained from G1 and G2 by identifying vs(G1) with vs(G2) and identifying vt(G1) with vt(G2) is a
series–parallel graph,whose terminals are vs(G) = vs(G1) = vs(G2) and vt(G) = vt(G1) = vt(G2). Such a connection
is called a parallel connection, and G is denoted by G = G1 ‖ G2. (See Fig. 2(c).)

The terminals vs(G) and vt(G) of G are often denoted simply by vs and vt , respectively. Since we deal with the maximum
partition problem, we may assume without loss of generality that G is a simple graph and hence G has no multiple edges.
A series–parallel graph G can be represented by a ‘‘binary decomposition tree’’ [11]. Fig. 3(a) illustrates a series–parallel

graph G, and Fig. 3(b) depicts a binary decomposition tree T of G. Labels s and p attached to internal nodes in T indicate
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Fig. 3. (a) A series–parallel graph G, (b) a binary decomposition tree T of G, and (c) a subgraph Gu .

series and parallel connections, respectively. Nodes labeled s and p are called s- and p-nodes, respectively. Every leaf of T
represents a subgraph of G induced by a single edge. Each node u of T corresponds to a subgraph Gu of G induced by all edges
represented by the leaves that are descendants of u in T . Fig. 3(c) depicts Gu for the left child u of the root r of T in Fig. 3(b).
Gu is a series–parallel graph for each node u of T , and G = Gr for the root r of T . Since a binary decomposition tree of a
given series–parallel graph G can be found in linear time [11], we may assume that a series–parallel graph G and its binary
decomposition tree T are given. We solve the maximum partition problem by a dynamic programming approach based on
a binary decomposition tree T .

3. Algorithm for the maximum partition problem

In this section, we give a pseudo-polynomial-time algorithm to solve themaximum partition problem for series–parallel
graphs. The main result of this section is the following theorem.

Theorem 1. The maximum partition problem can be solved for every series–parallel graph G in time O
(
(ms)4n

)
, where n is the

number of vertices in G and ms is the maximum supply.

In the remainder of this section we give an algorithm to solve the maximum partition problem in time O
(
(ms)4n

)
as

a proof of Theorem 1. In Section 3.1 we define some terms and present ideas of our algorithm. In Sections 3.2 and 3.3 we
present our algorithm. In Section 3.4 we show that our algorithm takes time O

(
(ms)4n

)
.

3.1. Terms and ideas

We partition a series–parallel graph G into connected components by deleting edges from G so that

(a) each component contains at most one supply vertex; and
(b) if a component C contains a supply vertex, then the supply is no less than the sum of demands of all demand vertices in
C .

Such a partition P is called a partition of G. The fulfillment f (P) of a partition P is the sum of demands of all demand vertices
in components with supply vertices. Thus, f (P) corresponds to the maximum sum of all loads that are supplied electrical
power from feeders through a network reconfigured by cutting off some edges. The maximum partition problem is to find a
partition of G with the maximum fulfillment. The maximum fulfillment f (G) of a graph G is the maximum fulfillment f (P)
among all partitions P of G. For every partition P of G, there is a partition P ′ of G such that

(a) f (P) = f (P ′); and
(b) if a component C does not contain a supply vertex, then |C | = 1.

Our algorithm indeed finds such a partition P ′ with f (P ′) = f (G). For the series–parallel graph G in Fig. 1, our algorithm
finds the partition P ′ indicated by thin dotted lines.
Every partition of a series–parallel graph G naturally induces a partition of its subgraph Gu for a node u of a binary

decomposition tree T of G. The partition P of G in Fig. 4(a) induces a partition Pu of Gu in Fig. 4(b), for which the terminals
vs(Gu) and vt(Gu) of Gu are contained in the same component of Pu. On the other hand, the partition P of G in Fig. 5(a) induces
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Fig. 4. (a) A partition P of a series–parallel graph G, and (b) a connected partition Pu of a subgraph Gu .

Fig. 5. (a) A partition P of a series–parallel graph G, and (b) a separated partition Pu of a subgraph Gu .

a partition Pu of Gu in Fig. 5(b), for which vs(Gu) and vt(Gu) are contained in different components of Pu. We need to consider
these two types of partitions, called a ‘‘connected partition’’ and a ‘‘separated partition’’, whichwill be formally defined later.
We will later show that

if a component of Pu with a terminal contains a supply vertex, then the component may have the ‘‘marginal’’ power,
the amount of which is no greater than ms; otherwise, the component may have the ‘‘deficient’’ power, the amount
of which should be no greater thanms.

We will thus introduce two functions g : (G,Zms) → Z+ and h : (G,Zms ,Zms) → Z+, where G denotes the set of all
series–parallel graphs, Z+ denotes the set of all nonnegative integers, and Zms denotes the set of all integers whose absolute
values are no greater than ms. A positive integer in Zms means an amount of marginal power, while a nonpositive integer
in Zms means an amount of deficient power. For Gu ∈ G and i ∈ Zms , the value g(Gu, i) ∈ Z+ represents the maximum
fulfillment of a connected partition of Gu having the marginal or deficient power i in the component with terminals vs(Gu)
and vt(Gu). ForGu ∈ G and j, k ∈ Zms , the value h(Gu, j, k) ∈ Z+ represents themaximum fulfillment of a separated partition
of Gu having the marginal or deficient power j in the component with vs(Gu) and k in the component with vt(Gu). Our idea
is to compute g(Gu, i) and h(Gu, j, k) from the leaves of T to the root r of T by means of dynamic programming.
We now formally define the notion of connected partitions and separated partitions of a series–parallel graph G. Let P be

a partition of a subgraph Gu of G for a node u of a binary decomposition tree T of G, and let vs = vs(Gu) and vt = vt(Gu). Let
C(P, vs) be the component of P containing vs. We denote also by C(P, vs) the set of all vertices in the component C(P, vs).
Similarly we define C(P, vt). If C(P, vs) = C(P, vt), that is, the two terminals vs and vt are contained in the same component
of P , then we call P a connected partition of Gu. (See Fig. 4(b).) If C(P, vs) 6= C(P, vt), that is, the two terminals vs and vt are
contained in different components of P , we call P a separated partition of Gu. (See Fig. 5(b).)
We then classify both connected partitions and separated partitions further into several classes, called i-connected

partitions and (j, k)-separated partitions for i, j, k ∈ Zms . The ‘‘power flow’’ around a terminal depends on whether the
terminal is a supply vertex or a demand vertex. Since we want to deal with the two cases uniformly, we introduce a virtual
graph G∗u for a subgraph Gu of G; G

∗
u is obtained from Gu by regarding each of the two terminals vs and vt as a demand vertex

whose demand is zero. We denote by dem∗(x) the demand of a demand vertex x in G∗u , and hence

dem∗(x) =
{
0 if x is vs or vt;
dem(x) otherwise.

Clearly every partition of Gu is a partition of G∗u . However, a partition P of G
∗
u is not necessarily a partition of Gu; for example,

if vs is a supply vertex ofG, C(P, vs) does not contain any supply vertex ofG∗u , and
∑
x∈C(P,vs) dem

∗(x) > sup(vs), then P is not
a partition of Gu. For a partition P of G∗u , we denote by f

∗(P) the fulfillment of P for G∗u . We denote by G
in
u the graph obtained

from Gu by deleting the two terminals vs and vt as illustrated in Fig. 6(b), while we denote by Goutu the graph obtained from
G by deleting all the vertices of Gu except vs and vt as illustrated in Fig. 6(c).
If P is a connected partition of G∗u , then C(P, vs) = C(P, vt) and we denote it simply by C(P). For each integer i ∈ Zms , we

call P an i-connected partition of G∗u if P satisfies the following two conditions (a) and (b):
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Fig. 6. (a) A series–parallel graph G, (b) a subgraph Ginu of Gu , and (c) a subgraph G
out
u of G.

(a) if i > 0, then C(P) contains a supply vertexw and

i+
∑

x∈C(P)−{w}

dem∗(x) ≤ sup(w);

and

(b) if i ≤ 0, then C(P) contains no supply vertex and∑
x∈C(P)

dem∗(x) ≤ |i| = −i. (1)

An i-connected partition P of G∗u with i > 0 corresponds to a partition of the whole graph G in which all demand vertices in
C(P) are supplied power from a supply vertexw in C(P); an amount i of the remaining power ofw can be delivered to Goutu
through vs(Gu) or vt(Gu); and hence the ‘‘margin’’ of C(P) is i. On the other hand, an i-connected partition P of G∗u with i ≤ 0
corresponds to a partition of G in which all (demand) vertices in C(P) are supplied power from a supply vertex in Goutu ; an
amount |i| of power must be delivered to Ginu through vs(Gu) or vt(Gu), and hence the ‘‘deficiency’’ of C(P) is |i|. It should be
noted that if P is a 0-connected partition of G∗u then C(P) = {vs, vt} and Gu has an edge (vs, vt); note that all supplies and
demands are assumed to be positive integers. For an i-connected partition P of G∗u , let

f (P, i) =

f
∗(P) if 0 < i ≤ ms,
f ∗(P)+

∑
x∈C(P)

dem∗(x) if −ms ≤ i ≤ 0. (2)

Thus, f (P, i) with 0 < i ≤ ms represents the fulfillment of P for G∗u when an amount i of power can be delivered to G
out
u

through vs(Gu) or vt(Gu), while f (P, i)with−ms ≤ i ≤ 0 represents the fulfillment of P for G∗u when an amount |i| of power
is delivered to Ginu from a supply vertexw in G

out
u ; if either vs(Gu) or vt(Gu) is a supply vertex, then it must bew. According to

the definition of an i-connected partition, a connected partition P of G∗u is not a 0-connected partition of G
∗
u if C(P) contains

a supply vertexw (6= vs, vt) and∑
x∈C(P)−{w}

dem∗(x) = sup(w);

it should be noted that such a partition P of G∗u is not a partition of Gu and hence we need not to take P into account; if vs
or vt is a supply vertex of G, then C(P) would contain two or three supply vertices of Gu including w; if both vs and vt are
demand vertices of G, then their demands are positive and hence∑

x∈C(P)−{w}

dem(x) > sup(w).

For each pair of integers j and k in Zms , we call a separated partition P of G
∗
u a (j, k)-separated partition if P satisfies the

following four conditions (a), (b), (c) and (d):

(a) if j > 0, then C(P, vs) contains a supply vertexw and

j+
∑

x∈C(P,vs)−{w}

dem∗(x) ≤ sup(w);

(b) if j ≤ 0, then C(P, vs) contains no supply vertex and∑
x∈C(P,vs)

dem∗(x) ≤ −j; (3)
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Fig. 7. Partition of G for Case (a).

(c) if k > 0, then C(P, vt) contains a supply vertexw and

k+
∑

x∈C(P,vt )−{w}

dem∗(x) ≤ sup(w);

and

(d) if k ≤ 0, then C(P, vt) contains no supply vertex and∑
x∈C(P,vt )

dem∗(x) ≤ −k. (4)

A (j, k)-separated partition P of G∗u with j > 0 corresponds to a partition of the whole graph G in which all demand vertices
in C(P, vs) are supplied power from a supply vertexw in C(P, vs); an amount j of the remaining power ofw can be delivered
to Goutu through vs(Gu), and hence the margin of C(P, vs) is j. A (j, k)-separated partition P of G

∗
u with j ≤ 0 corresponds to

a partition of G in which all (demand) vertices in C(P, vs) are supplied power from a supply vertex in Goutu ; an amount |j|
of power must be delivered to Ginu through vs(Gu), and hence the deficiency of C(P, vs) is |j|. Clearly C(P, vs) = {vs} if P is
a (0, k)-separated partition of G∗u . A (j, k)-separated partition P of G

∗
u with k > 0 or k ≤ 0 corresponds to a partition of G

similarly as above. For a (j, k)-separated partition P of G∗u , let

f (P, j, k) =



f ∗(P) if 0 < j, k ≤ ms,
f ∗(P)+

∑
x∈C(P,vt )

dem∗(x) if 0 < j ≤ ms and −ms ≤ k ≤ 0,

f ∗(P)+
∑

x∈C(P,vs)

dem∗(x) if −ms ≤ j ≤ 0 and 0 < k ≤ ms,

f ∗(P)+
∑

x∈C(P,vs)∪C(P,vt )

dem∗(x) if −ms ≤ j, k ≤ 0.

(5)

Thus, f (P, j, k)with nonpositive j or k represents the fulfillment of P for G∗u when an amount |j| or |k| of power is delivered
to Ginu from a supply vertex in G

out
u through vs or vt , respectively.

We now formally define a function g : (G,Zms) → Z+ for a series–parallel graph G∗u ∈ G and an integer i ∈ Zms , as
follows:

g(G∗u, i) = max{f (P, i) | G
∗

u has an i-connected partition P}. (6)

If G∗u has no i-connected partition, then let g(G
∗
u, i) = −∞. We then formally define a function h : (G,Zms ,Zms)→ Z+ for

a series–parallel graph G∗u ∈ G and a pair of integers j and k in Zms , as follows:

h(G∗u, j, k) = max{f (P, j, k) | G
∗

u has a (j, k)-separated partition P}. (7)

If G∗u has no (j, k)-separated partition, then let h(G
∗
u, j, k) = −∞.

Our algorithm computes g(G∗u, i) and h(G
∗
u, j, k) for each node u of a binary decomposition tree T of a given series–parallel

graph G from leaves to the root r of T by means of dynamic programming.

3.2. How to compute f (G) from g(G∗, i) and h(G∗, j, k)

Suppose that g(G∗r , i) and h(G
∗
r , j, k) have been computed for the root r of T . Since G = Gr , one can easily compute the

maximum fulfillment f (G) from g(G∗, i) and h(G∗, j, k) in time O(1), as in the following three cases (a), (b) and (c), where
vs = vs(G), vt = vt(G), and let P be a partition of G∗ corresponding to a partition of G having the maximum fulfillment f (G).
One may assume that |C | = 1 for every component C of P containing no supply vertex.
Case (a): both vs and vt are supply vertices in G.
In this case, C(P, vs) 6= C(P, vt) and hence P is a separated partition as illustrated in Fig. 7. Since the partition P of G∗

corresponds to a partition of G, we have∑
x∈C(P,vs)

dem∗(x) ≤ sup(vs)

and ∑
x∈C(P,vt )

dem∗(x) ≤ sup(vt).
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Fig. 8. Partitions of G for the three cases in Case (b).

Thus, Eqs. (3) and (4) hold for P with j = −sup(vs) and k = −sup(vt), and hence P is a (j, k)-separated partition of G∗ for
such j and k. Since P corresponds to a partition of G having the maximum fulfillment f (G), by Eqs. (5) and (7) we have

f (G) = f ∗(P)+
∑

x∈C(P,vs)∪C(P,vt )

dem∗(x)

= f (P,−sup(vs),−sup(vt))

≤ h
(
G∗,−sup(vs),−sup(vt)

)
. (8)

Conversely, every (−sup(vs),−sup(vt))-separated partition P ′ of G∗ yields a partition of G with fulfillment
f
(
P ′,−sup(vs),−sup(vt)

)
, and hence by Eq. (7) we have

f (G) ≥ h
(
G∗,−sup(vs),−sup(vt)

)
. (9)

By Eqs. (8) and (9) we have

f (G) = h
(
G∗,−sup(vs),−sup(vt)

)
. (10)

Thus, by Eq. (10) one can compute f (G) from h(G∗, j, k) in time O(1).
Case (b): one of vs and vt is a supply vertex and the other is a demand vertex in G.
In this case one may assume without loss of generality that vs is a supply vertex and vt is a demand vertex. Then there

are the following three cases (i), (ii) and (iii) for the partition of G having the maximum fulfillment, as illustrated in Fig. 8:

(i) vt is supplied power from vs;
(ii) vt is supplied power from a supply vertexw other than vs; and
(iii) vt is not supplied power from any supply vertex.

For Case (i), C(P, vs) = C(P, vt) = C(P) and hence P is a connected partition as illustrated in Fig. 8(i). Since vt is supplied
power from vs, we have

dem(vt)+
∑
x∈C(P)

dem∗(x) ≤ sup(vs),

and hence∑
x∈C(P)

dem∗(x) ≤ sup(vs)− dem(vt).

Thus, Eq. (1) holds for P with i = −sup(vs)+ dem(vt)(≤ 0), and hence P is an i-connected partition of G∗u . Thus, by Eqs. (2)
and (6) we have

f (G) =

(
f ∗(P)+

∑
x∈C(P)

dem∗(x)

)
+ dem(vt)

= f (P,−sup(vs)+ dem(vt))+ dem(vt)

= g
(
G∗,−sup(vs)+ dem(vt)

)
+ dem(vt). (11)

Similarly, for Case (ii), P is a (j, k)-separated partition of G∗ for j = −sup(vs) and k = dem(vt), and hence we have

f (G) = h
(
G∗,−sup(vs), dem(vt)

)
+ dem(vt). (12)

For Case (iii), C(P, vt) = {vt} since |C | = 1 for every component C of P containing no supply vertex. We therefore have∑
x∈C(P,vt )

dem∗(x) = dem∗(vt) = 0,

and hence P is a (j, k)-separated partition of G∗ for j = −sup(vs) and k = 0. We thus have

f (G) = h
(
G∗,−sup(vs), 0

)
. (13)
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Fig. 9. Partitions of G for the five cases in Case (c).

Clearly Case (i) occurs only if sup(vs) ≥ dem(vt). Thus, by Eqs. (11)–(13) we have

f (G) = max
{
g
(
G∗,−sup(vs)+ dem(vt)

)
+ dem(vt), h

(
G∗,−sup(vs), dem(vt)

)
+ dem(vt),

h
(
G∗,−sup(vs), 0

)}
(14)

if sup(vs) ≥ dem(vt), and

f (G) = max
{
h
(
G∗,−sup(vs), dem(vt)

)
+ dem(vt), h

(
G∗,−sup(vs), 0

)}
(15)

if sup(vs) < dem(vt).
Thus, by Eqs. (14) and (15) one can compute f (G) from g(G∗, i) and h(G∗, j, k) in time O(1).

Case (c): both vs and vt are demand vertices in G.
In this case, there are the following five cases (i)–(v), as illustrated in Fig. 9:

(i) both vs and vt are supplied power from the same supply vertexw in G;
(ii) vs and vt are supplied power from different supply verticesw1 andw2 in G, respectively;
(iii) vs is supplied power from a supply vertexw in G, and vt is not supplied power;
(iv) vs is not supplied power, and vt is supplied power from a supply vertexw in G; and
(v) both vs and vt are not supplied power.

Noting that |C | = 1 for every component C of P containing no supply vertex, one can easily observe

f (G) = max
{
g
(
G∗, dem(vs)+ dem(vt)

)
+ dem(vs)+ dem(vt), h

(
G∗, dem(vs), dem(vt)

)
+ dem(vs)+ dem(vt),

h
(
G∗, dem(vs), 0

)
+ dem(vs), h

(
G∗, 0, dem(vt)

)
+ dem(vt), h(G∗, 0, 0)

}
. (16)

Thus, by Eq. (16) one can compute f (G) from g(G∗, i) and h(G∗, j, k) in time O(1).

3.3. How to compute g(G∗u, i) and h(G
∗
u, j, k)

In this subsection, we explain how to compute g(G∗u, i) and h(G
∗
u, j, k) for each node u of T .

We first compute g(G∗u, i) and h(G
∗
u, j, k) for each leaf u of T , for which G

∗
u contains exactly one edge as illustrated in

Fig. 2(a). Since the two terminals of G∗u are regarded as demand vertices of demands zero, by Eq. (6) we have

g(G∗u, i) =
{
0 if −ms ≤ i ≤ 0;
−∞ otherwise. (17)

Similarly, by Eq. (7) we have

h(G∗u, j, k) =
{
0 if −ms ≤ j, k ≤ 0;
−∞ otherwise. (18)

We next compute g(G∗u, i) and h(G
∗
u, j, k) for each internal node u of T from the counterparts of the two children of u in

T .
We first consider a parallel connection.

[Parallel connection]
Let Gu = G1 ‖ G2, and let vs = vs(G∗u) and vt = vt(G

∗
u). (See Figs. 2(c), 10 and 11.)

We first compute h(G∗u, j, k). Every separated partition P of G
∗
u can be obtained by combining a separated partition P1 of

G∗1 with a separated partition P2 of G
∗

2 , as illustrated in Fig. 10. We thus know that, for each pair (j, k) ∈ (Zms)
2, h(G∗u, j, k)

can be computed as follows:

h(G∗u, j, k) = max
j1,j2,k1,k2

{h(G∗1, j1, k1)+ h(G
∗

2, j2, k2)} (19)

where the maximum is taken over all integers j1, j2, k1 and k2 such that
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Fig. 10. Combining a partition P1 of G∗1 and a partition P2 of G
∗

2 to a separated partition P of G
∗
u = G

∗

1 ‖ G
∗

2 .

Fig. 11. Combining a partition P1 of G∗1 and a partition P2 of G
∗

2 to a connected partition P of G
∗
u = G

∗

1 ‖ G
∗

2 .

(a) j1, j2, k1, k2 ∈ Zms ;
(b) j1 + j2 = j and k1 + k2 = k;
(c) if j ≤ 0, then j1, j2 ≤ 0;
(d) if j > 0, then exactly one of the two integers j1 and j2 is positive;
(e) if k ≤ 0, then k1, k2 ≤ 0; and
(f) if k > 0, then exactly one of the two integers k1 and k2 is positive.

We next compute g(G∗u, i). Every connected partition P of G
∗
u can be obtained by combining a partition P1 of G

∗

1 with a
partition P2 of G∗2 , as illustrated in Fig. 11(a), (b) and (c). There are the following three Cases (a), (b) and (c) to consider, and
we define the three functions ga(G∗u, i), g

b(G∗u, i) and g
c(G∗u, i) for the three cases, respectively.

Case (a): both P1 and P2 are connected partitions. (See Fig. 11(a).)
We define ga(G∗u, i) for each integer i ∈ Zms , as follows:

ga(G∗u, i) = maxi1,i2
{g(G∗1, i1)+ g(G

∗

2, i2)} (20)
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Fig. 12. Combining a partition P1 of G∗1 and a partition P2 of G
∗

2 to a connected partition P of G
∗
u , where Gu = G1 • G2 .

where the maximum is taken over all integers i1 and i2 such that

(a) i1, i2 ∈ Zms ;
(b) i1 + i2 = i;
(c) if i ≤ 0, then i1, i2 ≤ 0; and
(d) if i > 0, then exactly one of the two integers i1 and i2 is positive.

Case (b): P1 is a separated partition and P2 is a connected partition. (See Fig. 11(b).)
We define gb(G∗u, i) for each integer i ∈ Zms , as follows:

gb(G∗u, i) = maxj1,k1,i2
{h(G∗1, j1, k1)+ g(G

∗

2, i2)} (21)

where the maximum is taken over all integers j1, k1 and i2 such that

(a) j1, k1, i2 ∈ Zms ;
(b) j1 + k1 + i2 = i;
(c) if i ≤ 0, then j1, k1, i2 ≤ 0; and
(d) if i > 0, then exactly one of the three integers j1, k1 and i2 is positive.

Case (c): P1 is a connected partition and P2 is a separated partition. (See Fig. 11(c).)
Analogously to Case (b), we define gc(G∗u, i) for each integer i ∈ Zms , as follows:

gc(G∗u, i) = maxi1,j2,k2
{g(G∗1, i1)+ h(G

∗

2, j2, k2)} (22)

where the maximum is taken over all integers i1, j2 and k2 such that

(a) i1, j2, k2 ∈ Zms ;
(b) i1 + j2 + k2 = i;
(c) if i ≤ 0, then i1, j2, k2 ≤ 0; and
(d) if i > 0, then exactly one of the three integers i1, j2 and k2 is positive.

From ga, gb and gc above, one can compute g(G∗u, i) as follows:

g(G∗u, i) = max{g
a(G∗u, i), g

b(G∗u, i), g
c(G∗u, i)}. (23)

We next consider a series connection.
[Series connection]
Let Gu = G1 • G2, and let v be the vertex of G identified by the series connection, that is, v = vt(G1) = vs(G2). (See

Figs. 2(b), 12 and 13.) We define sd(v) as follows:

sd(v) =
{
sup(v) if v is a supply vertex,
−dem(v) if v is a demand vertex.

For the sake of convenience, we define dem(w) = 0 for each supply vertexw in G.
We first compute g(G∗u, i). Every connected partition P of G

∗
u can be obtained by combining a connected partition P1 of

G∗1 with a connected partition P2 of G
∗

2 , as illustrated in Fig. 12. Therefore, g(G
∗
u, i) can be computed for each integer i ∈ Zms ,

as follows:

g(G∗u, i) = maxi1,i2
{g(G∗1, i1)+ g(G

∗

2, i2)+ dem(v)} (24)

where the maximum is taken over all integers i1 and i2 such that

(a) i1, i2 ∈ Zms ;
(b) i1 + i2 + sd(v) = i;
(c) if i ≤ 0, then v is a demand vertex and i1, i2 ≤ 0; and



2630 T. Ito et al. / Discrete Applied Mathematics 157 (2009) 2620–2633

Fig. 13. Combining a partition P1 of G∗1 and a partition P2 of G
∗

2 to a separated partition P of G
∗
u , where Gu = G1 • G2 .

(d) if i > 0, then exactly one of the three integers i1, i2 and sd(v) is positive.

If such integers i1 and i2 do not exist, then we let g(G∗u, i) = −∞.
We next compute h(G∗u, j, k). Every separated partition P of G

∗
u can be obtained by combining a partition P1 of G

∗

1 with a
partition P2 of G∗2 , as illustrated in Fig. 13(a), (b) and (c). There are the following three Cases (a), (b) and (c) to consider, and
we define the three functions ha(G∗u, j, k), h

b(G∗u, j, k) and h
c(G∗u, j, k) for the three cases, respectively.

Case (a): P1 is a connected partition and P2 is a separated partition. (See Fig. 13(a).)
We define ha(G∗u, j, k) for each pair (j, k), as follows:

ha(G∗u, j, k) = maxi1,j2
{g(G∗1, i1)+ h(G

∗

2, j2, k)+ dem(v)} (25)

where the maximum is taken over all integers i1 and j2 such that

(a) i1, j2 ∈ Zms ;
(b) i1 + j2 + sd(v) = j;
(c) if j ≤ 0, then v is a demand vertex and i1, j2 ≤ 0; and
(d) if j > 0, then exactly one of the three integers i1, j2 and sd(v) is positive.

If such integers i1 and j2 do not exist, then we define ha(G∗u, j, k) = −∞.

Case (b): P1 is a separated partition and P2 is a connected partition. (See Fig. 13(b).)
Analogously to Case (a), we define hb(G∗u, j, k) for each pair (j, k), as follows:

hb(G∗u, j, k) = maxk1,i2
{h(G∗1, j, k1)+ g(G

∗

2, i2)+ dem(v)} (26)

where the maximum is taken over all integers k1 and i2 such that

(a) k1, i2 ∈ Zms ;
(b) k1 + i2 + sd(v) = k;
(c) if k ≤ 0, then v is a demand vertex and k1, i2 ≤ 0; and
(d) if k > 0, then exactly one of the three integers k1, i2 and sd(v) is positive.
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If such integers k1 and i2 do not exist, then we define hb(G∗u, j, k) = −∞.
Case (c): both P1 and P2 are separated partitions. (See Fig. 13(c).)
In this case, either (i) all demand vertices in C(P1, v)∪C(P2, v) are supplied power or (ii) none of them is supplied power.

For the first case (i), we define hi(G∗u, j, k) for each pair (j, k) as follows:

hi(G∗u, j, k) = maxk1,j2
{h(G∗1, j, k1)+ h(G

∗

2, j2, k)+ dem(v)} (27)

where the maximum is taken over all integers k1 and j2 such that

(a) k1, j2 ∈ Zms ;
(b) k1 + j2 + sd(v) ≥ 0; and
(c) exactly one of the three integers k1, j2 and sd(v) is positive.

If such integers k1 and j2 do not exist, then we define hi(G∗u, j, k) = −∞.
For the second case (ii), we define hii(G∗u, j, k) for each pair (j, k) as follows:

hii(G∗u, j, k) = h(G
∗

1, j, 0)+ h(G
∗

2, 0, k). (28)

We then define hc(G∗u, j, k) for each pair (j, k) as follows:

hc(G∗u, j, k) = max{h
i(G∗u, j, k), h

ii(G∗u, j, k)}. (29)

From ha, hb and hc above, one can compute h(G∗u, j, k) as follows:

h(G∗u, j, k) = max{h
a(G∗u, j, k), h

b(G∗u, j, k), h
c(G∗u, j, k)}. (30)

3.4. Computation time

In this subsection, we show that our algorithm takes time O
(
(ms)4n

)
.

For each leaf u of T and all integers i, j and k, by Eqs. (17) and (18) one can easily compute g(G∗u, i) and h(G
∗
u, j, k) in time

O(ms) and O
(
(ms)2

)
, respectively. Since G is a simple series–parallel graph, G has at most 2n− 3 edges and hence T has at

most 2n− 3 leaves. One can thus compute g(G∗u, i) and h(G
∗
u, j, k) for all leaves u of T in time O

(
(ms)2n

)
.

For each p-node u of T and all integers i, j and k in Zms by Eqs. (19)–(23) one can compute g(G
∗
u, i) and h(G

∗
u, j, k) in

time O
(
(ms)3

)
and O

(
(ms)4

)
, respectively. For each s-node u of T and all integers i, j and k in Zms , by Eqs. (24)–(30) one

can compute g(G∗u, i) and h(G
∗
u, j, k) in time O

(
(ms)2

)
and O

(
(ms)4

)
, respectively. In this way one can compute g(G∗u, i) and

h(G∗u, j, k) for each internal node u of T in time O
(
(ms)4

)
regardless of whether u is a p-node or an s-node. Since T is a binary

tree and has at most 2n− 3 leaves, T has at most 2n− 4 internal node. One can thus compute g(G∗, i) and h(G∗, j, k) in time
O
(
(ms)4n

)
since G = Gr for the root r of T .

By Eqs. (10) and (14)–(16) one can compute the maximum fulfillment f (G) of G from g(G∗, i) and h(G∗, j, k) in time O(1).
Thus, the maximum partition problem can be solved in time O

(
(ms)4n

)
. This completes a proof of Theorem 1.

4. Partial k-trees

In this section we have the following theorem.

Theorem 2. The maximum partition problem can be solved in time O
(
(ms)2(k+1)n

)
for every partial k-tree, where k is a constant.

The algorithm for partial k-trees is similar to that for series–parallel graphs in the previous section. So we only give an
outline of the algorithm.
A graph G is a k-tree if either it is a complete graph on k vertices or it has a vertex u whose neighbors induce a clique of

size k and G− {u} is again a k-tree. A graph is a partial k-tree if it is a subgraph of a k-tree [2].
A series–parallel graph is a partial 2-tree. A partial k-tree G can be decomposed into ‘‘pieces’’ forming a tree structure

with at most k + 1 vertices per piece. (See Fig. 14(b).) The tree structure is called a binary decomposition tree T of G [1,3].
Each node u of T corresponds to a set V (u) of k+ 1 or fewer vertices of G, and corresponds to a subgraph Gu of G induced by
the set

⋃
{V (w) | w is a descendant of u in T }. For example, Fig. 14 illustrates a partial 3-tree G, its binary decomposition

tree T , and a subgraph Gx1 of G for a node x1 of T .
For a series–parallel graph, it suffices to consider only two kinds of partitions, a connected partition and a separated

partition, while for a partial k-tree we have to consider many kinds of partitions of Gu. Let π be the number of all partitions
of set V (u) into pairwise disjoint nonempty subsets. Thenπ ≤ (k+1)k+1 and henceπ is a constantwhenever k is a constant.
For a partial k-tree G, we consider π kinds of partitions of Gu. Let Qi, 1 ≤ i ≤ π , be the ith partition of set V (u), let ρ(i) be
the number of subsets in the partition Qi, and let Qi = {V1, V2, . . . , Vρ(i)}. Clearly 1 ≤ ρ(i) ≤ k + 1. In every partition P of
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Fig. 14. (a) A partial 3-tree G, (b) its binary decomposition tree T , and (c) a subgraph Gx1 .

Fig. 15. Partition P of Gu of ith kind.

Gu of the ith kind, its lth connected component, 1 ≤ l ≤ ρ(i), contains all the vertices in the lth subset Vl(⊆ V (u)) in Qi. (See
Fig. 15.) Let C(P, l) be the set of all vertices in the lth connected component. Let G∗u be a graph obtained from Gu by regarding
each vertex in V (u) as a demand vertex of demand zero; we denote by dem∗(x) the demand of a demand vertex x in G∗u , and
hence

dem∗(x) =
{
0 if x ∈ V (u);
dem(x) otherwise.

For each ρ(i)-tuple (j1, j2, . . . , jρ(i)) of integers in Zms , we call the partition P of G
∗
u a (j1, j2, . . . , jρ(i))-partition if P satisfies

the following two conditions (a) and (b) for each index l, 1 ≤ l ≤ ρ(i):

(a) if jl > 0, then C(P, l) contains exactly one supply vertexw and

jl +
∑

x∈C(P,l)−{w}

dem∗(x) ≤ sup(w);

and

(b) if jl ≤ 0, then C(P, l) contains no supply vertex and∑
x∈C(P,l)

dem∗(x) ≤ |jl| = −jl.

Let f (P, j1, j2, . . . , jρ(i)) = f (P) +
∑
dem∗(x), where the summation is taken over all vertices x ∈ C(P, l) such that

1 ≤ l ≤ ρ(i) and −ms ≤ jl ≤ 0. We consider a set of functions hi(G∗u, j1, j2, . . . , jρ(i)), 1 ≤ i ≤ π , defined as follows:
for a partial k-tree G∗u and a ρ(i)-tuple (j1, j2, . . . , jρ(i)) of integers, let

hi(G∗u, j1, j2, . . . , jρ(i)) = max{f (P, j1, j2, . . . , jρ(i)) | G
∗

u has a (j1, j2, . . . , jρ(i))-partition P}.

If G∗u has no (j1, j2, . . . , jρ(i))-partition, then let hi(G
∗
u, j1, j2, . . . , jρ(i)) = −∞. One can observe that the set of functions for

an internal node u of T can be computed from the counterparts of the two children of u in T in time O
(
(2ms + 1)2(k+1)

)
.

Thus, the set of functions for Gr can be computed in time O
(
(2ms + 1)2(k+1)n

)
where r is the root of T . One can immediately

compute f (G) from the set of functions for G = Gr . The hidden coefficient in the complexity is π2
(
≤ (k+ 1)2(k+1)

)
.
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5. Conclusions

In this paper we first obtained a pseudo-polynomial-time algorithm to compute the maximum fulfillment f (G) of a
given series–parallel graph G. The algorithm takes time O

(
(ms)4n

)
, and hence takes polynomial time if ms is bounded by

a polynomial in n. It is easy to modify the algorithm so that it actually finds a partition of a series–parallel graph. We then
showed that our algorithm for series–parallel graphs can be extended for partial k-trees – that is, graphs with bounded
tree-width [1–3]. The extended algorithm takes time O

(
(ms)2(k+1)n

)
.

As we mentioned in Section 1, one wishes to partition a graph G into connected components so that each component C
has exactly one supply vertex whose supply is no less than the sum of demands of all demand vertices in C . The partition
problem is a decision problem which asks whether G has such a partition. The partition problem can be solved in linear
time for trees [9]. However, the partition problem is NP-complete for series–parallel graphs, because the ‘‘set partition
problem’’ [7] can be easily reduced to the partition problem for a complete bipartite graph K2,n−2 in linear time and K2,n−2
is a series–parallel graph. Using the algorithms for the maximum partition problem in the paper, one can solve the partition
problem in timeO

(
(ms)4n

)
andO

(
(ms)2(k+1)n

)
for series–parallel graphs and partial k-trees, respectively. However, slightly

modifying the algorithms, one can improve the complexities to O
(
(ms)2n

)
and O

(
(ms)2kn

)
for series–parallel graphs and

partial k-trees, respectively.
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