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Abstract .  Let G be an undirected plane graph with non-negative edge 
length, and let k terminal pairs lie on two specified face boundaries. This 
paper presents an algorithm for finding k "non-crossing paths" in G, 
each connecting a terminal pair, whose total length is minimum. Here 
"non-crossing paths" may share common vertices or edges but do not cross 
each other in the plane. The algorithm runs in time O(nlogn)  where n is 
the number of vertices in G. 

1. I n t r o d u c t i o n  

The shortest disjoint path problem, that is, to find k vertex-disjoint paths 
with minimum total length, each connecting a specified terminal pair, in a plane 
graph has many practical applications such as VLSI layout design. An edge in the 
graph corresponds to a routing region in VLSI chip. The problem is NP-complete 
[Lyn,KL], and so it is very unlikely that there exists a polynomial-time algorithm 
to solve the problem. If, however, two or more wires may pass through a single 
routing region, then the problem can be reduced to the shortest "non-crosslng" 
path problem, where "non-crossing" paths may share common vertices or edges 
but do not cross each other in the plane. The shortest non-crossing path problem 
is expected to be solvable in polynomial time at least for a restricted case, for 
example, a case when all terminals are located ' on boundaries of a constant 
number of faces in a plane graph. 

In this paper wc give an O(nlogn) algorithm which finds shortest 
non-crosslng paths in a plane graph for the case when all the terminals are located 
on two specified face boundaries, where n is the number of vertices in G. For the 
same case Suzuki, Akama and Nishizeki [SAN] obtained an O(ulogu)  algorithm 
for finding vertex-disjoint paths, but the total length of the paths found by their 
algorithm is not minimum at all. Our algorithm can be applied to a slngle-layer 
routing problem which appears in the final stage of VLSI layout design, where 
each wire connects a pad on the boundary of the chip and a pin on the boundary 
of a block (See Figure 1). 

In Section 2 we give a formal description of the problem and define several 
terms. In Section 3 we present an algorithm for the case where all terminals lie on 
a single face boundary. In Section 4 we give an algorithm for the case where all 
terminals lle on two face boundaries. Section 5 is a conclusion. 

2 / P r e l i m i n a r i e s  

In this section we give a formal description of the non-crossing path problem 
and define several terms. We denote by G = (V, E) the graph consisting of a 
vertex set V and an edge set E. We sometimes denote by V(G) and E(G) the 
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Fig.1. Shortest non-crossing paths in a grid graph. 

vertex and edge sets of G, respectively. We assume that G is a 2-connected 
undirected plane graph and every edge in G has a non-negative edge length. 
Furthermore we assume that G is embedded in the plane IR 2. The image of G in 

]R 2 is denoted by Ima#e(G) C]R ~. A Jaee of G is a connected compon&nt of 
~R 2 -  Ima#e(G). The boundary of a face is the maximal subgraph of G whose 
image is induded in the closure of the face. A pair of vertices sl and ti which we 
wish to connect by a path is called a terminal pair (sl, tl). Let k be the number of 
terminal pairs. In this paper we do not assume that k is a constant. Suppose that 
all the terminals are located on boundaries BI and B~ of two specified faces f l  
and f2. Assume for simplicity that V(BI)n  V(B~)= ff and all terminals are 
distinct from each other. 

Let Pt ,P2, '" ,Pk be paths connecting the k terminal pairs. Let G + be a 
plane graph obtained from G as follows: add a new vertex vlt in face J1, and join 
vii to each terminal on B1; similarly, add a new vertex vl~ in face J2, and join v12 
to each terminal on B~; the resulting graph is G +. Let P[, 1 < i < k, be a path (or 
a cycle) in G + obtained from P/ by adding two new edges: one joining si to v A or 
v12, and the other joining tl to v A or v12. We define paths P1,P2,'",Pk in a 
plane graph G to be non.crossin# (for faces J1 and f2) if rmaae(P'.), 1 < i < k, do 
not cross each other in the plane. Figure 2(a) depicts non-crossing paths P1, P2, Ps 
and P4. Non-crossing paths PI, P2, '" ,  Pk are shortest if the sum of the lengths of 
P1, P 2 , ' " ,  Pk is minimum. 

This pape r presents an algorithm to solve the following non.crossin# path 
problem. 

Non-c ros s ing  p a t h  p rob l em :  Find shortest non-crossing paths, each connecting 
a terminal pair on two specified face boundaries in a plane graph G. 

Figure 1 depicts shortest non-crosslng paths in a grid graph where each edge 
has length 1. 

Suppose that path P1 connecting sl and tl has been decided. Then paths 
P1,P2,'",Pk are non-crossing (for faces fl and f~) if paths P2,P3,"' ,Pk are 
non-crossing in a slit graph of G for Px defined as follows. A slit graph G(Pt) of G 
/or path P1 is generated from G by slitting apart path PI into two paths P~ and 
P~', duplicating the vertices and edges of P1 as follows (See Figure 2). Each vertex 
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Fig.2. Graph G and a slit graph. 

v in PI is replaced by new vertices v' and v". Each edge (vj,v.i+l) in PI is 
replaced by two parallel edges (v~,v~+,) and (v~',v~!+l). Any edge (v,w) that is 
not in / ' i  but is incident with a vertex v in P~ is replaced by (v', w) if (v, ~v) is to 
the right of a path PI going from sl to tl through image(P1), mad by (v ' ,  w) if 
(v, w) is to the left of the path. The operation above is called slitting G along P1. 
If a vertex v E V(Bi), i = 1 or 2, in PI is designated as a terminal in G, either v ~ 
or v", that is incident with vl, in G +, is designated as a terminal in the slit graph 

3. The  Case when  All the  Terminals  Lie on a Single Face 
Boundary  

In this section we present an algorithm to solve the non-crosslng path 
problem for the case when all the terminals are located on the boundary B of a 
single fare ] .  We assume w.l.o.g, that ] is the outer face of G. Let S be the set of 
terminal pMrs. We separate this case into the following two cases: 
C A S E  1: the terminals sl, tl,  s2, $2,"" ,  sk,tk appear on B clockwise in this order 
when we interchange staxtlng terminals si a~d ending terminals ti and/or indices 
of terminal pairs if necessary. 
C A S E  2: otherwise. 

We first present an algorithm PATHI(G, S) for Case 1 and then sat algorithm 
PATH2(G,S) for Case 2. PATH1 first decomposes the graph G into k subgraphs 
G1, G~, . . . ,  Gt~ so that each subgraph G~ conta.lns terminals si aJad ~i. I t  then finds 
a shortest p a t h / ~  between sl and ti in ea~:h graph Gi, and finally outputs the k 
shortest non-crosslng paths P1, P 2 , ' " ,  Pk. Denote by P[v, up] the path connecting 
vertices v a~d w in a path or tree P. 
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procedure PATHI(G, S); 
begin 

I. let T be a shortest path tree containing shortest paths from sl to all 
s,, 2_<i_<k; 

2. f o r i : = l  lokdo 
begin 

3. let Gi be the maximal subgraph of G whose image is in the cycle 
consisting of two paths, the path T[si,s,+l] from si to Si+l on tree T 
and the path on B counterclockwise going from s,+l to s,; {s~+l = sl} 

4. find a shortest path I; 

Pi between s, and t, 
in Gi; 
end; 81 t 8 

5. output {Pill < i < k} 2 
{the shortest non- 

crossing paths} il 
end; .'~.~"~i 

In Figure 3 tree T pathsiS drawnp/ " ..:~!'~ 2 .~ 
in dotted lines and i~ .... i~iP ~ :~: ~' 
in thick lines, and subgraphs t t2 
G1, G2 and G3 are colored 3 ~ .  
in different gray tones. The ?t.:.:::."::F: 
following lemma guarantees the 
correctness of procedure PATH1. 3 

Fig.3. Illustration for PATH1. 

L E M M A  1. Let G,, 1 < i < k, be the subgraphs found in the procedure PATTI1. 
Then graph G, contains-at l~ast one of the shortest paths in G between terminals 
s, and ti. 

We now consider the execution time of PATH1. All the steps except lines 1 
and 4 can be done in time O(n). Line 1 which finds shortest paths from st to all 
other vertices can be done in time O(T(n)), where T(n) is the time required for 
finding shortest paths from a single vertex to all other vertices in a plane graph of 
n vertices. We claim that line 4 c~n be executed in time O(T(n)) in total. At line 
4 each of the k shortest paths is found in a region of G bounded by B and 
tree T. Therefore every edge on T appears in at most two of the subgraphs 
G1, G2,- . . ,  Gt, a~d any other edge of G appeaxs in exactly one of them. Thus line 
4 can be done in time O(T(n)) in total. Therefore the total running time of 
procedure PATH1 is O(T(n)). 

We next present a~ algorithm PATH2 for Case 2 using PATH1. Let 
vl, v2, ..., vb be the vertices on B, and assume that they appear on B clockwise in 
this order. We may assume w.l.o.g, that st = vl and no terminals appear in the 
subpath of B counterclockwise going from Sl(= vl) to tl. We m~.y assume that, 
for each terminal pair (s,, ti)~ lJl~ S i and i~ i appear on B clockwise in this order and 
that s~, s2,---,st appear on B clockwise in this order (sec Figure 4(a)). For each 
vertex v q V(B), index(v) denotes the index of v, that is, index(v) = i if v = v,. 
If index(s,) < index(sj) < indez(tj) < index(t,), then (si, l~) is an ancestor of 
(sj, tj) and (sj, ti) is a descendant of (si,t,). Note that non-crossing paths do not 
exist if index(s,) < index(sj) < index(ti) < index(tj). Let (st,h) be the ancestor 
of (si, ti) having the m~xlmum index. Then (sl, h) is the parent of (si, ti), and 
(s,, t~) is a child of (st, h)- Let Tg be the (genealogy) tree whose nodes correspond 
to terminal pairs and edges correspond to the relation of parent and child. Thus, if 
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the terminal pair corresponding to a node p in Tg has a child, then an edge in Tg 
joins p to the node corresponding to the child. The terminal pair (sz,tl) does not 
have a parent, and is caned the root of Tg. The generation of terminal pair (si,f~) 
is the depth of the node Pi in Tg corresponding to (s#, l~) plus 1. See Figure 4(b). 

t t ,  2 t, S, $ 
t .  ~ $ ,  t , ~ ~  '~ t ~ '  S root  generation 

$ 2 

/ 
t ' t ~  1" :'~"J~ So ~ 5 

++. t~ t ,  l"~ 

(a) (b) 

Fig.4. (a) Terminal pairs, and (b) genealogy tree Tu. 

There are two ideas in the algorithm PATH2 for Case 2. The first idea is to 
find non-crossing paths for the terminal pairs of the same generation by using 
PATHI. Note that such terminal pairs satisfy the requirement for Case 1. We 
divide G into several components by slitting G along the found paths. For each 
terminal pair in a component, at least one of the shortest paths connecting the 
terminal pair in G is contained in the component. Thus we can find shortest 
non-crosslng paths by applying PATH1 to each generation one by one from the 
first generation to the last. However such a naive implementation of the algorithm 
above spends time O(kT(n)). The second idea is to use the divide-and-conquer 
method. Our algorithm first finds non-crossing paths for the middle generation, 
slits the graph along the found paths, and recursively finds non-crossing paths in 
each connected component. 

t t,~ t, S~ S 

�9 1 2 ~ S ,  

S. t ~ 
$ S7 
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Fig.5. Illustration for PATII2. 
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Figure 5 illustrates the idea; Figure 5(a) depicts non-crossing paths for the 
third generation, that is, the middle generation in thick lines; and Figure 5(b) 
depicts a graph obtained by slitting G along the found paths, where all the 
terminal pairs of older generations axe contained in the dark region and the 
younger in the light region. In such a way we can obtain aa algorithm whose 
running time is O(T(~)logk), but need more definitions to present a formal 
description of the algorithm. 

The inside of path Pi connecting terminal pair (si, ti) is the inside of the cycle 
consisting of Pi and the subpath of B counterclockwise going from ti to si, and is 
denoted by in(P~). The outside of Pi is the inside of the cycle consisting of Pi and 
the subpath of B clockwise going from ti to si, and is denoted by out(Pi). The 
inside of a set 7 ~ of paths connecting terminal pairs is the union of the insides of 
paths in P, and is denoted by in(~). The outside of 7 ~ is the intersection of the 
outsides of paths in T', and is denoted by out(79). 

The output of our algorithms is not a set of k paths but is a set ~ of 
trees which contain the k terminal pairs. The set of paths connecting si and 
tl, 1 < i < k, on trees in ~ is a solution of the non-crossing path problem. Since 
the total number of vertices of trees in ~ is O(n), we can compute the total length 
of the k paths by solving the nearest common ancestor problem [GT] for trees in 
9 v total in time O(n) [SANI 

procedure PATH2(G, S); 
begin 

1. let 9 be the maximum generation of terminal pairs; 
2. 5 := r 
3. REDUCE(G, [1,9], .~') 

end; 

procedure REDUCE(G, [l, h], 3:); 
begin 

1. if I = h then {there is only one generation) 
begin 

2. let S I be the set of terminal pairs of generation l; 
3. execute PATHI(G, S I) and let "Pt be the set of found paths; 
4. .T" : =  .~" U 77~ 

end 
5. else 

begin 
6. m :=  L(t + h ) /2J ;  
7. let S "  be the set of terminal pairs of generation m; 
8. execute PATHI(G, S" ) ,  and let ~m be the set of found paths; 
9. ~ ' :=  ~ U  7)m; 
10. let Gi,, and Go,t be the maximal subgraphs of G which are in 

in(7~,,,) and in outCp,,,), respectively; 
11. REDUCE(Gi,,, [m + 1, h], jr); 
12. REDUCE(Go, t, [1, m - 1], .7") 

end 
end; 

The running time of PATH2 is dominated by that of REDUCE. REDUCE 
uses a divide-and-conquer method on generations of terminal pairs. REDUCE first 
finds non-crossing paths connecting the terminal pairs of the middle generation by 
using PATH1 in time O(T(n)). Then REDUCE slits G along the found paths, 
divides the problem into two, one for older generations and the other for younger 
generations, ~ d  recursively solves the problem by calling REDUCE itseff. Clearly 
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the depth of the recursive calls is at most logk. Procedure PATH1 executed for all 
subgraphs in the recursive calls of the same depth can be done in time O(T(n)) in 
total, because one can implement REDUCE so that every edge in G appears at 
most three of the subgraphs. Therefore the total execution time of REDUCE 
is O(T(n)logk). Thus we can conclude that the shortest non-crossing paths 
PI, P2,'", P/~ can be found in O(T(n)log k) time for Case 2. Note that each path 
Pi is a shortest path connecting si and li in G. 

4. The Case where All the Terminals Lie on Two Face 
Boundaries 

In this section we present an ~Igorithm for the case when all the terminals lie 
on two face boundaxies BI and B2. For ea~:h terminal pa~r (si, ll) of one on BI 
and the other on B2, one may assume w.l.o.g, that si G V(BI) and ti G V(B2). 
Let 

Sx2 = {(~,, t i)ls,  e V ( B , )  and ti e V (B~)} ,  

Sl  = { (s , , t , ) l s , ,~ ,  e V(B,)} and 

S2 = {(s,, l ,) ls , ,  ~, ~ V(B~)}. 

One may assume that Sx2 ~ #: otherwise, the non-crossing path problem can be 
easily solved by executing PATH2 twice: once for G to find p~ths for $1, and then 
once for the graph obtained by slitting G along the found paths to find paths for 
S2. 

Assume that (s~,t~) E SI~ if 1 < i < l, and (s~,d~) E S~ U $2 otherwise. One 
may assume w.l.o.g, that terminals sl, s2 , . . . ,  at appears on BI counterclockwise 
in this order and q , 1 2 , ' " , t i  appears on B2 counterclockwise in this 
order. For the sake of simplicity, we assume that graph G is embedded 
in the plane region Z surrounded by two circles C'1 with radius 1 and 
C2 with radius 1/2 both having the center at the origin O of the 
zy-plane. We may assume w.l.o.g, that, for each terminal pair (si ,di) ,  
I m a g e ( s l )  = (cos(-~-i), sin(~-i)) and I m a g e ( l i )  = (�89 cos(~-i), ~ sin(~-i)), and that 
Image(G) N (CI U C2)---- {Image(si), Image(~)ll < i < l}. 

Let P be a path going from point a to point b in E. Let 0 be the total angle 
turned through (measured counterclockwise) by the llne OX when point X moves 
on P from a to b. Possibly 101 > 2z'. We define the (normalized) angle 0(P) of 
path P by O(P) -- 2-~-0. If PI, P2,'", Pk are non-crossing paths in G, then clearly 

are al equa to the same integr   m,]tiple of L 
The following lemm~ holds. We denote by lenglh(P) the length of path P. 

LEMMA2. Let PI* be a shortest path connecting sx and q, and let 
P~, 1 < i < I, be an arbitrary path connecting s~ and ti. Then there exists a path 
P[ connecting si and li such that lenglh(Pi ~) <_ lenglh(Pi) and 

o(Pl)  - o(Pi')  = { I if o(P,)  - o(P;') > 
- t  i f  - o ( p i ' )  < - 2 t .  

Proof: Assume that 0(Pi) - 0(P~) = rl for an integer r _> 2: a proof for the 
other case is similar to one for this case. Every intersecting vertex v of paths P~ 
and P~ satisfies 

O(Pi[s,, v]) - O(P~Isx, v]) = l -  (i - 1) rood I 
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and 
O(PiIv,~i]) - O(P;[v, tl]) = i - 1 mod !. 

Assume that  the intersecting vertices vx, v2 , . . . , vq  of P~ and Pi '  appear  
in this order on P~ going from s~ to ti. Define r~,, 1 < x < q: 
r~ = ~ { O ( P d s , , v ~ ] ) - O ( P ~ [ S l , V , ] ) + i - 1 ) .  Then the sequence of integers 
r l ,  r 2 , . .  �9 rq satisfies 

r l  = 0, 1; 
r ~ = r , r + l ;  and 
r~ - r~+1 = 0,4-1, for every x, 1 < x < q - 1. 

We prove this l emma  separating into the following two cases. 
Uase 1: rq = r. 

In this case, O(P~[vq,Z,])- O(P~[vvh])= i -  l. There  exists an intersecting 
vertex v,, of Pi and P~ such that  

i) r~ = 1; and 
ii) r ,  _> 1 for every x, a < z < q. 

Especially, let v,, be the vertex closest to vq on P~'[sl, r~] among such vertices. 
Then we claim that  v~ satisfies 

iii) P/[si, v~] and P~([v~, v?]) intersect only at v~. 
Assume for a contradichon 

that  Pi[si,va] and P~[v~,vq] 
would intersect at a vertex 
vb # v~. Let v6 be the 
intersecting vertex tha t  appears 
first on /~ going from va to 
8i (See Figure 6). Let C be 
the cycle consisting of P~'[v~,*Jb] 
and Pi [vb, v~]. (In Figure 6, C 
is drawn in thick line.) Since 
vq lies in C, Pi[v,,vq] intersects 
C at a vertex vc # v s .  Of 
course, ve is on P~[va, Vb] and 
1 < e < q .  Choose as v, the 
intersecting vertex that  appears  
first on Pi[v~,vq] going from 
% to vq. Then r ,  = 1 

because Pi [va, pc] + P~ [%, re] Fig.6. Illustration for the proof of bemma 2. 
is a simple cycle and 
O(P,[,,~, ~ ] )  = O(P~I~, ,~&.  Of 
course, r ,  > 1 for every x, c < x < q .  However, v. is closer to vq than vo on 
P~[sl, vq], contradicting the selection of v . .  

Let Pl  = Pi[sl, v~] + P~[%, v,] + P~[vq, ti], then P / i s  a simple path  connecting 
s, and tl and O(P]) - O(P;) = I. Since length(P~[v~,, v,]) < ie,~g*h(P~[v,,,v~l), we 
have length( Pl ) < ienglh( Pi ). 
Case2: r q - - r + l .  

In this case t i ] ) -  ti]) = ( i -  1 ) -  I. We can prove that there 
exists an intersecting vertex v~ of Pi and PI* such that  

i )  r .  = 2 ;  
ii) r~ _> 2 for every x, a < x < q; and 
iii) P/[s,, v,] and P; ' [%,  vq] intersects only at %. 

Then P~ = Pi[s~,v~] + P~ [v~,vq] + Pi[v~,~] is a simple path  connecting si and ti 
such tha t  O(P]) - O(P~) = I and length(P[) < length(P~). Q.E.D. 

s 1 



From Lemmas 2 and 3 we have the following lemma. 

L E M M A  3. Let 0 = 0, 4-1,4-21,..., and let PI be a shortest path among ones 
which connects Sl and h and have angle 8. Then G contains paths P2, P a , ' " , / ~  
such that 

(a) O(P2) = O(Pa) =-.. = 0(/]) = O, and Pl, P2,'",/] are non-crossing; and 
(b) each Pi, 2 < i < 1, is a shortest path among ones which connect sl and ti 

and have angle 0. 

LEMMA 4. Let PI* be 
G. Then G contains 
O(P1) - O(P~) is either O, 

an arbitrary shortest path connecting sl 
shortest non-crossing paths PI,P2,"',Pk 
I, or -1. 

and tl in 
such that 

Let P~I be a shortest path 
between sl and tl in G, and let 
G~ be the slit graph of G for 
PI*. G~ has two vertices v e and 
v" corresponding to sl and two 
vertices w e and w" corresponding 
to tl. Vertices v ', w ~, w" 
and v" lle on the same face 
boundary in G~ and appear on 
the boundary clockwise in this 
order. Denote by P+  and PI- 
the two paths in G corresponding 
to the shortest paths in 
G~ between v ~ and w" and 
between vu and w', respectively. 
Clearly $ ( P + ) - 8 ( P ~ ) =  i and 
0(P~-) - 0(P;)  = - L  In Figure 7 

$1 
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Fig.7. Slit graph G~). 

P +  and P1- are drawn in solid and dotted lines, respectively. From Lemma 4 we 
have the following temma. 

L E M M A  5. There exist shortest non-crosslng paths P I , P 2 , " ' , P k  such that P1 
is either P~, P+ or P~-. 

The discussion above leads to the following algorithm. 

procedure PATH(G); 
begin 

1. find a shortest path P~ between sx and tl in G; 
2. construct the slit graph G 0 = G(P~), and find paths P+  and P[ ' ;  
3. : =  : =  : =  { P I - } ;  

{each T~i, 0 _~ i _~ 2, becomes a set of non-crosslng paths} 
4. construct the slit graph G~ - G(P +) and the slit graph G~ = G(P~'); 
5. for i := 0 to 2 do 

begin 
6. PATH2(G~, S - (sl, tl)); 
7. add the found paths P2, P 3 , ' " ,  Pk to Pl 

end; 
8. output as a solution one of the sets P0, ~D1 and T'2 whose tota~ length is 

minimum 
end; 
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The dominating part of the execution time of algorithm PATH is one for 
executing PATH2 three times. Therefore the running time of PATH is 
O(T(n) log k). Thus we have the following theorem. 

T H E O R E M  1. Given a plane graph G with k terminal pairs on its two face 
boundaries, one can find shortest non-crossing paths in time O(T(~)log k), where 
T(u) is the time required for finding shortest paths from a single vertex to all 
other vertices in a plane graph of ~ vertices. 

A usual shortest path algorithm, that is, Dijkstra's method with a heap, 
spends time T(n)= O(nlogn) for a plane graph [AIIU,Tar]. On the other 
hand Frederickson's method spends time T(n)= O(n) with preprocessing 
time O(n ovt[-~-~) [Fre] .  Therefore our algorithm can be done in time 
O(n(ov/i-~ + log k)) = O(n log u). 

5. Conclusion 

In this paper, we presented an efficient algorithm for finding shortest 
non-crossing paths for the case when k terminal p~irs are located on two specified 
face boundaries of a plane graph, and proved that the running time is O(nlogn). 
Our algorithm works well even for the case where edge length may be negative if 
there are no negative cydes. We are now extending the algorithm to a more 
general case where terminals lie on three or more face boundaries. 

Acknowledgement .  This research is partly supported by Grant in Aid for 
Scientific Research of the Ministry of Education, Science, and Culture of Japan 
under a grant number: General Research (C) 04650300. 

References  

[AHU] 

[Frel 

[GT] 

[KL] 

[Lyn] 

[SAN] 

[Tar] 

A. V. Aho, J. E. Hopcroft and J. D. Unman, The Design and Analysis of 
Computer Algorithms, Addison-Wesley, Reading, MA (1974). 
G. N. Frederickson, Fast algorithms for shortest path in planar graphs, 
with applications, SIAM J. Comput., 16, pp. 1004-1022 (1987). 
H. N. Gabow and R. E. Tarjan, A linear-time algorithm for a special case 
of disjoint set union, Journal of Computcr and System Sciences, 30, 
pp. 209-221 (1985). 
M. R. Kramer and J. van Leewen, Wire-routlng is NP-complete, Report 
No. RUU-CS-82-4, Department of Computer Science, University of 
Utrecht, Utrecht, the Netherlands (1982). 
J. F. Lynch, The equivalence of theorem proving and the interconnection 
problem, ACM SIGDA, the Netherlands (1982). 
H. Suzuki, T. Akama and T. Nishizeki, Finding Steiner forests in planar 
graphs, Proc. of First SIAM-ACM SODA, pp. 444-453 (1990). 
R. E. Tarjan, Data Structures and Network Algorithms, 
SIAM,Philadelphia, PA (1983). 


