
Algorithms for Finding Non-Crossing Paths
with Minimum Total Length in Plane Graphs

Jun-ya Takahashi, Hitoshi Suzuki and Takao Nishizeki

Department of Information Engineering
Faculty of Engineering, Tohoku University

Sendal 980, Japan

Abstract . Let G be an undirected plane graph with non-negative edge
length, and let k terminal pairs lie on two specified face boundaries. This
paper presents an algorithm for finding k "non-crossing paths" in G,
each connecting a terminal pair, whose total length is minimum. Here
"non-crossing paths" may share common vertices or edges but do not cross
each other in the plane. The algorithm runs in time O(nlogn) where n is
the number of vertices in G.

1. I n t r o d u c t i o n

The shortest disjoint path problem, that is, to find k vertex-disjoint paths
with minimum total length, each connecting a specified terminal pair, in a plane
graph has many practical applications such as VLSI layout design. An edge in the
graph corresponds to a routing region in VLSI chip. The problem is NP-complete
[Lyn,KL], and so it is very unlikely that there exists a polynomial-time algorithm
to solve the problem. If, however, two or more wires may pass through a single
routing region, then the problem can be reduced to the shortest "non-crosslng"
path problem, where "non-crossing" paths may share common vertices or edges
but do not cross each other in the plane. The shortest non-crossing path problem
is expected to be solvable in polynomial time at least for a restricted case, for
example, a case when all terminals are located ' on boundaries of a constant
number of faces in a plane graph.

In this paper wc give an O(nlogn) algorithm which finds shortest
non-crosslng paths in a plane graph for the case when all the terminals are located
on two specified face boundaries, where n is the number of vertices in G. For the
same case Suzuki, Akama and Nishizeki [SAN] obtained an O(ulogu) algorithm
for finding vertex-disjoint paths, but the total length of the paths found by their
algorithm is not minimum at all. Our algorithm can be applied to a slngle-layer
routing problem which appears in the final stage of VLSI layout design, where
each wire connects a pad on the boundary of the chip and a pin on the boundary
of a block (See Figure 1).

In Section 2 we give a formal description of the problem and define several
terms. In Section 3 we present an algorithm for the case where all terminals lie on
a single face boundary. In Section 4 we give an algorithm for the case where all
terminals lle on two face boundaries. Section 5 is a conclusion.

2 / P r e l i m i n a r i e s

In this section we give a formal description of the non-crossing path problem
and define several terms. We denote by G = (V, E) the graph consisting of a
vertex set V and an edge set E. We sometimes denote by V(G) and E(G) the

401

1 2

12

11 1u v o /

Fig.1. Shortest non-crossing paths in a grid graph.

vertex and edge sets of G, respectively. We assume that G is a 2-connected
undirected plane graph and every edge in G has a non-negative edge length.
Furthermore we assume that G is embedded in the plane IR 2. The image of G in

]R 2 is denoted by Ima#e(G) C]R ~. A Jaee of G is a connected compon&nt of
~R 2 - Ima#e(G). The boundary of a face is the maximal subgraph of G whose
image is induded in the closure of the face. A pair of vertices sl and ti which we
wish to connect by a path is called a terminal pair (sl, tl). Let k be the number of
terminal pairs. In this paper we do not assume that k is a constant. Suppose that
all the terminals are located on boundaries BI and B~ of two specified faces f l
and f2. Assume for simplicity that V(BI)n V(B~)= ff and all terminals are
distinct from each other.

Let Pt ,P2, '" ,Pk be paths connecting the k terminal pairs. Let G + be a
plane graph obtained from G as follows: add a new vertex vlt in face J1, and join
vii to each terminal on B1; similarly, add a new vertex vl~ in face J2, and join v12
to each terminal on B~; the resulting graph is G +. Let P[, 1 < i < k, be a path (or
a cycle) in G + obtained from P/ by adding two new edges: one joining si to v A or
v12, and the other joining tl to v A or v12. We define paths P1,P2,'",Pk in a
plane graph G to be non.crossin# (for faces J1 and f2) if rmaae(P'.), 1 < i < k, do
not cross each other in the plane. Figure 2(a) depicts non-crossing paths P1, P2, Ps
and P4. Non-crossing paths PI, P2, '" , Pk are shortest if the sum of the lengths of
P1, P 2 , ' " , Pk is minimum.

This pape r presents an algorithm to solve the following non.crossin# path
problem.

Non-c ros s ing p a t h p rob l em : Find shortest non-crossing paths, each connecting
a terminal pair on two specified face boundaries in a plane graph G.

Figure 1 depicts shortest non-crosslng paths in a grid graph where each edge
has length 1.

Suppose that path P1 connecting sl and tl has been decided. Then paths
P1,P2,'",Pk are non-crossing (for faces fl and f~) if paths P2,P3,"' ,Pk are
non-crossing in a slit graph of G for Px defined as follows. A slit graph G(Pt) of G
/or path P1 is generated from G by slitting apart path PI into two paths P~ and
P~', duplicating the vertices and edges of P1 as follows (See Figure 2). Each vertex

f l

402

�9 %

! t
! !

! t
I t

I !
I

I
I

(a) G Co) O (Pt)

Fig.2. Graph G and a slit graph.

v in PI is replaced by new vertices v' and v". Each edge (vj,v.i+l) in PI is
replaced by two parallel edges (v~,v~+,) and (v~',v~!+l). Any edge (v,w) that is
not in / ' i but is incident with a vertex v in P~ is replaced by (v', w) if (v, ~v) is to
the right of a path PI going from sl to tl through image(P1), mad by (v ' , w) if
(v, w) is to the left of the path. The operation above is called slitting G along P1.
If a vertex v E V(Bi), i = 1 or 2, in PI is designated as a terminal in G, either v ~
or v", that is incident with vl, in G +, is designated as a terminal in the slit graph

3. The Case when All the Terminals Lie on a Single Face
Boundary

In this section we present an algorithm to solve the non-crosslng path
problem for the case when all the terminals are located on the boundary B of a
single fare] . We assume w.l.o.g, that] is the outer face of G. Let S be the set of
terminal pMrs. We separate this case into the following two cases:
C A S E 1: the terminals sl, tl, s2, $2,"" , sk,tk appear on B clockwise in this order
when we interchange staxtlng terminals si a~d ending terminals ti and/or indices
of terminal pairs if necessary.
C A S E 2: otherwise.

We first present an algorithm PATHI(G, S) for Case 1 and then sat algorithm
PATH2(G,S) for Case 2. PATH1 first decomposes the graph G into k subgraphs
G1, G~, . . . , Gt~ so that each subgraph G~ conta.lns terminals si aJad ~i. I t then finds
a shortest p a t h / ~ between sl and ti in ea~:h graph Gi, and finally outputs the k
shortest non-crosslng paths P1, P 2 , ' " , Pk. Denote by P[v, up] the path connecting
vertices v a~d w in a path or tree P.

403

procedure PATHI(G, S);
begin

I. let T be a shortest path tree containing shortest paths from sl to all
s,, 2_<i_<k;

2. f o r i : = l lokdo
begin

3. let Gi be the maximal subgraph of G whose image is in the cycle
consisting of two paths, the path T[si,s,+l] from si to Si+l on tree T
and the path on B counterclockwise going from s,+l to s,; {s~+l = sl}

4. find a shortest path I;

Pi between s, and t,
in Gi;
end; 81 t 8

5. output {Pill < i < k} 2
{the shortest non-

crossing paths} il
end; .'~.~"~i

In Figure 3 tree T pathsiS drawnp/ " ..:~!'~ 2 .~
in dotted lines and i~ i~iP ~ :~: ~'
in thick lines, and subgraphs t t2
G1, G2 and G3 are colored 3 ~ .
in different gray tones. The ?t.:.:::."::F:
following lemma guarantees the
correctness of procedure PATH1. 3

Fig.3. Illustration for PATH1.

L E M M A 1. Let G,, 1 < i < k, be the subgraphs found in the procedure PATTI1.
Then graph G, contains-at l~ast one of the shortest paths in G between terminals
s, and ti.

We now consider the execution time of PATH1. All the steps except lines 1
and 4 can be done in time O(n). Line 1 which finds shortest paths from st to all
other vertices can be done in time O(T(n)), where T(n) is the time required for
finding shortest paths from a single vertex to all other vertices in a plane graph of
n vertices. We claim that line 4 c~n be executed in time O(T(n)) in total. At line
4 each of the k shortest paths is found in a region of G bounded by B and
tree T. Therefore every edge on T appears in at most two of the subgraphs
G1, G2,- . . , Gt, a~d any other edge of G appeaxs in exactly one of them. Thus line
4 can be done in time O(T(n)) in total. Therefore the total running time of
procedure PATH1 is O(T(n)).

We next present a~ algorithm PATH2 for Case 2 using PATH1. Let
vl, v2, ..., vb be the vertices on B, and assume that they appear on B clockwise in
this order. We may assume w.l.o.g, that st = vl and no terminals appear in the
subpath of B counterclockwise going from Sl(= vl) to tl. We m~.y assume that,
for each terminal pair (s,, ti)~ lJl~ S i and i~ i appear on B clockwise in this order and
that s~, s2,---,st appear on B clockwise in this order (sec Figure 4(a)). For each
vertex v q V(B), index(v) denotes the index of v, that is, index(v) = i if v = v,.
If index(s,) < index(sj) < indez(tj) < index(t,), then (si, l~) is an ancestor of
(sj, tj) and (sj, ti) is a descendant of (si,t,). Note that non-crossing paths do not
exist if index(s,) < index(sj) < index(ti) < index(tj). Let (st,h) be the ancestor
of (si, ti) having the m~xlmum index. Then (sl, h) is the parent of (si, ti), and
(s,, t~) is a child of (st, h)- Let Tg be the (genealogy) tree whose nodes correspond
to terminal pairs and edges correspond to the relation of parent and child. Thus, if

404

the terminal pair corresponding to a node p in Tg has a child, then an edge in Tg
joins p to the node corresponding to the child. The terminal pair (sz,tl) does not
have a parent, and is caned the root of Tg. The generation of terminal pair (si,f~)
is the depth of the node Pi in Tg corresponding to (s#, l~) plus 1. See Figure 4(b).

t t , 2 t, S, $
t . ~ $, t , ~ ~ '~ t ~ ' S root generation

$ 2

/
t ' t ~ 1" :'~"J~ So ~ 5

++. t~ t , l"~

(a) (b)

Fig.4. (a) Terminal pairs, and (b) genealogy tree Tu.

There are two ideas in the algorithm PATH2 for Case 2. The first idea is to
find non-crossing paths for the terminal pairs of the same generation by using
PATHI. Note that such terminal pairs satisfy the requirement for Case 1. We
divide G into several components by slitting G along the found paths. For each
terminal pair in a component, at least one of the shortest paths connecting the
terminal pair in G is contained in the component. Thus we can find shortest
non-crosslng paths by applying PATH1 to each generation one by one from the
first generation to the last. However such a naive implementation of the algorithm
above spends time O(kT(n)). The second idea is to use the divide-and-conquer
method. Our algorithm first finds non-crossing paths for the middle generation,
slits the graph along the found paths, and recursively finds non-crossing paths in
each connected component.

t t,~ t, S~ S

�9 1 2 ~ S ,

S. t ~
$ S7

S Ss
S,

$. ta t , ~o
(~

S,:"q
t,

,kt,
t,

Ss

Co)

Fig.5. Illustration for PATII2.

405

Figure 5 illustrates the idea; Figure 5(a) depicts non-crossing paths for the
third generation, that is, the middle generation in thick lines; and Figure 5(b)
depicts a graph obtained by slitting G along the found paths, where all the
terminal pairs of older generations axe contained in the dark region and the
younger in the light region. In such a way we can obtain aa algorithm whose
running time is O(T(~)logk), but need more definitions to present a formal
description of the algorithm.

The inside of path Pi connecting terminal pair (si, ti) is the inside of the cycle
consisting of Pi and the subpath of B counterclockwise going from ti to si, and is
denoted by in(P~). The outside of Pi is the inside of the cycle consisting of Pi and
the subpath of B clockwise going from ti to si, and is denoted by out(Pi). The
inside of a set 7 ~ of paths connecting terminal pairs is the union of the insides of
paths in P, and is denoted by in(~). The outside of 7 ~ is the intersection of the
outsides of paths in T', and is denoted by out(79).

The output of our algorithms is not a set of k paths but is a set ~ of
trees which contain the k terminal pairs. The set of paths connecting si and
tl, 1 < i < k, on trees in ~ is a solution of the non-crossing path problem. Since
the total number of vertices of trees in ~ is O(n), we can compute the total length
of the k paths by solving the nearest common ancestor problem [GT] for trees in
9 v total in time O(n) [SANI

procedure PATH2(G, S);
begin

1. let 9 be the maximum generation of terminal pairs;
2. 5 := r
3. REDUCE(G, [1,9], .~')

end;

procedure REDUCE(G, [l, h], 3:);
begin

1. if I = h then {there is only one generation)
begin

2. let S I be the set of terminal pairs of generation l;
3. execute PATHI(G, S I) and let "Pt be the set of found paths;
4. .T" : = .~" U 77~

end
5. else

begin
6. m := L(t + h) /2J ;
7. let S " be the set of terminal pairs of generation m;
8. execute PATHI(G, S") , and let ~m be the set of found paths;
9. ~ ' := ~ U 7)m;
10. let Gi,, and Go,t be the maximal subgraphs of G which are in

in(7~,,,) and in outCp,,,), respectively;
11. REDUCE(Gi,,, [m + 1, h], jr);
12. REDUCE(Go, t, [1, m - 1], .7")

end
end;

The running time of PATH2 is dominated by that of REDUCE. REDUCE
uses a divide-and-conquer method on generations of terminal pairs. REDUCE first
finds non-crossing paths connecting the terminal pairs of the middle generation by
using PATH1 in time O(T(n)). Then REDUCE slits G along the found paths,
divides the problem into two, one for older generations and the other for younger
generations, ~ d recursively solves the problem by calling REDUCE itseff. Clearly

406

the depth of the recursive calls is at most logk. Procedure PATH1 executed for all
subgraphs in the recursive calls of the same depth can be done in time O(T(n)) in
total, because one can implement REDUCE so that every edge in G appears at
most three of the subgraphs. Therefore the total execution time of REDUCE
is O(T(n)logk). Thus we can conclude that the shortest non-crossing paths
PI, P2,'", P/~ can be found in O(T(n)log k) time for Case 2. Note that each path
Pi is a shortest path connecting si and li in G.

4. The Case where All the Terminals Lie on Two Face
Boundaries

In this section we present an ~Igorithm for the case when all the terminals lie
on two face boundaxies BI and B2. For ea~:h terminal pa~r (si, ll) of one on BI
and the other on B2, one may assume w.l.o.g, that si G V(BI) and ti G V(B2).
Let

Sx2 = {(~,, t i)ls, e V (B ,) and ti e V (B~)} ,

Sl = { (s , , t ,) l s , ,~ , e V(B,)} and

S2 = {(s,, l ,) ls , , ~, ~ V(B~)}.

One may assume that Sx2 ~ #: otherwise, the non-crossing path problem can be
easily solved by executing PATH2 twice: once for G to find p~ths for $1, and then
once for the graph obtained by slitting G along the found paths to find paths for
S2.

Assume that (s~,t~) E SI~ if 1 < i < l, and (s~,d~) E S~ U $2 otherwise. One
may assume w.l.o.g, that terminals sl, s2 , . . . , at appears on BI counterclockwise
in this order and q , 1 2 , ' " , t i appears on B2 counterclockwise in this
order. For the sake of simplicity, we assume that graph G is embedded
in the plane region Z surrounded by two circles C'1 with radius 1 and
C2 with radius 1/2 both having the center at the origin O of the
zy-plane. We may assume w.l.o.g, that, for each terminal pair (si ,di) ,
I m a g e (s l) = (cos(-~-i), sin(~-i)) and I m a g e (l i) = (�89 cos(~-i), ~ sin(~-i)), and that
Image(G) N (CI U C2)---- {Image(si), Image(~)ll < i < l}.

Let P be a path going from point a to point b in E. Let 0 be the total angle
turned through (measured counterclockwise) by the llne OX when point X moves
on P from a to b. Possibly 101 > 2z'. We define the (normalized) angle 0(P) of
path P by O(P) -- 2-~-0. If PI, P2,'", Pk are non-crossing paths in G, then clearly

are al equa to the same integr m,]tiple of L
The following lemm~ holds. We denote by lenglh(P) the length of path P.

LEMMA2. Let PI* be a shortest path connecting sx and q, and let
P~, 1 < i < I, be an arbitrary path connecting s~ and ti. Then there exists a path
P[connecting si and li such that lenglh(Pi ~) <_ lenglh(Pi) and

o(Pl) - o(Pi') = { I if o(P,) - o(P;') >
- t i f - o (p i ') < - 2 t .

Proof: Assume that 0(Pi) - 0(P~) = rl for an integer r _> 2: a proof for the
other case is similar to one for this case. Every intersecting vertex v of paths P~
and P~ satisfies

O(Pi[s,, v]) - O(P~Isx, v]) = l - (i - 1) rood I

407

and
O(PiIv,~i]) - O(P;[v, tl]) = i - 1 mod !.

Assume that the intersecting vertices vx, v2 , . . . , vq of P~ and Pi ' appear
in this order on P~ going from s~ to ti. Define r~,, 1 < x < q:
r~ = ~ { O (P d s , , v ~]) - O (P ~ [S l , V ,]) + i - 1) . Then the sequence of integers
r l , r 2 , . . �9 rq satisfies

r l = 0, 1;
r ~ = r , r + l ; and
r~ - r~+1 = 0,4-1, for every x, 1 < x < q - 1.

We prove this l emma separating into the following two cases.
Uase 1: rq = r.

In this case, O(P~[vq,Z,])- O(P~[vvh])= i - l. There exists an intersecting
vertex v,, of Pi and P~ such that

i) r~ = 1; and
ii) r , _> 1 for every x, a < z < q.

Especially, let v,, be the vertex closest to vq on P~'[sl, r~] among such vertices.
Then we claim that v~ satisfies

iii) P/[si, v~] and P~([v~, v?]) intersect only at v~.
Assume for a contradichon

that Pi[si,va] and P~[v~,vq]
would intersect at a vertex
vb # v~. Let v6 be the
intersecting vertex tha t appears
first on /~ going from va to
8i (See Figure 6). Let C be
the cycle consisting of P~'[v~,*Jb]
and Pi [vb, v~]. (In Figure 6, C
is drawn in thick line.) Since
vq lies in C, Pi[v,,vq] intersects
C at a vertex vc # v s . Of
course, ve is on P~[va, Vb] and
1 < e < q . Choose as v, the
intersecting vertex that appears
first on Pi[v~,vq] going from
% to vq. Then r , = 1

because Pi [va, pc] + P~ [%, re] Fig.6. Illustration for the proof of bemma 2.
is a simple cycle and
O(P,[,,~, ~]) = O(P~I~, ,~&. Of
course, r , > 1 for every x, c < x < q . However, v. is closer to vq than vo on
P~[sl, vq], contradicting the selection of v . .

Let Pl = Pi[sl, v~] + P~[%, v,] + P~[vq, ti], then P / i s a simple path connecting
s, and tl and O(P]) - O(P;) = I. Since length(P~[v~,, v,]) < ie,~g*h(P~[v,,,v~l), we
have length(Pl) < ienglh(Pi).
Case2: r q - - r + l .

In this case t i]) - ti]) = (i - 1) - I. We can prove that there
exists an intersecting vertex v~ of Pi and PI* such that

i) r . = 2 ;
ii) r~ _> 2 for every x, a < x < q; and
iii) P/[s,, v,] and P; ' [%, vq] intersects only at %.

Then P~ = Pi[s~,v~] + P~ [v~,vq] + Pi[v~,~] is a simple path connecting si and ti
such tha t O(P]) - O(P~) = I and length(P[) < length(P~). Q.E.D.

s 1

From Lemmas 2 and 3 we have the following lemma.

L E M M A 3. Let 0 = 0, 4-1,4-21,..., and let PI be a shortest path among ones
which connects Sl and h and have angle 8. Then G contains paths P2, P a , ' " , / ~
such that

(a) O(P2) = O(Pa) =-.. = 0(/]) = O, and Pl, P2,'",/] are non-crossing; and
(b) each Pi, 2 < i < 1, is a shortest path among ones which connect sl and ti

and have angle 0.

LEMMA 4. Let PI* be
G. Then G contains
O(P1) - O(P~) is either O,

an arbitrary shortest path connecting sl
shortest non-crossing paths PI,P2,"',Pk
I, or -1.

and tl in
such that

Let P~I be a shortest path
between sl and tl in G, and let
G~ be the slit graph of G for
PI*. G~ has two vertices v e and
v" corresponding to sl and two
vertices w e and w" corresponding
to tl. Vertices v ', w ~, w"
and v" lle on the same face
boundary in G~ and appear on
the boundary clockwise in this
order. Denote by P+ and PI-
the two paths in G corresponding
to the shortest paths in
G~ between v ~ and w" and
between vu and w', respectively.
Clearly $ (P +) - 8 (P ~) = i and
0(P~-) - 0(P;) = - L In Figure 7

$1

408

Fig.7. Slit graph G~).

P + and P1- are drawn in solid and dotted lines, respectively. From Lemma 4 we
have the following temma.

L E M M A 5. There exist shortest non-crosslng paths P I , P 2 , " ' , P k such that P1
is either P~, P+ or P~-.

The discussion above leads to the following algorithm.

procedure PATH(G);
begin

1. find a shortest path P~ between sx and tl in G;
2. construct the slit graph G 0 = G(P~), and find paths P+ and P[' ;
3. : = : = : = { P I - } ;

{each T~i, 0 _~ i _~ 2, becomes a set of non-crosslng paths}
4. construct the slit graph G~ - G(P +) and the slit graph G~ = G(P~');
5. for i := 0 to 2 do

begin
6. PATH2(G~, S - (sl, tl));
7. add the found paths P2, P 3 , ' " , Pk to Pl

end;
8. output as a solution one of the sets P0, ~D1 and T'2 whose tota~ length is

minimum
end;

409

The dominating part of the execution time of algorithm PATH is one for
executing PATH2 three times. Therefore the running time of PATH is
O(T(n) log k). Thus we have the following theorem.

T H E O R E M 1. Given a plane graph G with k terminal pairs on its two face
boundaries, one can find shortest non-crossing paths in time O(T(~)log k), where
T(u) is the time required for finding shortest paths from a single vertex to all
other vertices in a plane graph of ~ vertices.

A usual shortest path algorithm, that is, Dijkstra's method with a heap,
spends time T(n)= O(nlogn) for a plane graph [AIIU,Tar]. On the other
hand Frederickson's method spends time T(n)= O(n) with preprocessing
time O(n ovt[-~-~) [Fre] . Therefore our algorithm can be done in time
O(n(ov/i-~ + log k)) = O(n log u).

5. Conclusion

In this paper, we presented an efficient algorithm for finding shortest
non-crossing paths for the case when k terminal p~irs are located on two specified
face boundaries of a plane graph, and proved that the running time is O(nlogn).
Our algorithm works well even for the case where edge length may be negative if
there are no negative cydes. We are now extending the algorithm to a more
general case where terminals lie on three or more face boundaries.

Acknowledgement . This research is partly supported by Grant in Aid for
Scientific Research of the Ministry of Education, Science, and Culture of Japan
under a grant number: General Research (C) 04650300.

References

[AHU]

[Frel

[GT]

[KL]

[Lyn]

[SAN]

[Tar]

A. V. Aho, J. E. Hopcroft and J. D. Unman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, MA (1974).
G. N. Frederickson, Fast algorithms for shortest path in planar graphs,
with applications, SIAM J. Comput., 16, pp. 1004-1022 (1987).
H. N. Gabow and R. E. Tarjan, A linear-time algorithm for a special case
of disjoint set union, Journal of Computcr and System Sciences, 30,
pp. 209-221 (1985).
M. R. Kramer and J. van Leewen, Wire-routlng is NP-complete, Report
No. RUU-CS-82-4, Department of Computer Science, University of
Utrecht, Utrecht, the Netherlands (1982).
J. F. Lynch, The equivalence of theorem proving and the interconnection
problem, ACM SIGDA, the Netherlands (1982).
H. Suzuki, T. Akama and T. Nishizeki, Finding Steiner forests in planar
graphs, Proc. of First SIAM-ACM SODA, pp. 444-453 (1990).
R. E. Tarjan, Data Structures and Network Algorithms,
SIAM,Philadelphia, PA (1983).

