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Abs t rac t .  The edge-coloring problem is one of the fundamental prob- 
lems on graphs, which often appears in various scheduling problems like 
the file transfer problem on computer networks. In this paper, we sur- 
vey recent advances and results on the classical edge-coloring problem 
as well as the generalized edge-coloring problems, called the f-coloring 
and fg-coloring problems. In particular we review various upper bounds 
on the minimum number of colors required to edge-color graphs, and 
present efficient algorithms to edge-color graphs with a number of colors 
not exceeding the upper bounds. 

1 A survey of the edge-coloring problem 

1.1 A h i s t o r y  o f  t h e  e d g e - c o l o r i n g  p r o b l e m  

The edge-coloring problem is one of the fundamental problems on graphs. A 
graph G = (V, E)  is an ordered pair of vertex set V and edge set E.  An edge in 
E joins two vertices in V. Throughout  the paper we let n = IV[ and m = [E I. The 
edge-coloring problem is to color all edges of a given graph with the minimum 
number of colors so that no two adjacent edges are assigned the same color. Fig. 
I illustrates an edge-coloring of a graph with four colors. A set of edges which are 
not adjacent each other is called a matching. Since each set of edges colored with 
the same color is a matching, an edge-coloring of a graph is indeed a parti t ion 
of E to matchings. 

We now historically review the edge-coloring problem. The edge-coloring 
problem was posed in 1880 in relation with the well-known four-color conjecture: 
every map could be colored with four colors so that  any neighboring countries 
have different colors. It took more than 100 years to prove the conjecture affir- 
matively in 1976 with the help of computers since it was posed in 1852. The first 
paper that  dealt with the edge-coloring problem was written by Tait in 1889 
[10]. In the paper Talt proved that  the four-color problem is equivalent with the 
problem of edge-coloring every planar 3-connected cubic graph with three colors. 
The minimum number of colors needed to edge-color G is called the chromatic 
index X' (G) of G. The maximum degree of graph G is denoted by A(G) or sim- 
ply by A. Obviously •'(G) > A(G) since all edges incident to the same vertex 
must be assigned different colors. KSnig [20] proved that  every bipartite graph 
can be edge-colored with exactly A(G) colors, that  is X' (G) = A(G). Shannon 
[30] proved that  every graph can be edge-colored with at most 3A(G)/2  colors, 
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that is X' (G) < 3zI(G)/2. Vizing [32] proved that X' (G) <_ zl(G) + 1 for every 
simple graph. A few other upper bounds on X' (G) have been known [2,14,17,27]. 
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Fig. 1. An edge-coloring of a graph with four colors. 

According to the rapid progress of computers, the research on computer al- 
gorithms has become active with emphasis on the efficiency and complexity, 
and efficient algorithms have been developed for various graph problems. How- 
ever, Holyer [18] proved that the edge-coloring problem is NP-complete, and 
hence it is very unlikely that there is a polynomial time algorithm for solv- 
ing the problem [1]. Hence a good approximation algorithm would be useful. 
Approximation algorithms are evaluated by the approximation ratio and the 
complexity. The polynomial time algorithm having the best approximate ratio 
so far was given by Nishizeki and Kashiwagi [27], whose approximation ratio is 
asymptotically 1.1. Gabow et al. [12] gave the most efficient algorithm which 
edge-colors a simple graph G with at most A(G) + 1 colors in O(mnx/'-~) 
time. Furthermore sequential and parallel algorithms have been obtained for 
various classes of graphs, such as bipartite graphs [8,11], planar graphs [6,7,12], 
series-parallel graphs [29,31,38,42,43], partial k-trees [4,36,37,40], degenerated 
graphs and bounded-genus graphs [39]. 

On the other hand, various generalizations of edge-coloring have been intro- 
duced and investigated. In 1970's Hilton and de Werra obtained many notable 
results on "equitable and edge-balanced colorings" in which each color appears 
at each vertex uniformly [16,34,35]. In 1980's Hakimi and Kariv studied the fol- 
lowing f-coloring problem. An f-coloring of a graph G is a coloring of edges of 
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Fig. 2. An f-coloring of a graph with four colors. 

G such that  each color appears at each vertex v E V at most f(v) times [15]. 
Fig. 2 depicts an f-coloring with four colors where numbers in circles mean f(v) 
for vertices v. An ordinary edge-coloring is a special case of an f-coloring in 
which f(v) = 1 for every vertex v E V. The minimum number of colors needed 
to f-color G is called the f-chromatic index X'f(G) of G. Since deciding the 
chromatic index of G is NP-complete  [18], deciding the f-chromatic index of G 
is also NP-comple te  in general. On the other hand, various upper bounds on 
X'/(G) have been known [15,23,39]. 

The file transfer problem on computer networks introduced by Coffman et 
al.[5] is related to the edge-coloring problem. The file transfer problem is modeled 
as follows. Each computer v has a limited number f(v) of communication ports. 
For each pair of computers there are a number of files which are transferred 
between the pair of computers. In such a situation the problem is how to schedule 
the file transfers so as to minimize the total time for the overall transfer process. 
The general problem is NP-comple te  since the simple version of the problem 
can be reduced to the edge-coloring problem. Coffman et al. obtained simple 
approximate algorithms for the file transfer problem. The file transfer problem 
in which each file has the same length is formulated as an f-coloring problem 
for a graph as follows. Vertices of the graph correspond to nodes of the network, 
and edges correspond to files to be transferred between the endpoints. Such a 
graph G describes the file transfer demands. Assume that  each computer v has 
f(v) communication ports, and transferring any file takes an equal amount of 
time. Under these assumptions, the schedule to minimize the total time for the 
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overall transfer process corresponds to an f-coloring of G with the minimum 
number of colors. Note that  the edges colored with the same color correspond 
to files that  can be transferred simultaneously. 
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Fig. 3. An fg-coloring of a graph with four colors. 

For some cases of the file transfer problem on computer networks, we must 
often consider the capacity of channels. An f-coloring is generMized to an fg- 
coloring so as to t reat  such a file transfer problem with channel constraints [24]. 
The capacity of a channel between vertices v and w is denoted by g(vw). An 
fg-coloring of G is a coloring of edges such that  each vertex v has at most f(v) 
edges colored with the same color and each set E(vw) of multiple edges contains 
at most g(vw) edges colored with the same color. Fig. 3 depicts an fg-coloring 
with four colors, where numbers next to multiple edges E(vw) mean g(vw). The 
minimum number of colors needed to fg-color G is called the fg-chromatic index 

! 
Xfg(G) of G. Several upper bounds on Xfg have been known [24,25]. 

1.2 D e f i n i t i o n s  

In this paper we deal with so-called multigraphs which may have multiple edges 
but have no selfloops. A graph in which at most one edge joins any pair of 
vertices is called a simple graph. G = (V, E)  denotes a graph with vertex set V 
and edge set E.  We denote the degree of vertex v by d(G, v) or simply by d(v), 
and the maximum degree of G by A(G) = maxvew d(v). An edge joining vertices 
v and w is denoted by vw. E(vw) is the set of multiple edges joining vertices v 
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and w, and p(vw) is the cardinality of the set E(vw), that  is p(vw) = IE(vw)l. 
We write H _ G if H is a subgraph of G. V(H) denotes the set of vertices of 
H, and E(H) denotes the set of edges of H. We use [xJ for the largest integer 
not greater than x, and Ix] for the smallest integer not smaller than x. 

A bipartite graph G = (1/1,1/2, E) is a graph whose vertex set can be parti- 
tioned into two sets 1/1 and 1/2 so that e C I/1 x 1/2 for each edge e E E. 

The class of k-trees is defined recursively as follows: 
(a) A complete graph with k vertices is a k-tree. 
(b) If G = (V,E) is a k-tree and k vertices v l ,v2 , . . .v~ induce a complete 

subgraph of G, then G' = (V U {w},EU {wv~]l < i < k}) is a k-tree where 
w is a new vertex not contained in G. 

(c) All k-trees can be formed with rules (a) and (b). 
A graph is a partial k-tree if it is a subgraph of a k-tree. Thus partial k-trees are 
simple graphs. 

A planar graph is a simple graph which can be embedded in the plane so that  
no two edges intersect geometrically except at a vertex to which they are both 
incident. 

The genus g(G) of a simple graph G is the minimum number of handles 
which must be added to a sphere so that G can be embedded on the resulting 
surface. Of cource, g(G) = 0 if and only if G is planar. 

Let s be a positive integer. A simple graph G is s-degenerate if the vertices 
of G can be ordered vl,v2,...,v,~ so that d(vi,G~) < s for each i, 1 < i < n, 
where Go = G and G~ = G -  {vl ,v2, '" ,vi-1}.  That is, G is s-degenerate 
if and only if G can be reduced to the trivial (or degenerate) graph K1 by the 
successive removal of vertices having degree at most s. Obviously a partial k-tree 
is k-degenerate, and a planar graph is 5-degenerate. 

The arboricity of a simple graph G, denoted by a(G), is the minimum number 
of edge-disjoint forests into which G can be decomposed. 

The thickness of a simple graph G, denoted by O(G), is the minimum number 
of planar subgraphs whose union is G. 

2 E d g e - c o l o r i n g  

2.1 Edge-co lo r ings  of  m u l t i g r a p h s  

Every bipartite multigraph G can be edge-colored with A(G) colors, that is 
X' (G) < A(G) [20]. On the other hand, clearly X' (G) > A(G). Therefore X' (G) -- 
A(G). One can easily prove the inequality X' (G) < A(G) above using a technique 
of "switching an alternating path." The proof immediately yields an algorithm 
to edge-color a bipartite graph G with A(G) colors in time O(mn). There exists 
a more efficient algorithm which, based on the divide and conquer, edge-colors 
a bipartite multigraph in time O(m log m) [8]. 

Vizing [32] obtained the following upper bound on the chromatic index of 
multigraphs: 

x' (G) <_ max {d(w) +p(vw)}. 
v,wCV 
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On the other hand, Shannon [30] proved that the following upper bound holds: 

Shannon's proof immediately yields an algorithm to edge-color a multigraph G 
with [-~z~(a)J colors in time O(m(A(a) + e)). 

There is another upper bound on the chromatic index of multigraphs [2]: 

where 
[E(H)I l(G) = max 

-,G,,v(-)I>, 1 ~ 1  

at most [ ] ~ J  edges of [E(H)[ edges in subgraph H can be colored Clearly 

with the same color. Therefore l(G) is a lower bound on x'(G): x'(G) >_ l(G). 
Furthermore the following better upper bounds are known [14, 17, 27]: 

x'(G) <_ ma~x { l(G), [ 7A(1) + 4 J } , 

x'(G) <_max{l(G),[9A(1)+6]} and 

x'(G) <_ max {I(G), L 1011A(---G)+8J}. 

An Mgorithm using colors no more than Vizing's upper bound has the ap- 
proximation ratio 2 since 

max {d(w) + p(vw)} < 2x'(G). 
v,wEV 

The algorithm using colors no more than Shannon's upper bound has the ap- 
proximation ratio 3/2 since 

Furthermore Nishizeki and Kashiwagi's algorithm using colors no more than 
maxg(a), [(llZ~ + S)/10J } has the asymptotic approximation ratio 1.1 since 

�9 
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Table 1. Sequential algorithms. 

Classes of graphs Time Colors Refs. 

Simple graph 
Multigraph 
Bipartite multigraph 
Series-parallel multigraph 
PartiM k-tree 
Planar graph ('4 _ 9) 
Planar graph (,4 > 19) 
Genus g > 1 ('4 _> 2[(5 + ~ / 2 J  
Genus g ~ 1 ('4 > r(9 + ~ ) 2 / 8 ]  
Degeneracy s ('4 > 2s) 
Degeneracy s (A _> [(s + 2)2/2] - 1) 
Arborieity a (,4 ___ 4a - 2) 
Arboricity a ('4 _> [(a + 2)2/2] - 1) 
Thickness 0 ('4 _> 120 - 2) 
Thickness 0 ('4 _> [(30 + 2)2/2] - 1) 

O ( r n ~  A + 1 [12] 
0(.~('4 + ~)) 1.1x' + o.s [27] 
O(m log m) A [8] 
O(m log m) X' [42] 

t 

O(n) n [36] 
O(nlogn) ,4 [6] 
o(n) ,4 [7] 
O(n 2) "4 [39] 
O(nlogn) ,4 [39] 
O(n 2) "4 [39] 
O(nlogn) "4 [39] 
O(zt 2 ) "4 [39] 
O (n log n) "4 [39] 
o(~ ~) "4 [39] 
O(n log n) "4 [39] 

Table 2. NC parallel algorithms. 

Classes of graphs Parallel time Operations Colors Refs. 

Bipartite multigraph 
Series-parallel multigraph 
Partial k-tree 
Planar graph (A > 9) 
Planar graph (A > 19) 
Genus g > 1 A > [(9 + 48gyr~-TT)2/8] 
Degeneracy s (A > [(s + 2)2/2] -- 1) 
Arboricity a (A ___ [(a + 2)2/2] -- 1) 
Thickness 0 (A >__ [(30 + 2)~/2] -- 1) 

O(log 3 n) o(.~) "4 [21] 
O(log n) O(nA) n' [43] 

t 

O(log n) O(n) X [37] 
O(log 3 n) O(nlog 3n) A [6] 
O(log2 n) O(nlog2n) ,4 [7] 
O(log 3 n) O(nlog 3n) A [39] 
O(log 3 n) O(nlog 3 n) A [39] 
O(log 3 n) O(nlog 3 n) A [39] 
O(log 3n) O(nlog 3 n) A [39] 

On the other hand, Goldberg [14] posed a conjecture that for every odd 
integer k > 5 

x' (a) <_ m a x { / ( a ) ,  kA(G) +(_k 
L k-1-3)1} 

Furthermore Goldberg [14] and Seymour [28] posed a conjecture that every 
multigraph G satisfies 

x ' ( a )  _< max{l(a) ,  A(G) + 1}. 

Especially for series-parallel multigraph G it is known [22,29] that 
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x' (a) = max{l(a), n(a)},  

and that there exists an algorithm to decide X' (G) in linear time and find an 
edge-coloring of G with X' (G) colors in time O(mlog m) [42,43]. 

2.2 Edge-colorings of simple graphs 

Vizing [32] proved that every simple graph G can be edge-colored with A(G) + 1 
colors, that is, 

X' (G) < A(G) + 1. 

Since X' (G) > A(G), every simple graph G can be edge-colored with either A(G) 
or A(G) + 1 colors. His proof depends on a technique of "shifting a fan." The 
proof immediately yields an O(mn) time algorithm to edge-color a simple graph 
G with A(G) + 1 colors. There exist more efficient edge-coloring algorithms for 
simple graphs. The most efficient one takes time O ( m ~ )  [12]. 

The following results are known for planar graphs G. If 2 < A(G) < 5 then 
X' (G) = A(G) or A(G) + 1. If A(G) > 8 then X' (G) = A(G). It is open whether 
there exists a planar graph G with 6 < A(G) < 7 such that X' (G) = A(G) + 1. 
For the case A(G) > 8 there is an O(n 2) time algorithm for edge-coloring a 
planar graph G with A(G) colors [31]. Furthermore for the case A(G) _> 9 there 
is a more efficient algorithm of time-complexity O(n log n) [6]. 

There are efficient algorithms to edge-color various classes of graphs G with 
x'(G) colors if A(G) is large. These sequential algorithms together with others 
are listed in Table 1, and NC parallel algorithms in Table 2. It has not been 
known whether there is an NC parallel algorithm to edge-color any simple graph 
G with A(G) + 1 colors [19]. 

3 f - c o l o r i n g  

The vertex-capacity f is any function from the vertex set V to the natural num- 
bers. An f-coloring of a graph G is a coloring of the edges of G such that each 
vertex v has at most f(v) edges colored with the same color. The minimum num- 
ber of colors needed to f-color G is called the f-chromatic index of G, and is 
denoted by X'f(G). Fig. 2 depicts an f-coloring with four colors, and X'f(G) = 4 
since there exists a vertex v such that f(v) = 1 and d(v) = 4. Hakimi and Kariv 
obtained the following upper bound on x/(G): 

[ d(v) + p(vw) ] 
~'S(O) < m s  

This upper bound is a generalization of Vizing's bound for the ordinary edge- 
coloring because an ordinary edge-coloring is a special case of an f-coloring in 
which f(v) = 1 for every vertex v E V. Their proof uses an extended version of 
switching an alternating path and shifting a fan. The proof immediately yields 
an O(m 2) time algorithm to find an f-coloring of G with a number of colors not 
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exceeding the upper bound. Furthermore the time complexity was improved to 
O ( m ~ )  [26]. The following upper bound on X'f(G) is also known [23]: 

where 

and 

X'I(G)<_max{II(G),[9A/(GS)+6J} 

lf(G) = max 
HGG, IV(H)I>>_3 

As(G ) = max 

Note that Is(G ) and As(G ) are trivial lower bounds on X'I(G). Furthermore 
an algorithm is known to find an ]-coloring of G with a number of colors not 
exceeding the upper bound above in time O(m 2) [23]. This algorithm has the 
asymptotic approximation ratio 9/8. 

Since both the ordinary edge-coloring problem and the ]-coloring problem are 
NP-complete, the theory of NP-completeness immediately implies that there 
exists a polynomial-time reduction of the ]-coloring problem to the ordinary 
edge-coloring problem plausibly through SAT. Recently a very simple reduction 
of the ]-coloring problem tO the ordinary edge-coloring problem was found [41]. 

4 /g-coloring 

The edge-capacity g is any function from the pairs of vertices V • V to the natural 
numbers. An fg-coloring of G is a coloring of the edges of G such that at most 
f(v) edges incident to v are colored with the same color for each vertex v E V 
and at most g(vw) multiple edges joining v and w are colored with the same 
color for each pair of vertices v and w. The minimum number of colors needed 
to fg-color G is called the fg-chromatic index of G, and is denoted by Xsg(G). 
The fg-chromatic index of G in Fig. 3 is four. The following upper bound on 

t 

Xs~(G ) has been known [25]: 

where 

and 

xs~(g)<_ Asg(c , 

A.(G) = max{as(a), A.(a)}, 

AS(a) = max[d(v)] 

Ag(a) = max [p(vw)] 
w e ~  | g ( w ) / "  
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I 

Note that Af(G), Ag(G ) and AIg(G) are trivial lower bounds on Xyg(G). This 
upper bound is a generalization of Shannon's bound [30] for the ordinary edge- 
coloring. An O(m 2) time algorithm to fg-color G with a number of colors not 
exceeding [~Afg(G)J has been known [25]. Since 

[3AS (G)] < - 2  

this algorithm has the approximation ratio 3/2. 
One may assume without loss of generality that  g(vw) < max{f  (v), f(w)} 

for any pair of vertices v , w  E V.  Then the following upper bound holds for the 
! 

fg-chromatic index X/~(G) [24]: 

Xyg(G) < max + . 

Although one may assume that  g(vw) < min{f(v),  f(w)}, we assume as above 
since the bound would increase when g decreases. This upper bound is a gener- 
alization of Vizing's upper bound [32] for the ordinary edge-coloring and Hakimi 
and Kariv's [15] upper bound for the f-coloring. The proof for this upper bound 
is constructive, and immediately yields an O(m 2) time algorithm to fg-color a 
given graph with a number of colors not exceeding the upper bound above. Since 

' 

max + < 2X/g(G), 

this algorithm has the approximation ratio 2. 
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