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Abs t r ac t .  Given a graph G = (V, E), four distinct vertices ul,uz,uz,u4 E 
V and four natural numbers nl, n2, us, n~ such that ~ = 1  n~ = [VI, we 
wish to find a partition V1,�89 V3, V4 of the vertex set V such that ui E ~ ,  
I~[ = n~ and ~ induces a connected subgraph of G for each i, 1 < i < 4. 
In this paper we give a simple linear-time algorithm to find such a par- 
tition if G is a 4-connected planar graph and ul, u2, us, u4 are located 
on the same face of a plane embedding of G. Our algorithm is based 
on a "4-canonical decomposition" of G, which is a generahzation of an 
st-numbering and a "canonical 4-ordering" known in the area of graph 
drawings. 

1 I n t r o d u c t i o n  

Given a graph G = (V, E),  k distinct vertices ul,  u : , . . . ,  uk E V and k natural  
k 

numbers nl ,  n~ , . - - ,  nk such tha t  ~i=1  ni = [VI, we wish to find a parti t ion 
V 1 , V 2 , . . . , V k  of the vertex set V such tha t  u~ E ~ ,  IV~I = n~, and V~ induces 
a connected subgraph of G for each i, 1 < i < k. Such a part i t ion is called 
a k-partit ion of G. A 4-partition of a graph G is depicted in Fig. 1, where the 
edges of four connected subgraphs are drawn by solid lines and the remaining 
edges of G are drawn by dotted lines. The problem of finding a k-partit ion of a 
given graph often appears in the load distribution among different power plants 
and the fault-tolerant routing of communication networks [WK94, WTK95]. 
The problem is NP-hard in general [DF85], and hence it is very unlikely that  
there is a polynomial-t ime algorithm to solve the problem. Although not every 
graph has a k-partition, Gy6ri and Lovs independently proved that  every 
k-connected graph has a k-parti t ion for any ul,  u2, . . . ,  uk and nl,  n2, " ", nk 
[G78, L77]. However, their proofs do not yield any polynomial-t ime algorithm 
for actually finding a k-parti t ion of a k-connected graph. For the case k = 2 and 
3, the following algorithms have been known: 

(i) a linear-time algorithm to find a biparti t ion of a biconnected graph [STN90, 
STNMUg0]; 
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(ii) an algorithm to find a tripartition of a triconnected graph in O(n 2) time, 
where n is the number of vertices of a graph [STNMUg0]; and 

(iii) a linear-time algorithm to find a tripartition of a triconnected planar graph 
[JSN94]. 

On the other hand, polynomial-time algorithms have not been known for the 
case k > 4 . * *  

U3 . . . . .  U4 

:::" 17 2nl= 86 

173 7 

n 4 =  10 

u 2 . . . . . . . . . . . . . . .  
u 1 

Fig. 1. A 4-partitioning of a 4-connected plane graph G. 

In this paper we give a linear-time algorithm to find a 4-partition of a 4- 
connected plane graph G if ul ,u2, u3, u4 are located on the same face of G, 
as illustrated in Fig. 1. We first bipartition the 4-connected graph G into two 
biconnected graphs having about nl + n~ and n 3 -1- n 4 vertices respectively, we 
then bipartition each of them to two connected graphs, and, by adjusting the 
numbers of vertices in the resulting four graphs, we finally obtain a required 
4-partition of G. To bipartition G into two biconnected graphs, we will newly 
define and use a "4-canonical decomposition" of G, which is a generalization 
of an st-numbering and a "canonical 4-ordering" known in the area of graph 
drawings [E79, K94, KH94]. 

**A polynomial-time algorithm for any k is claimed in [MM94], but is not correct 
[G96]. 
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The remainder of the paper is organized as follows. In Section 2 we introduce 
our notations and give a linear-time algorithm to find a 4-canonical decom- 
position of a 4-connected planar graph. In Section 3 we present a linear-time 
algorithm to find a 4-partition of a 4-connected planar graph. Finally we put 
our discussions in Section 4. 

2 4-Canonical Decomposition 

In this section we introduce some definitions and prove that  every 4-connected 
plane graph has a 4-canonical decomposition and it can be found in linear time. 

Let G = (V, E)  be a connected simple graph with vertex set V and edge set 
E. Throughout  the paper we denote by n the number of vertices in G, tha t  is, 
n = IVI. An edge joining vertices u and v is denoted by (u, v). The degree of a 
vertex v is the number of neighbors of v in G. The connectivity ~(G) of a graph 
G is the minimum number of vertices whose removal results in a disconnected 
graph or a single-vertex graph K1. G is called a k-connected graph if ~(G) > k. 
We call a vertex of G a cut vertex if its removal results in a disconnected or 
single-vertex graph. For W C_ V, we denote by G - W the graph obtained from 
G by deleting all vertices in W and all edges incident to them. 

A graph is planar if it can be embedded in the plane so tha t  no two edges 
intersect geometrically except at a vertex to which they are both incident. A 
plane graph is a planar graph with a fixed embedding. The contour C(G) of a 
biconnected plane graph G is the clockwise (simple) cycle on the outer face. We 
write C(G) = w l ,w2 , . " , W h , W l  if the vertices Wl,W2," ' ,Wh on C(G) appear  
in this order. A chord in a biconnected plane graph G is a path  P in G satisfying 
the following ( a ) -  (d): 

(a) P connects two vertices wp and Wq, p < q, on C(G); 
(b) P does not pass through any vertices on C(G) except the ends wp and wq; 
(c) P lies on an inner face; and 
(d) there is no edge e on C(G) such that  P together with e forms an inner face. 

The chord is said to be minimal if none of Wp+l,Wp+2,'",wq-1 is an end of 
a chord. Thus the definition of a minimal chord depends on which vertex is 
considered as the start ing vertex wl of C(G). Let {vl, v~ , . . - ,  vp-1, vp} be a set 
of three or more consecutive vertices on C(G) such that  the degrees of the first 
vertex vl and the last one vp are at least three and the degrees of all intermediate 
vertices v2, va, " - ,  vp-1 are two. Then we call the set {v2, v3, " " ,  vp-1} an outer 
chain of G. 

For a cycle C in a plane graph G, we denote by I(C, G) the subgraph of G 
inside C, that  is, the plane subgraph of G induced by the set of vertices inside 
(or on) the cycle C. Clearly I(C, G) is biconnected if G is biconnected. We have 
the following lemma. 

L e m m a l .  Assume that G is a 4-connected plane graph and that a cycle C = 
Wl, W2, " " ,  Wh, Wl in G is not a face of G. Let wp and wq be the two ends of any 
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minimal chord in I ( C , G )  i f  I (C ,G)  has a chord, and let w v = w~ and wq = wh 
if i ( c , a )  has no chord. Then the following (a) (b) hole: 

(a) I f W  = {wv+l ,wp+2 , . . . ,Wq_ l }  is an outer chain of I (C , G) ,  then I ( C , G ) -  
W is biconneeted. 

(b) Otherwise, there is a set W '  = {wv, , w p , + l , . . . , w q , }  of one or more consec- 
utive vertices on C such that 
(i) p < p' <_ q' < q, and 

(ii) none of the vertices in W ~ except the first vertex w v, and the last one 
Wq, has a neighbor in the proper outside of C. 

Moreover, for  any of sets W '  satisfying (i) and Oi), I(C, G) - W '  is bicon- 
nected. 

Proof. (a) Assume that  W = {wp+l, wv+2, . . . ,  wq_~} is an outer chain of I(C, G). 
Then I(C, G) has a minimal chord with ends w v and wq. Suppose for a contra- 
diction that  I(C,  G) - W is not biconnected. Then I(C, G) - W has a cut vertex 
v. Since G is 4-connected, v must be on C. However, the chord above passes 
through v, and v r wv, wq, contradicting to the condition (b) of the definition 
of a chord. 

(b) Assume that  W is not an outer chain of I(C, G). Then q > p + 2  since G is 
4-connected. Obviously any singleton set W '  = {w v, }, p < p' < q, satisfies (i) and 
(ii). Therefore it suffices to prove that  I(C, G) - W '  is biconnected for any of sets 
W '  satisfying (i) and (ii). Suppose for a contradiction that  I(C,  G) - W '  is not 
biconnected for a set W '  satisfying (i) and (ii). Then I(C, G ) - W '  has a cut vertex 
v. If v is not on C, then the removal of v and one or two appropriate vertices in 
W' disconnects G and hence G would not be 4-connected, a contradiction. If v 
is on C, then either G would not be 4-connected or a chord with ends wp and 
Wq would not be minimal, a contradiction. [] 

Let G = (V,E) be a connected graph, and let (s , t)  E E. We say that  an 
ordering ~r = vl,  v 2 , ' . . ,  v~ of the vertices of G is an st-numbering of G if the 
following conditions are satisfied: 

(stl) vl = s and v~ = t; and 
(st2) each v~ E V - iv1, v~} has two neighbors vp and vq such that  p < i < q. 

Not every connected graph has an st-numbering, but  the following lemma holds. 

L e m m a  2. [E79] Let G be a biconnected graph, and let (s, t) be any edge of a .  
Then G has an st-numbering ~r = v l , v 2 , . . . , v n  such that vl = s and vn -- t, 
and 7r can be found in linear time. 

A bipartition of a biconnected graph can be found by an st-numbering as 
follows [STNMU90, STN90]. Let G = (V, E) be a biconnected graph, let u~, u2 E 
V be two designated distinct vertices, and let nl,n2 be two natural numbers such 
that  nl + nu = n. We may assume without loss of generality that  (ul, u2) E E; 
otherwise, consider as G the graph obtained from G by adding a new edge 
(Ul,U2). Since G is biconnected, by Lemma 2 G has an st-numbering Vl(= 
ul) ,  v~ , . . . ,  v~(= u2). Clearly the following fact holds: 
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(st3) both t h e s u b g r a p h s o f G i n d u c e d b y { v l , v a , . . . , v i }  and {v i+ l ,v i+2 ," ' ,v~}  
are connected for each i, I _< i < n. 

Thus, choosing i = nl,  one can find a required bipartition of G in linear time. 
Generalizing an st-numbering in a sense, we define a "4-canonical decompo- 

sition" of a 4-connected plane graph G and in the succeeding section we give an 
algorithm to find a 4-partition of G by using the "4-canonical decomposition." 
We now give the definition of a 4-canonical decomposition. 

Assume that  G = (V,E) is a 4-connected plane graph with four desig- 
nated distinct vertices Ul,?t2,u3,u 4 on the same face of G. We may assume 
that  ul,u2,u3, u4 lie on the contour C(G) of G, since, for any face F of G, 
we can re-embed G so that  F becomes the outer face. We may furthermore 
assume that  the four vertices ul, u2, ua,u4 appear on C(G) of G in this order. 
Moreover we may assume that  (ut, u2), (u3, u4) E E; otherwise, consider as G 
the new graph obtained from G by adding edges (Ul, u2) and (u3, u4). For a set 
W1, W2 , ' " ,  Wi of pairwise disjoint subsets of V, we denote by Gi the subgraph 
of G induced by 14/1 U W2 U . . .  U Wi, and by Gi the subgraph of G induced by 
V - W 1 U W 2 U . . . U W i ,  that is, Gi = G - W I U W 2 U . . . U W i .  We say that  
a partit ion H = W1, W2,. . . ,  W~ of V is a l-canonical decomposition of G if the 
following three conditions (c01)-(c03) are satisfied: 

(col) W1 is the set of vertices on the inner face containing edge (Ul, u2) , and WI 
is the set of vertices on the inner face containing edge (ua, u4); 

(co2) for each i, 1 <_ i < l, both G~ and Gi are bieonnected; and 
@03) for each i, 1 < i < l, either Wi consists of exactty o_.___ne vertex on both C(Gi) 

and C(GI_I) or Wi is an outer chain of Gi or Gi-1. 

Fig. 2 illustrates the condition (co3); (a) for the case [l/V,-] = 1, and (b) and 
(c) for the cases wi is an outer chain of Gi and Gi-1 respectively, where Gi and 
Gi-1 are indicated by different shading and the vertices in Wi are drawn in black 
dots. 

The 4-canonical decomposition defined for 4-connected plane graphs is a 
generalization of the "canonical 4-ordering" defined for internally triangulated 
4-connected plane graphs [K94, KH94]. 

We have the following two lemmas. 

L e m m a 3 .  Let G = (V,E) be a 4-connected plane graph with four designated 
distinct vertices Ul, u2, u3, u4 appearing on C(G) in this order. Then G has a 
l-canonical decomposition H = W1, W2 , " ' ,  W1. Furthermore H can be found in 
linear time. 

Proof. Let W1 be the set of vertices on the inner face containing edge (ul, u2). 
Clearly G1 is biconnected, and u3, U4 ~ W1. We now claim that  G1 = G - W1 is 
also biconnected. Let C be the contour of the bieonnected plane graph obtained 
from G by deleting edge (ul, u2). Clearly I(C, G) has neither a chord nor an 
outer chain; otherwise, G would not be 4-connected. Let cycle C start  with u4, 
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u 3 
u4 u 4 u 4 =wl 

' ili!iii' iiiiiiiii',iiiiii 

u ~ ~ u a 
u2 u 1 u 1 u 2 

(a) (b) (c) 

Fig. 2. Illustration of the condition (co3). 

then the set W~ of vertices are consecutive on C and satisfies (i) and (ii) in 
Lemma l(b).  Therefore G1 = [(C, G) - W1 is biconnected. 

Assume that  we have chosen Wt, W 2 , . . . . W i - t ,  i _> 2, such that  the condi- 
tions (co2) and (co3) hold for each j ,  1 _< j _< i -  1, and that  u3, u4 ~ W1 U W2 U 
�9 .. U Wi- i .  Then we show tha t  there is a set Wi (C_ V - W1 U W2 t3 . .-  t3 W~-I) 
such tha t  

(1) Gi is biconnected, 

(2) either us, u4 ~ Wi or us, u4 E W/; 
(3) if u3, u4 r W~, then G~ is bieonnected and Wi satisfies the condition @o3); 

and 

(4) ifu3, u4 E Wi, then 1 = i, that  is, V = W 1 U W 2 U . . . U W z ,  and Wl is the set 
of vertices on the inner face containing edge (u3, u4). 

There are the following two cases. 

C a s e  1: graph Gi-1 = G - W1 U W~ U . . .  U Wi-1 is a cycle. 
In this case Gi-1 is the inner face of G containing edge (u3, u4). We set l = i 

and Wl = V - W 1 U W 2 U . .  "UWi-i .  Then u3, u4 E Wl, and V = W1UW2U..  .UW1. 
Since Gi = G, Gi is biconnected. 
C a s e  2: otherwise. 

Let C(GI_I )  = wl, w2 , . . . ,  Wh, Wl be the contour of Gi-1 with the start ing 
vertex wt = u4. Then Gi-1 = I (C (Gi _ I ) ,G) .  If  Gi-1 has a chord then let wp 
and wq be the two ends of a minimal chord, otherwise let wp = wl = u4 and 
wq = Wh = ua. Let W = {Wp+l,Wp+2, . . . ,Wq_l} .  We now have the following 
three subcases. 
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S u b c a s e  2(a):  W is an outer chain of Gi-1. 
In this subcase we set Wi = W. Then u3, U4 ~ Wi, and Wi satisfies (co3). 

Since G is 4-connected, each vertex in Wi has at least two neighbors in the 
biconnected graph Gi-1 induced by W1 u W2 u . . .  u Wi-1. Therefore the graph 
Gi induced by (W1 U W2 U . . .  U Wi-1) U Wi is biconnected. By Lemma l(a), 
Gi = Gi-1 - Wi is biconnected too. 
S u b c a s e  2(b) :  W is not an outer chain of Gi-1, but a vertex wr in W has two 
or more neighbors in Gi_l. 

In this subcase we set Wi = {wr}. Then u3, u4 ~ Wi, and w~ lies on both 
C(Gi) and C(Gi-1) and hence Wi satisfies (co3). Since wr has two or more 
neighbors in Gi-1, Gi is biconnected. Since Wi = {w~) satisfies (i) and (ii) in 
Lemma l(b),  Gi = Gi-1 - Wi is biconnected. 
S u b c a s e  2(c):  otherwise. 

In this subcase, W is not an outer chain of Gi-1, and every vertex in W has 
at most one neighbor in Gi-1. Since G is 4-connected, W contains two vertices 
wp, and wq, such that  

(1) p < p ' < q ' < q ,  
(2) each of wp, and Wq, has exactly one neighbor in Gi-1 and these neighbors 

are different from each other, and 
(3) none of %'+1, wV+2 , " ' ,  wq,-1 has a neighbor in Gi-1. 

We now set Wi = {wp,, wp,+l , . . . ,  wq,}. Clearly u3, u4 ~ Wi, Gi is biconnected, 
and W~ is an outer chain of Gi and hence satisfies (co3). Since Wi satisfies (i) 
and (ii) in Lemma l(b),  Gi = G~-t - Wi is biconnected. 

Thus we have proved that  there exists a 4-canonical decomposition. 
One can implement an algorithm for finding a 4-canonical decomposition, 

based on the proof. It maintains a data-structure to keep the outer chains and 
minimal chords of Gi. The algorithm traverses every face at most a constant 
times, and runs in linear time. [] 

L e m m a 4 .  Let W1, W2, . . . , Wl be a .{-canonical decomposition of a 4-connected 
plane graph G. Then the following (a) and (b) hold for any i, 1 < i < l: 

(a) If  Wi is an outer chain of Gi as illustrated in Fig. 2(b), then, for any W~ C_ 
Wi, Gi-1 - W ~  is biconnected. 

(b) If  Wi is an outer chain of Gi- t  as illustrated in Fig. 2(e), then, for any 
W[ C_ Wi, G~ - W~ is biconnected. 

Proof. We give only a proof for (b) since the proof for (a) is similar. Let W~ be an 
outer chain of Gi-1. The graph Gi-1 is biconnected. Since G is 4-connected, each 
vertex in Wi has at least two neighbors in Gi-1. Therefore the graph Gi - W~ 
induced by W1 U W2 U . . .  u Wi-1 U (Wi - W{) is also biconnected. [] 

3 4 -Par t i t i on  of  4 - C o n n e c t e d  P l a n e  G r a p h  

In this section we give our algorithm to find a 4-partition of a 4-connected 
plane graph G. Assume that  the four designated distinct vertices uz, u2, u3, u4 
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appear on C(G) in this order and nl ,  n2, n3, n4 are natural  numbers such that  

E4--1 ni = n. 

A l g o r i t h m  Four-Partit ion 

Find a 4-canonical decomposition H = W1 W2 . . . ,  Wl of G; 
Let i be the minimum integer such that  ~ } = l  IwJl > nl + n2; 

i 
Let r-= ~ j = l  [ W j [ -  (nl + n2), that  is, r is the excess of the number of vertices 
in W1 U W2 U . . .  U Wi over nl + n2; 
There are the following two cases (1) r = 0, and (2) r > 1; 
Case  1: r = 0 .  
{In this case, Gi contains nl + n2 vertices, and Gi contains n3 + n4 vertices.} 
Find a bipartition V1, V2 of the biconnected graph Gi such that  Ul E 1/"1, u2 E V2, 
IV1[ = nl,  [V2[ = n2, and both W 1 and Y 2 induce connected subgraphs; 
Find a bipartition V3, V 4 of the biconnected graph Gi such that  u3 E V3, u4 E V4, 
IV3[ = n3, IV4[ = n4, and both V3 and V4 induce connected subgraphs; 
Return V1, V2, V3, V4 as a 4-partition of G. 
Case  2: r >  1. 
{ In this case, Gi contains nl + n2 + r vertices, and G'-'~. = Gi-1 - Wi contains 
n3 + n4 - r vertices. Since r > 1, [Wi[ > 2 and hence Wi is an outer chain of 
either Gi-1 or Gi.} 
Let C(Gi._I) = wl, w2, ..., Wh, wl where Wl = u4; 
Assume that  Wi = {Wp+l,Wp+2,... ,wq-1} is an outer chain of Gi-1 as illus- 
t rated in Fig 2(c), otherwise, interchange the roles of ul, u2 and u3, u4; 
Find an st-numbering vl ,v2 , . . . , v~3+~4_ ~ of Gi such that  s = vl = u4 and 
t ~-  V n 3 + n 4 _  r : ~t3; 

Let wp = vv, and Wq = vq,; 
Assume that  p~ < q', otherwise, interchange the roles of u3 and u4; 
There are the following three subcases (a) n4 < p', (b) p' + r < n4, and (c) 
pl < n4 < p f + r ;  
S u b e a s e  2(a) :  n4 < p'. 
{In this subcase, the last r vertices in the outer chain W~ are added to ~ as the 
deficient r vertices.} 

Let V4 = {v~, v 2 , . ' . ,  v=4} be the first n4 vertices in the st-numbering of ~'i; 
Let V~ = {v~r v ~ + 2 , - . . ,  v ~ + ~ _ ~ }  be the remaining n3 - r vertices in G'~i; 
{By the fact (st3) of an st-numbering both V4 and VJ induce connected graphs.} 
Let W[ = {wq_ 1, w q - 2 , . . . ,  Wq-r } be the set of the last r vertices in I/V~; 
Let V3 = V~ U W!' 

{Since wq-t is adjacent to Wq in V~, Vz induces a connected graph of n3 vertices.} 
Let GI~ = Gi - W!" $ ,  

{ G12 is biconnected by Lemma 4(b), and has nl + n2 vertices.} 
Find a bipartition V~,V2 of G~2 such that  Ul E V1, u2 E V2, IV1[ = nl,  IV2[ = n2, 
and both V1 and V2 induce connected subgraphs; 
Return V1, V2, V~, V4 as a 4-partition of G. 
S u b c a s e  2(b) :  p' + r < n4. 

{In this subcase, the first r vertices in W~ are added to G-~' as the deficient r 
vertices.} 
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Let V~ = {Vl, v~ , . . . ,  v~4_~ } be the set of the first n4 - r  vertices of Gi, where 

%=reEVe; 
Let Va = {vn~-r+l, vn4-~+2," ", vn4+~3-~} be the remaining n3 vertices of Gi; 
Let W[ = {Wp+l, wp+2, . . . ,  wp+~} be the set of first r vertices in Wi; 
Let V4 = V4 u W'; 
{V3 and V4 induce connected graphs having n3 and n4 vertices, respectively.} 
Let G12 = Gi - W ~." 
Find a bipartition V1, V2 of the biconnected graph GI~ such that  ul E V1, 
u2 E V2, IVll = nl,  ]V2I = n2, and both V 1 and V2 induce connected sub- 
graphs; 
Return V1, V2, V3, V4 as a 4-partition of G. 
S u b c a s e  2(c):  pl < n4 < pl -4- r. 
{In this subcase, the first n4 - p '  and the last r - (n4 - p ' )  vertices in Wi are 
added to G--~. as the deficient r vertices.} 
Let W~4 = {Wv+l, wp+2 , . " ,  wp+~_p,} be the set of the first n4 - p' vertices in 
w~; 
Let W[3 = {Wq_l, wq_~, . . . ,  wq_(~_~+p,)} be the set of the last r -  (n4 - p ' )  
vertices in Wi; 
{Since 1141/41 + [W/31 = r < IW~l, W[,, n W" 3 = r and IW[4 U W~31 -- r}; 
Let V4 = {Vl, v2, �9 �9 ., vp, } U W'i4," 
Let V3 = {vp,+l, vp,+~, �9 �9 v ~ + ~ _ ~ }  U W'ia," 
{ IV4] = n4, IV3] = n3, wp = vp, E V4, wq e 1/3, and hence both V4 and V3 induce 
connected graphs.} 

V~/. Let G12 = Gi - W~4 U i 3 ,  
Find a bipartition V1,V2 of the biconnected graph GI~ such that  ut E V1, 
u2 E 1/2, ]Vii = nl ,  IV21 = n2, and both V1 and V2 induce connected sub- 
graphs; 
Return V1, V2, 1/3, V4 as a 4-partition of G. 

[::] 

Clearly the running time of the above algorithm is O(n). Thus we have the 
following theorem. 

T h e o r e m  5. A 4-partition of any 4-connected plane graph G can be found in 
linear time if the four vertices Ul, u2, u3, u4 are located on the same face of G. 

One can easily derive the following fact from Lemma 3 or directly from the 
canonical 4-ordering by Kant and He [K94, KH94]. 

Fac t  6. For any given internally triangulated 4-connected plane graph G = (V, E), 
two distinct edges (Ul, u2) and (u3, u4) on C(G), and two numbers nl, n2 such 
that nl + n2 = n and nl ,n2 > 3, there exists a partition V1, V2 of V such 
that ul ,u2 e V1, u3, u4 e V2, IVll = nl,IV21 = n2, and both V1 and V2 induce 
biconnected subgraphs of G. 
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Pro@ By Lemma 3, G has a 4-canonical decomposition H = W1, W 2 , ' " ,  Wt. 
Since G is internally triangulated, each Wi, i = 2, 3, . . . ,  l - 1 ,  is not an outer chain 
of Gi or Gi-1 and hence each Wi consists of exactly one vertex on both C(Gi) 
and C(Gi-1) .  Thus all Wi's except W1 and W1 are singleton sets, each of W1 
and W1 contains exactly three vertices, and hence 1 = n - 4 .  For j ,  1 < j < l, the 
vertex in Wj has four or more neighbors, two of which are in W1 U W2 U.. �9 U Wj _ 1 
and other two of which are in Wj+t W Wj+2 .-.  W W1. Thus, for j ,  1 < j < l, both 
V 1 = W 1 W W 2 U . . .  U Wj and 172 = V -  (W1 W W2 W-.. U Wj) induce bieonnected 
graphs. Hence, it suffices to choose j = nl - 2. [] 

4 C o n c l u s i o n  

In this paper we give a linear-time algorithm to find a 4-partition of a 4-connected 
plane graph G in the case four vertices Ul, u2, u3, u4 are located on the same face 
of G. It is remained as future work to find efficient algorithms for finding a k- 
partit ion of a k-connected (not always planar) graph for k >__ 4. 
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