A Linear-Time Algorithm for Four-Partitioning Four-Connected Planar Graphs

Shin-ichi Nakano, Md. Saidur Rahman and Takao Nishizeki *
Graduate School of Information Sciences
Tohoku University, Sendai 980-77, Japan.

Abstract

Given a graph $G=(V, E)$, four distinct vertices $u_{1}, u_{2}, u_{3}, u_{4} \in$ V and four natural numbers $n_{1}, n_{2}, n_{3}, n_{4}$ such that $\sum_{i=1}^{4} n_{i}=|V|$, we wish to find a partition $V_{1}, V_{2}, V_{3}, V_{4}$ of the vertex set V such that $u_{i} \in V_{i}$, $\left|V_{i}\right|=n_{i}$ and V_{i} induces a connected subgraph of G for each $i, 1 \leq i \leq 4$. In this paper we give a simple linear-time algorithm to find such a partition if G is a 4 -connected planar graph and $u_{1}, u_{2}, u_{3}, u_{4}$ are located on the same face of a plane embedding of G. Our algorithm is based on a "4-canonical decomposition" of G, which is a generalization of an st-numbering and a "canonical 4-ordering" known in the area of graph drawings.

1 Introduction

Given a graph $G=(V, E), k$ distinct vertices $u_{1}, u_{2}, \cdots, u_{k} \in V$ and k natural numbers $n_{1}, n_{2}, \cdots, n_{k}$ such that $\sum_{i=1}^{k} n_{i}=|V|$, we wish to find a partition $V_{1}, V_{2}, \cdots, V_{k}$ of the vertex set V such that $u_{i} \in V_{i},\left|V_{i}\right|=n_{i}$, and V_{i} induces a connected subgraph of G for each $i, 1 \leq i \leq k$. Such a partition is called a k-partition of G. A 4-partition of a graph G is depicted in Fig. 1, where the edges of four connected subgraphs are drawn by solid lines and the remaining edges of G are drawn by dotted lines. The problem of finding a k-partition of a given graph often appears in the load distribution among different power plants and the fault-tolerant routing of communication networks [WK94, WTK95]. The problem is NP-hard in general [DF85], and hence it is very unlikely that there is a polynomial-time algorithm to solve the problem. Although not every graph has a k-partition, Györi and Lovász independently proved that every k-connected graph has a k-partition for any $u_{1}, u_{2}, \cdots, u_{k}$ and $n_{1}, n_{2}, \cdots, n_{k}$ [G78, L77]. However, their proofs do not yield any polynomial-time algorithm for actually finding a k-partition of a k-connected graph. For the case $k=2$ and 3 , the following algorithms have been known:
(i) a linear-time algorithm to find a bipartition of a biconnected graph [STN90, STNMU90];

[^0](ii) an algorithm to find a tripartition of a triconnected graph in $O\left(n^{2}\right)$ time, where n is the number of vertices of a graph [STNMU90]; and
(iii) a linear-time algorithm to find a tripartition of a triconnected planar graph [JSN94].

On the other hand, polynomial-time algorithms have not been known for the case $k \geq 4$. **

Fig. 1. A 4-partitioning of a 4-connected plane graph G.

In this paper we give a linear-time algorithm to find a 4 -partition of a 4connected plane graph G if $u_{1}, u_{2}, u_{3}, u_{4}$ are located on the same face of G, as illustrated in Fig. 1. We first bipartition the 4 -connected graph G into two biconnected graphs having about $n_{1}+n_{2}$ and $n_{3}+n_{4}$ vertices respectively, we then bipartition each of them to two connected graphs, and, by adjusting the numbers of vertices in the resulting four graphs, we finally obtain a required 4-partition of G. To bipartition G into two biconnected graphs, we will newly define and use a "4-canonical decomposition" of G, which is a generalization of an st-numbering and a "canonical 4-ordering" known in the area of graph drawings [E79, K94, KH94].

[^1]The remainder of the paper is organized as follows. In Section 2 we introduce our notations and give a linear-time algorithm to find a 4-canonical decomposition of a 4-connected planar graph. In Section 3 we present a linear-time algorithm to find a 4-partition of a 4 -connected planar graph. Finally we put our discussions in Section 4.

2 4-Canonical Decomposition

In this section we introduce some definitions and prove that every 4-connected plane graph has a 4 -canonical decomposition and it can be found in linear time.

Let $G=(V, E)$ be a connected simple graph with vertex set V and edge set E. Throughout the paper we denote by n the number of vertices in G, that is, $n=|V|$. An edge joining vertices u and v is denoted by (u, v). The degree of a vertex v is the number of neighbors of v in G. The connectivity $\kappa(G)$ of a graph G is the minimum number of vertices whose removal results in a disconnected graph or a single-vertex graph $K_{1} . G$ is called a k-connected graph if $\kappa(G) \geq k$. We call a vertex of G a cut vertex if its removal results in a disconnected or single-vertex graph. For $W \subseteq V$, we denote by $G-W$ the graph obtained from G by deleting all vertices in W and all edges incident to them.

A graph is planar if it can be embedded in the plane so that no two edges intersect geometrically except at a vertex to which they are both incident. A plane graph is a planar graph with a fixed embedding. The contour $C(G)$ of a biconnected plane graph G is the clockwise (simple) cycle on the outer face. We write $C(G)=w_{1}, w_{2}, \cdots, w_{h}, w_{1}$ if the vertices $w_{1}, w_{2}, \cdots, w_{h}$ on $C(G)$ appear in this order. A chord in a biconnected plane graph G is a path P in G satisfying the following (a) - (d):
(a) P connects two vertices w_{p} and $w_{q}, p<q$, on $C(G)$;
(b) P does not pass through any vertices on $C(G)$ except the ends w_{p} and w_{q};
(c) P lies on an inner face; and
(d) there is no edge e on $C(G)$ such that P together with e forms an inner face.

The chord is said to be minimal if none of $w_{p+1}, w_{p+2}, \cdots, w_{q-1}$ is an end of a chord. Thus the definition of a minimal chord depends on which vertex is considered as the starting vertex w_{1} of $C(G)$. Let $\left\{v_{1}, v_{2}, \cdots, v_{p-1}, v_{p}\right\}$ be a set of three or more consecutive vertices on $C(G)$ such that the degrees of the first vertex v_{1} and the last one v_{p} are at least three and the degrees of all intermediate vertices $v_{2}, v_{3}, \cdots, v_{p-1}$ are two. Then we call the set $\left\{v_{2}, v_{3}, \cdots, v_{p-1}\right\}$ an outer chain of G.

For a cycle C in a plane graph G, we denote by $I(C, G)$ the subgraph of G inside C, that is, the plane subgraph of G induced by the set of vertices inside (or on) the cycle C. Clearly $I(C, G)$ is biconnected if G is biconnected. We have the following lemma.

Lemma 1. Assume that G is a 4-connected plane graph and that a cycle $C=$ $w_{1}, w_{2}, \cdots, w_{h}, w_{1}$ in G is not a face of G. Let w_{p} and w_{q} be the two ends of any
minimal chord in $I(C, G)$ if $I(C, G)$ has a chord, and let $w_{p}=w_{1}$ and $w_{q}=w_{h}$ if $I(C, G)$ has no chord. Then the following (a) and (b) hold:
(a) If $W=\left\{w_{p+1}, w_{p+2}, \cdots, w_{q-1}\right\}$ is an outer chain of $I(C, G)$, then $I(C, G)-$ W is biconnected.
(b) Otherwise, there is a set $W^{\prime}=\left\{w_{p t}, w_{p^{\prime}+1}, \cdots, w_{q^{\prime}}\right\}$ of one or more consecutive vertices on C such that
(i) $p<p^{\prime} \leq q^{\prime}<q$, and
(ii) none of the vertices in W^{\prime} except the first vertex $w_{p^{\prime}}$ and the last one w_{q} has a neighbor in the proper outside of C.
Moreover, for any of sets W^{\prime} satisfying (i) and (ii), $I(C, G)-W^{\prime}$ is biconnected.

Proof. (a) Assume that $W=\left\{w_{p+1}, w_{p+2}, \cdots, w_{q-1}\right\}$ is an outer chain of $I(C, G)$. Then $I(C, G)$ has a minimal chord with ends w_{p} and w_{q}. Suppose for a contradiction that $I(C, G)-W$ is not biconnected. Then $I(C, G)-W$ has a cut vertex v. Since G is 4 -connected, v must be on C. However, the chord above passes through v, and $v \neq w_{p}, w_{q}$, contradicting to the condition (b) of the definition of a chord.
(b) Assume that W is not an outer chain of $I(C, G)$. Then $q \geq p+2$ since G is 4-connected. Obviously any singleton set $W^{\prime}=\left\{w_{p^{\prime}}\right\}, p<p^{\prime}<q$, satisfies (i) and (ii). Therefore it suffices to prove that $I(C, G)-W^{\prime}$ is biconnected for any of sets W^{\prime} satisfying (i) and (ii). Suppose for a contradiction that $I(C, G)-W^{\prime}$ is not biconnected for a set W^{\prime} satisfying (i) and (ii). Then $I(C, G)-W^{\prime}$ has a cut vertex v. If v is not on C, then the removal of v and one or two appropriate vertices in W^{\prime} disconnects G and hence G would not be 4 -connected, a contradiction. If v is on C, then either G would not be 4 -connected or a chord with ends w_{p} and w_{q} would not be minimal, a contradiction.

Let $G=(V, E)$ be a connected graph, and let $(s, t) \in E$. We say that an ordering $\pi=v_{1}, v_{2}, \cdots, v_{n}$ of the vertices of G is an st-numbering of G if the following conditions are satisfied:
(st1) $v_{1}=s$ and $v_{n}=t$; and
(st2) each $v_{i} \in V-\left\{v_{1}, v_{n}\right\}$ has two neighbors v_{p} and v_{q} such that $p<i<q$.
Not every connected graph has an st-numbering, but the following lemma holds.
Lemma 2. [E79] Let G be a biconnected graph, and let (s, t) be any edge of G. Then G has an st-numbering $\pi=v_{1}, v_{2}, \cdots, v_{n}$ such that $v_{1}=s$ and $v_{n}=t$, and π can be found in linear time.

A bipartition of a biconnected graph can be found by an st-numbering as follows [STNMU90, STN90]. Let $G=(V, E)$ be a biconnected graph, let $u_{1}, u_{2} \in$ V be two designated distinct vertices, and let n_{1}, n_{2} be two natural numbers such that $n_{1}+n_{2}=n$. We may assume without loss of generality that $\left(u_{1}, u_{2}\right) \in E$; otherwise, consider as G the graph obtained from G by adding a new edge $\left(u_{1}, u_{2}\right)$. Since G is biconnected, by Lemma $2 G$ has an st-numbering $v_{1}(=$ $\left.u_{1}\right), v_{2}, \cdots, v_{n}\left(=u_{2}\right)$. Clearly the following fact holds:
(st3) both the subgraphs of G induced by $\left\{v_{1}, v_{2}, \cdots, v_{i}\right\}$ and $\left\{v_{i+1}, v_{i+2}, \cdots, v_{n}\right\}$ are connected for each $i, 1 \leq i<n$.

Thus, choosing $i=n_{1}$, one can find a required bipartition of G in linear time.
Generalizing an $s t$-numbering in a sense, we define a " 4 -canonical decomposition" of a 4-connected plane graph G and in the succeeding section we give an algorithm to find a 4-partition of G by using the " 4 -canonical decomposition." We now give the definition of a 4-canonical decomposition.

Assume that $G=(V, E)$ is a 4 -connected plane graph with four designated distinct vertices $u_{1}, u_{2}, u_{3}, u_{4}$ on the same face of G. We may assume that $u_{1}, u_{2}, u_{3}, u_{4}$ lie on the contour $C(G)$ of G, since, for any face F of G, we can re-embed G so that F becomes the outer face. We may furthermore assume that the four vertices $u_{1}, u_{2}, u_{3}, u_{4}$ appear on $C(G)$ of G in this order. Moreover we may assume that $\left(u_{1}, u_{2}\right),\left(u_{3}, u_{4}\right) \in E$; otherwise, consider as G the new graph obtained from G by adding edges $\left(u_{1}, u_{2}\right)$ and $\left(u_{3}, u_{4}\right)$. For a set $W_{1}, W_{2}, \cdots, W_{i}$ of pairwise disjoint subsets of V, we denote by G_{i} the subgraph of G induced by $W_{1} \cup W_{2} \cup \cdots \cup W_{i}$, and by $\overline{G_{i}}$ the subgraph of G induced by $V-W_{1} \cup W_{2} \cup \cdots \cup W_{i}$, that is, $\overline{G_{i}}=G-W_{1} \cup W_{2} \cup \cdots \cup W_{i}$. We say that a partition $\Pi=W_{1}, W_{2}, \cdots, W_{I}$ of V is a 4 -canonical decomposition of G if the following three conditions (co1)-(co3) are satisfied:
(col) W_{1} is the set of vertices on the inner face containing edge $\left(u_{1}, u_{2}\right)$, and W_{l} is the set of vertices on the inner face containing edge $\left(u_{3}, u_{4}\right)$;
(co2) for each $i, 1 \leq i<l$, both G_{i} and $\overline{G_{i}}$ are biconnected; and
(co3) for each $i, 1<i<l$, either W_{i} consists of exactly one vertex on both $C\left(G_{i}\right)$ and $C\left(\overline{G_{i-1}}\right)$ or W_{i} is an outer chain of G_{i} or $\overline{G_{i-1}}$.

Fig. 2 illustrates the condition (co3); (a) for the case $\left|W_{i}\right|=1$, and (b) and (c) for the cases w_{i} is an outer chain of G_{i} and $\overline{G_{i-1}}$ respectively, where G_{i} and $\overline{G_{i-1}}$ are indicated by different shading and the vertices in W_{i} are drawn in black dots.

The 4-canonical decomposition defined for 4-connected plane graphs is a generalization of the "canonical 4-ordering" defined for internally triangulated 4-connected plane graphs [K94, KH94].

We have the following two lemmas.
Lemma 3. Let $G=(V, E)$ be a 4-connected plane graph with four designated distinct vertices $u_{1}, u_{2}, u_{3}, u_{4}$ appearing on $C(G)$ in this order. Then G has a 4-canonical decomposition $\Pi=W_{1}, W_{2}, \cdots, W_{l}$. Furthermore Π can be found in linear time.

Proof. Let W_{1} be the set of vertices on the inner face containing edge (u_{1}, u_{2}). Clearly G_{1} is biconnected, and $u_{3}, u_{4} \notin W_{1}$. We now claim that $\overline{G_{1}}=G-W_{1}$ is also biconnected. Let C be the contour of the biconnected plane graph obtained from G by deleting edge $\left(u_{1}, u_{2}\right)$. Clearly $I(C, G)$ has neither a chord nor an outer chain; otherwise, G would not be 4 -connected. Let cycle C start with u_{4},

Fig. 2. Illustration of the condition (co3).
then the set W_{1} of vertices are consecutive on C and satisfies (i) and (ii) in Lemma 1(b). Therefore $\overline{G_{1}}=I(C, G)-W_{1}$ is biconnected.

Assume that we have chosen $W_{1}, W_{2}, \cdots . W_{i-1}, i \geq 2$, such that the conditions (co2) and (co3) hold for each $j, 1 \leq j \leq i-1$, and that $u_{3}, u_{4} \notin W_{1} \cup W_{2} \cup$ $\cdots \cup W_{i-1}$. Then we show that there is a set $W_{i}\left(\subseteq V-W_{1} \cup W_{2} \cup \cdots \cup W_{i-1}\right)$ such that
(1) G_{i} is biconnected,
(2) either $u_{3}, u_{4} \notin W_{i}$ or $u_{3}, u_{4} \in W_{i}$;
(3) if $u_{3}, u_{4} \notin W_{i}$, then $\overline{G_{i}}$ is biconnected and W_{i} satisfies the condition (co3); and
(4) if $u_{3}, u_{4} \in W_{i}$, then $l=i$, that is, $V=W_{1} \cup W_{2} \cup \cdots \cup W_{l}$, and W_{l} is the set of vertices on the inner face containing edge $\left(u_{3}, u_{4}\right)$.

There are the following two cases.
Case 1: graph $\overline{G_{i-1}}=G-W_{1} \cup W_{2} \cup \cdots \cup W_{i-1}$ is a cycle.
In this case $\overline{G_{i-1}}$ is the inner face of G containing edge $\left(u_{3}, u_{4}\right)$. We set $l=i$ and $W_{l}=V-W_{1} \cup W_{2} \cup \cdots \cup W_{i-1}$. Then $u_{3}, u_{4} \in W_{l}$, and $V=W_{1} \cup W_{2} \cup \cdots \cup W_{l}$. Since $G_{i}=G, G_{i}$ is biconnected.
Case 2: otherwise.
Let $C\left(\overline{G_{i-1}}\right)=w_{1}, w_{2}, \cdots, w_{h}, w_{1}$ be the contour of $\overline{G_{i-1}}$ with the starting vertex $w_{1}=u_{4}$. Then $\overline{G_{i-1}}=I\left(C\left(\overline{G_{i-1}}\right), G\right)$. If $\overline{G_{i-1}}$ has a chord then let w_{p} and w_{q} be the two ends of a minimal chord, otherwise let $w_{p}=w_{1}=u_{4}$ and $w_{q}=w_{h}=u_{3}$. Let $W=\left\{w_{p+1}, w_{p+2}, \cdots, w_{q-1}\right\}$. We now have the following three subcases.

Subcase 2(a): W is an outer chain of $\overline{G_{i-1}}$.
In this subcase we set $W_{i}=W$. Then $u_{3}, u_{4} \notin W_{i}$, and W_{i} satisfies (co3). Since G is 4-connected, each vertex in W_{i} has at least two neighbors in the biconnected graph G_{i-1} induced by $W_{1} \cup W_{2} \cup \cdots \cup W_{i-1}$. Therefore the graph G_{i} induced by $\left(W_{1} \cup W_{2} \cup \cdots \cup W_{i-1}\right) \cup W_{i}$ is biconnected. By Lemma 1(a), $\overline{G_{i}}=\overline{G_{i-1}}-W_{i}$ is biconnected too.
Subcase 2(b): W is not an outer chain of $\overline{G_{i-1}}$, but a vertex w_{r} in W has two or more neighbors in G_{i-1}.

In this subcase we set $W_{i}=\left\{w_{r}\right\}$. Then $u_{3}, u_{4} \notin W_{i}$, and w_{r} lies on both $C\left(G_{i}\right)$ and $C\left(\overline{G_{i-1}}\right)$ and hence W_{i} satisfies (co3). Since w_{r} has two or more neighbors in G_{i-1}, G_{i} is biconnected. Since $W_{i}=\left\{w_{r}\right\}$ satisfies (i) and (ii) in Lemma 1(b), $\overline{G_{i}}=\overline{G_{i-1}}-W_{i}$ is biconnected.
Subcase 2(c): otherwise.
In this subcase, W is not an outer chain of $\overline{G_{i-1}}$, and every vertex in W has at most one neighbor in G_{i-1}. Since G is 4 connected, W contains two vertices $w_{p^{\prime}}$ and $w_{q^{\prime}}$ such that
(1) $p<p^{\prime}<q^{\prime}<q$,
(2) each of $w_{p^{\prime}}$ and $w_{q^{\prime}}$ has exactly one neighbor in G_{i-1} and these neighbors are different from each other, and
(3) none of $w_{p^{\prime}+1}, w_{p^{\prime}+2}, \cdots, w_{q^{\prime}-1}$ has a neighbor in G_{i-1}.

We now set $W_{i}=\left\{w_{p^{\prime}}, w_{p^{\prime}+1}, \cdots, w_{q^{\prime}}\right\}$. Clearly $u_{3}, u_{4} \notin W_{i}, G_{i}$ is biconnected, and W_{i} is an outer chain of G_{i} and hence satisfies (co3). Since W_{i} satisfies (i) and (ii) in Lemma 1(b), $\overline{G_{i}}=\overline{G_{i-1}}-W_{i}$ is biconnected.

Thus we have proved that there exists a 4-canonical decomposition.
One can implement an algorithm for finding a 4-canonical decomposition, based on the proof. It maintains a data-structure to keep the outer chains and minimal chords of $\overline{G_{i}}$. The algorithm traverses every face at most a constant times, and runs in linear time.

Lemma 4. Let $W_{1}, W_{2}, \cdots, W_{l}$ be a 4-canonical decomposition of a 4-connected plane graph G. Then the following (a) and (b) hold for any $i, 1<i<l$:
(a) If W_{i} is an outer chain of G_{i} as illustrated in Fig. 2(b), then, for any $W_{i}^{\prime} \subseteq$ $W_{i}, \overline{G_{i-1}}-W_{i}^{\prime}$ is biconnected.
(b) If W_{i} is an outer chain of $\overline{G_{i-1}}$ as illustrated in Fig. 2(c), then, for any $W_{i}^{\prime} \subseteq W_{i}, G_{i}-W_{i}^{\prime}$ is biconnected.

Proof. We give only a proof for (b) since the proof for (a) is similar. Let W_{i} be an outer chain of $\overline{G_{i-1}}$. The graph G_{i-1} is biconnected. Since G is 4-connected, each vertex in W_{i} has at least two neighbors in G_{i-1}. Therefore the graph $G_{i}-W_{i}^{\prime}$ induced by $W_{1} \cup W_{2} \cup \cdots \cup W_{i-1} \cup\left(W_{i}-W_{i}^{\prime}\right)$ is also biconnected.

3 4-Partition of 4-Connected Plane Graph

In this section we give our algorithm to find a 4 -partition of a 4 -connected plane graph G. Assume that the four designated distinct vertices $u_{1}, u_{2}, u_{3}, u_{4}$
appear on $C(G)$ in this order and $n_{1}, n_{2}, n_{3}, n_{4}$ are natural numbers such that $\sum_{i=1}^{4} n_{i}=n$.

Algorithm Four-Partition

Find a 4-canonical decomposition $\Pi=W_{1}, W_{2}, \cdots, W_{I}$ of G;
Let i be the minimum integer such that $\sum_{j=1}^{i}\left|W_{j}\right| \geq n_{1}+n_{2}$;
Let $r=\sum_{j=1}^{i}\left|W_{j}\right|-\left(n_{1}+n_{2}\right)$, that is, r is the excess of the number of vertices in $W_{1} \cup W_{2} \cup \cdots \cup W_{i}$ over $n_{1}+n_{2}$;
There are the following two cases (1) $r=0$, and (2) $r \geq 1$;
Case 1: $r=0$.
\{In this case, G_{i} contains $n_{1}+n_{2}$ vertices, and $\overline{G_{i}}$ contains $n_{3}+n_{4}$ vertices. $\}$
Find a bipartition V_{1}, V_{2} of the biconnected graph G_{i} such that $u_{1} \in V_{1}, u_{2} \in V_{2}$, $\left|V_{1}\right|=n_{1},\left|V_{2}\right|=n_{2}$, and both V_{1} and V_{2} induce connected subgraphs;
Find a bipartition V_{3}, V_{4} of the biconnected graph $\overline{G_{i}}$ such that $u_{3} \in V_{3}, u_{4} \in V_{4}$, $\left|V_{3}\right|=n_{3},\left|V_{4}\right|=n_{4}$, and both V_{3} and V_{4} induce connected subgraphs;
Return $V_{1}, V_{2}, V_{3}, V_{4}$ as a 4-partition of G.
Case 2: $r \geq 1$.
$\left\{\right.$ In this case, G_{i} contains $n_{1}+n_{2}+r$ vertices, and $\overline{G_{i}}=\overline{G_{i-1}}-W_{i}$ contains $n_{3}+n_{4}-r$ vertices. Since $r \geq 1,\left|W_{i}\right| \geq 2$ and hence W_{i} is an outer chain of either $\overline{G_{i-1}}$ or $\left.G_{i}.\right\}$
Let $C\left(\overline{G_{i-1}}\right)=w_{1}, w_{2}, \ldots, w_{h}, w_{1}$ where $w_{1}=u_{4}$;
Assume that $W_{i}=\left\{w_{p+1}, w_{p+2}, \cdots, w_{q-1}\right\}$ is an outer chain of $\overline{G_{i-1}}$ as illustrated in Fig 2(c), otherwise, interchange the roles of u_{1}, u_{2} and u_{3}, u_{4};
Find an $s t$-numbering $v_{1}, v_{2}, \cdots, v_{n_{3}+n_{4}-r}$ of $\overline{G_{i}}$ such that $s=v_{1}=u_{4}$ and $t=v_{n_{3}+n_{4}-r}=u_{3}$;
Let $w_{p}=v_{p^{\prime}}$ and $w_{q}=v_{q^{\prime}}$;
Assume that $p^{\prime}<q^{\prime}$, otherwise, interchange the roles of u_{3} and u_{4};
There are the following three subcases (a) $n_{4} \leq p^{\prime}$, (b) $p^{\prime}+r \leq n_{4}$, and (c) $p^{\prime}<n_{4}<p^{\prime}+r ;$
Subcase 2(a): $n_{4} \leq p^{\prime}$.
\{In this subcase, the last r vertices in the outer chain W_{i} are added to $\overline{G_{i}}$ as the deficient r vertices. $\}$
Let $V_{4}=\left\{v_{1}, v_{2}, \cdots, v_{n_{4}}\right\}$ be the first n_{4} vertices in the st-numbering of $\overline{G_{i}}$;
Let $V_{3}^{\prime}=\left\{v_{n_{4}+1}, v_{n_{4}+2}, \cdots, v_{n_{4}+n_{3}-r}\right\}$ be the remaining $n_{3}-r$ vertices in $\overline{G_{i}}$;
\{By the fact (st3) of an st-numbering both V_{4} and V_{3}^{\prime} induce connected graphs.\}
Let $W_{i}^{\prime}=\left\{w_{q-1}, w_{q-2}, \cdots, w_{q-r}\right\}$ be the set of the last r vertices in W_{i};
Let $V_{3}=V_{3}^{\prime} \cup W_{i}^{\prime}$;
\{Since w_{q-1} is adjacent to w_{q} in V_{3}^{\prime}, V_{3} induces a connected graph of n_{3} vertices.\} Let $G_{12}=G_{i}-W_{i}^{\prime}$;
\{ G_{12} is biconnected by Lemma 4(b), and has $n_{1}+n_{2}$ vertices. $\}$
Find a bipartition V_{1}, V_{2} of G_{12} such that $u_{1} \in V_{1}, u_{2} \in V_{2},\left|V_{1}\right|=n_{1},\left|V_{2}\right|=n_{2}$, and both V_{1} and V_{2} induce connected subgraphs;
Return $V_{1}, V_{2}, V_{3}, V_{4}$ as a 4-partition of G.
Subcase 2(b): $p^{\prime}+r \leq n_{4}$.
\{In this subcase, the first r vertices in W_{i} are added to $\overline{G_{i}}$ as the deficient r vertices.\}

Let $V_{4}^{\prime}=\left\{v_{1}, v_{2}, \cdots, v_{n_{4}-r}\right\}$ be the set of the first $n_{4}-r$ vertices of $\overline{G_{i}}$, where $w_{p}=v_{p^{\prime}} \in V_{4}^{\prime}$;
Let $V_{3}=\left\{v_{n_{4}-r+1}, v_{n_{4}-r+2}, \cdots, v_{n_{4}+n_{3}-r}\right\}$ be the remaining n_{3} vertices of $\overline{G_{i}}$;
Let $W_{i}^{\prime}=\left\{w_{p+1}, w_{p+2}, \cdots, w_{p+r}\right\}$ be the set of first r vertices in W_{i};
Let $V_{4}=V_{4}^{\prime} \cup W_{i}^{\prime}$;
$\left\{V_{3}\right.$ and V_{4} induce connected graphs having n_{3} and n_{4} vertices, respectively. $\}$
Let $G_{12}=G_{i}-W_{i}^{\prime}$;
Find a bipartition V_{1}, V_{2} of the biconnected graph G_{12} such that $u_{1} \in V_{1}$, $u_{2} \in V_{2},\left|V_{1}\right|=n_{1},\left|V_{2}\right|=n_{2}$, and both V_{1} and V_{2} induce connected subgraphs;
Return $V_{1}, V_{2}, V_{3}, V_{4}$ as a 4-partition of G.
Subcase 2(c): $p^{\prime}<n_{4}<p^{\prime}+r$.
$\left\{\right.$ In this subcase, the first $n_{4}-p^{\prime}$ and the last $r-\left(n_{4}-p^{\prime}\right)$ vertices in W_{i} are added to $\overline{G_{i}}$ as the deficient r vertices. $\}$
Let $W_{i 4}^{\prime}=\left\{w_{p+1}, w_{p+2}, \cdots, w_{p+n_{4}-p^{\prime}}\right\}$ be the set of the first $n_{4}-p^{\prime}$ vertices in W_{i};
Let $W_{i 3}^{\prime}=\left\{w_{q-1}, w_{q-2}, \cdots, w_{q-\left(r-n_{4}+p^{\prime}\right)}\right\}$ be the set of the last $r-\left(n_{4}-p^{\prime}\right)$ vertices in W_{i};
$\left\{\right.$ Since $\left|W_{i 4}^{\prime}\right|+\left|W_{i 3}^{\prime}\right|=r \leq\left|W_{i}\right|, W_{i 4}^{\prime} \cap W_{i 3}^{\prime}=\phi$ and $\left.\left|W_{i 4}^{\prime} \cup W_{i 3}^{\prime}\right|=r\right\} ;$
Let $V_{4}=\left\{v_{1}, v_{2}, \cdots, v_{p^{\prime}}\right\} \cup W_{i 4}^{\prime}$;
Let $V_{3}=\left\{v_{p^{\prime}+1}, v_{p^{\prime}+2}, \cdots, v_{n_{4}+n_{3}-r}\right\} \cup W_{i 3}^{\prime}$;
$\left\{\left|V_{4}\right|=n_{4},\left|V_{3}\right|=n_{3}, w_{p}=v_{p^{\prime}} \in V_{4}, w_{q} \in V_{3}\right.$, and hence both V_{4} and V_{3} induce connected graphs.\}
Let $G_{12}=G_{i}-W_{i 4}^{\prime} \cup W_{i 3}^{\prime}$;
Find a bipartition V_{1}, V_{2} of the biconnected graph G_{12} such that $u_{1} \in V_{1}$, $u_{2} \in V_{2},\left|V_{1}\right|=n_{1},\left|V_{2}\right|=n_{2}$, and both V_{1} and V_{2} induce connected subgraphs;
Return $V_{1}, V_{2}, V_{3}, V_{4}$ as a 4-partition of G.

Clearly the running time of the above algorithm is $O(n)$. Thus we have the following theorem.

Theorem 5. A 4-partition of any 4-connected plane graph G can be found in linear time if the four vertices $u_{1}, u_{2}, u_{3}, u_{4}$ are located on the same face of G.

One can easily derive the following fact from Lemma 3 or directly from the canonical 4-ordering by Kant and He [K94, KH94].

Fact 6. For any given internally triangulated 4-connected plane graph $G=(V, E)$, two distinct edges $\left(u_{1}, u_{2}\right)$ and $\left(u_{3}, u_{4}\right)$ on $C(G)$, and two numbers n_{1}, n_{2} such that $n_{1}+n_{2}=n$ and $n_{1}, n_{2} \geq 3$, there exists a partition V_{1}, V_{2} of V such that $u_{1}, u_{2} \in V_{1}, u_{3}, u_{4} \in V_{2},\left|\bar{V}_{1}\right|=n_{1},\left|V_{2}\right|=n_{2}$, and both V_{1} and V_{2} induce biconnected subgraphs of G.

Proof. By Lemma 3, G has a 4-canonical decomposition $\Pi=W_{1}, W_{2}, \cdots, W_{l}$. Since G is internally triangulated, each $W_{i}, i=2,3, \cdots, l-1$, is not an outer chain of G_{i} or $\overline{G_{i-1}}$ and hence each W_{i} consists of exactly one vertex on both $C\left(G_{i}\right)$ and $C\left(\overline{G_{i-1}}\right)$. Thus all W_{i} 's except W_{1} and W_{l} are singleton sets, each of W_{1} and W_{l} contains exactly three vertices, and hence $l=n-4$. For $j, 1<j<l$, the vertex in W_{j} has four or more neighbors, two of which are in $W_{1} \cup W_{2} \cup \cdots \cup W_{j-1}$ and other two of which are in $W_{j+1} \cup W_{j+2} \cdots \cup W_{l}$. Thus, for $j, 1<j<l$, both $V_{1}=W_{1} \cup W_{2} \cup \cdots \cup W_{j}$ and $V_{2}=V-\left(W_{1} \cup W_{2} \cup \cdots \cup W_{j}\right)$ induce biconnected graphs. Hence, it suffices to choose $j=n_{1}-2$.

4 Conclusion

In this paper we give a linear-time algorithm to find a 4-partition of a 4-connected plane graph G in the case four vertices $u_{1}, u_{2}, u_{3}, u_{4}$ are located on the same face of G. It is remained as future work to find efficient algorithms for finding a k partition of a k-connected (not always planar) graph for $k \geq 4$.

References

[DF85] M.E. Dyer and A.M. Frieze, On the complexity of partitioning graphs into connected subgraphs, Discrete Applied Mathematics, 10 (1985) 139-153.
[E79] S. Even, Graph Algorithms, Computer Science Press, Potomac (1979).
[G78] E. Györi, On division of connected subgraphs, Proc. 5th Hungarian Combinational Coll., (1978) 485-494.
[G96] E. Györi, Private communication, March 21, 1996.
[JSN94] L. Jou, H. Suzuki and T. Nishizeki, A linear algorithm for finding a nonseparating ear decomposition of triconnected planar graphs, Tech. Rep. of Information Processing Society of Japan, AL40-3 (1994).
[K94] G. Kant, A more compact visibility representation, Proc. of the 19th International Workshop on Graph Theoretic Concepts in Computer Science (WG'93), LNCS 790 (1994) 411-424.
[KH94] G. Kant and X. He, Two algorithms for finding rectangular duals of planar graphs, Proc. of the 19th International Workshop on Graph Theoretic Concepts in Computer Science (WG'93), LNCS 790 (1994) 396-410.
[L77] L. Lovász, A homology theory for spanning trees of a graph, Acta Math. Acad. Sci. Hunger, 30 (1977) 241-251.
[MM94] J. Ma and S. H. Ma, An $O\left(k^{2} n^{2}\right)$ algorithm to find a k-partition in a k connected graph, J. of Computer Sci. \& Technol., 9, 1 (1994) 86-91.
[STN90] H. Suzuki, N. Takahashi and T. Nishizeki, A linear algorithm for bipartition of biconnected graphs, Information Processing Letters 33, 5 (1990) 227-232.
[STNMU90] H. Suzuki, N. Takahashi, T. Nishizeki, H. Miyano and S. Ueno, An algorithm for tripartitioning 3-connected graphs, Journal of Information Processing Society of Japan 31, 5 (1990) 584-592.
[WK94] K. Wada and K. Kawaguchi, Efficient algorithms for triconnected graphs and 3-edge-connected graphs, Proc. of the 19th International Workshop on Graph Theoretic Concepts in Computer Science (WG'93), LNCS 790 (1994) 132-143.
[WTK95] K. Wada, A. Takaki and K. Kawaguchi, Efficient algorithms for a mixed k-partition problem of graphs without specifying bases, Proc. of the 20 th International Workshop on Graph Theoretic Concepts in Computer Science (WG'94), LNCS 903 (1995) 319-330.

[^0]: * E-mail: nakano@ecei.tohoku.ac.jp, saidur@nishizeki.ecei.tohoku.ac.jp,
 nishi@ecei.tohoku.ac.jp

[^1]: ** A polynomial-time algorithm for any k is claimed in [MM94], but is not correct [G96].

