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Abstract. Given a graph G, a designated vertex r and a natural number
k, we wish to find k “independent” spanning trees of G rooted at r, that
is, k spanning trees such that, for any vertex v, the k paths connecting
r and v in the k trees are internally disjoint in G. In this paper we
give a linear-time algorithm to find four independent spanning trees in
a 4-connected planar graph rooted at any vertex.

1 Introduction

Given a graph G = (V, E), a designated vertex r ∈ V and a
natural number k, we wish to find k spanning trees T1, T2, · · · , Tk

of G such that, for any vertex v, the k paths connecting r and
v in T1, T2, · · · , Tk are internally disjoint in G, that is, any two of
them have no common intermediate vertices. Such k trees are cal-
led k independent spanning trees of G rooted at r. Four independent
spanning trees are drawn in Fig. 1 by thick lines. Independent span-
ning trees have applications to fault-tolerant protocols in networks
[BI96,DHSS84,IR88,OIBI96].

Given a graph G = (V, E) of n vertices and m edges, and a desig-
nated vertex r ∈ V , one can find two independent spanning trees of G
rooted at any vertex in linear time if G is biconnected [BTV96,IR88],
and find three independent spanning trees of G rooted at any vertex
in O(mn) and O(n2) time if G is triconnected [BTV96,CM88]. It is
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Fig. 1. Four independent spanning trees T1, T2, T3 and T4 of a graph
G rooted at r.
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conjectured that, for any k ≥ 1, every k-connected graph has k inde-
pendent spanning trees rooted at any vertex [KS92,ZI89]. Recently
Huck has proved that every 4-connected planar graph has four in-
dependent spanning trees rooted at any vertex [H94]. The proof in
[H94] yields an algorithm to actually find four independent spanning
trees, but it takes time O(n3).

In this paper we give a simple linear-time algorithm to find four
independent spanning trees of a 4-connected planar graph rooted
at any designated vertex. Our algorithm is based on a “4-canonical
decomposition” of a 4-connected planar graph [NRN97], which is a
generalization of an st-numbering [E79], a canonical ordering [CK93]
and a canonical 4-ordering [KH94].

The remainder of the paper is organized as follows. In Section 2
we introduce some definitions. In Section 3 we present our algorithm
to find four independent spanning trees. Finally we put conclusion
in Section 4.

2 Preliminaries

In this section we introduce some definitions.
Let G = (V, E) be a connected graph with vertex set V and edge

set E. Throughout the paper we denote by n the number of vertices
in G, and we always assume that n > 4. An edge joining vertices u
and v is denoted by (u, v). The degree of a vertex v in G, denoted by
d(v, G) or simply by d(v), is the number of neighbors of v in G. The
connectivity κ(G) of a graph G is the minimum number of vertices
whose removal results in a disconnected graph or a single-vertex
graph K1. A graph G is k-connected if κ(G) ≥ k. A path in a graph
is an ordered list of distinct vertices v1, v2, · · · , vl such that vi−1vi is
an edge for all i, 2 ≤ i ≤ l. We say that two paths having common
start and end vertices are internally disjoint if their intermediate
vertices are disjoint. We also say that a set of paths having common
start and end vertices are internally disjoint if every pair of paths in
the set are internally disjoint.

A graph is planar if it can be embedded in the plane so that
no two edges intersect geometrically except at a vertex to which
they are both incident. A plane graph is a planar graph with a fixed
embedding. The contour Co(G) of a biconnected plane graph G is
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the clockwise (simple) cycle on the outer face. We write Co(G) =
(w1, w2, · · · , wh) if the vertices w1, w2, · · · , wh on Co(G) appear in
this order.

3 Algorithm

In this section we give our algorithm to find four independent span-
ning trees of a 4-connected planar graph rooted at any designated
vertex.

Given a 4-connected planar graph G = (V, E) and a designated
vertex r ∈ V , we first find a planar embedding of G in which r is
located on Co(G). Let G

′ = G − {r} be the subgraph of the plane
graph G induced by V − {r}. In Fig. 2 (a) G is drawn by solid and
dotted lines, and G

′ by solid lines. Since G is 4-connected, d(r) ≥ 4.
We may assume that all the neighbors r1, r2, · · · , rd(r) of r in G appear
on Co(G

′) clockwise in this order. Let Co(G
′) = (w1, w2, · · · , wh),

r1 = w1, r2 = wa, r3 = wb and r4 = wc, where 1 < a < b < c ≤ d(r).
We add to G

′ two new vertices rb and rt, join rb with r1 and r2,
and join rt with r3, r4, · · · , rd(r). Let G

′′ be the resulting plane graph,
where vertices r1, rb, r2, r3, rt and rd(r) appear on Co(G

′′) clockwise
in this order. Fig. 2 (b) illustrates G

′′ .
Let Π = (W1, W2, · · · , Wm) be a partition of the vertex set V −

{r} of G
′ . We denote by Gk, 1 ≤ k ≤ m, the plane subgraph of G

′′ in-
duced by {rb} ⋃

W1
⋃

W2
⋃ · · · ⋃

Wk. We denote by Gk, 0 ≤ k ≤ m−
1, the plane subgraph of G

′′ induced by Wk+1
⋃

Wk+2
⋃ · · · ⋃

Wm
⋃{rt}.

We assume that if 1 ≤ k ≤ m and Wk = {u1, u2, · · · , ul} then vertices
u1, u2, · · · , ul consecutively appear on Co(Gk) clockwise in this order.
A partition Π = (W1, W2, · · · , Wm) of V −{r} is called a 4-canonical
decomposition of G

′ if the following three conditions (co1)–(co3) are
satisfied.

(co1)W1 = {wa, wa−1, · · · , w1} and Wm = {wb, wb+1, · · · , wc};
(co2) For each k, 1 ≤ k ≤ m−1, both Gk and Gk−1 are biconnected

(See Fig. 3.); and
(co3) For each k, 1 < k < m, one of the following three conditions

holds (See Fig. 3.):
(a) |Wk| ≥ 2, and each vertex u ∈ Wk satisfies d(u, Gk) = 2 and
d(u, Gk−1) ≥ 3;
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(b) |Wk| = 1, and the vertex u ∈ Wk satisfies d(u, Gk) ≥ 2 and
d(u, Gk−1) ≥ 2; and
(c) |Wk| ≥ 2, and each vertex u ∈ Wk satisfies d(u, Gk) ≥ 3 and
d(u,Gk−1) = 2.

Fig. 2 (b) illustrates a 4-canonical decomposition of G
′ = G−{r},

where G
′ are drawn in solid lines and each set Wi is indicated by an

oval drawn in a dotted line. A 4-canonical decomposition is a gene-
ralization of an “st-numbering” [E79], a “canonical decomposition”
[CK93] and a “canonical 4-ordering” [KH94]. Although the defini-
tion of a 4-canonical decomposition above is slightly different from
one in [NRN97], they are effectively equivalent each other.
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Fig. 2. (a) Four-connected plane graph G and (b) plane graph G
′′ .

We have the following lemma.

Lemma 1. Let G = (V, E) be a 4-connected plane graph, and let
r be a designated vertex on Co(G). Then G

′ = G − {r} has a 4-
canonical decomposition Π. Furthermore Π can be found in linear
time.

Proof. Similar to the proof of Lemma 3 in [NRN97]. Q.E .D.
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We need a few more definitions to describe our algorithm. For a
vertex v ∈ V −{r} we write N(v) = {v1, v2, · · · , vd(v)} if v1, v2, · · · , vd(v)

are the neighbors of vertex v in G
′′ and appear around v clockwise in

this order. To each vertex v ∈ V − {r} we assign four edges incident
to v in G

′′as the left hand lh(v), the right hand rh(v), the left leg
ll(v) and the right leg rl(v) as follows. We will show later that such
an assignment immediately yields four independent spanning trees
of G. Let v ∈ Wk for some k, 1 ≤ k ≤ m, then there are the following
three cases to consider.

Case 1: either (i) 1 < k < m and Wk satisfies Condition (a) of
(co3) or (ii) k = 1. (See Fig. 4.)
Let Wk = {u1, u2, · · · , ul}. Let u0 be the vertex on Co(Gk) pre-
ceding u1, and let ul+1 be the vertex on Co(Gk) succeeding ul.
For each ui ∈ Wk we define rl(ui) = (ui, ui+1), ll(ui) = (ui, ui−1),
lh(ui) = (ui, v1), and rh(ui) = (ui, vd(ui)−2) where we assume
N(ui) = {ui−1, v1, v2, · · · , vd(ui)−2, ui+1}.

Case 2: Wk satisfies Condition (b) of (co3). (See Fig. 5.)
Let Wk = {u}, let u

′ be the vertex on Co(Gk) preceding u,
and let u

′′ be the vertex on Co(Gk) succeeding u. Let N(u) =
{u

′
, v1, v2, · · · , vd(u)−1}, and let u

′′ = vx for some x, 3 ≤ x ≤
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d(u) − 1. Then rl(u) = (u, u
′′), ll(u) = (u, u

′), lh(u) = (u, v1),
and rh(u) = (u, vx−1).

Case 3: either (i) 1 < k < m and Wk satisfies Condition (c) of
(co3) or (ii) k = m. (See Fig. 6.)
Let Wk = {u1, u2, · · · , ul}. Let u0 be the vertex on Co(Gk−1)
succeeding u1, and let ul+1 be the vertex on Co(Gk−1) preceding
ul. For each ui ∈ Wk we define rl(ui) = (ui, v1), ll(ui) = (ui,
vd(ui)−2), lh(ui) = (ui, ui−1), and rh(ui) = (ui, ui+1) where we
assume N(ui) = {ui+1, v1, v2, · · · , vd(ui)−2, ui−1}.
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Fig. 4. Assignment for Case 1.
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Fig. 5. Assignment for Case 2.

We are now ready to give our algorithm.

Procedure FourTrees(G, r)
begin

1 Find a planar embedding of G such that r ∈ Co(G);
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2 Find a 4-canonical decomposition Π = (W1, W2, · · · , Wm) of
G − {r};

3 For each vertex v ∈ V − {r} find rl(v), ll(v), rh(v) and lh(v);
4 Let Trl be a graph induced by the right legs of all vertices in

V − {r};
5 Let Tll be a graph induced by the left legs of all vertices in

V − {r};
6 Let Tlh be a graph induced by the left hands of all vertices in

V − {r};
7 Let Trh be a graph induced by the right hands of all vertices in

V − {r};
8 Regard vertex rb in trees Trl and Tll as vertex r;
9 Regard vertex rt in trees Tlh and Trh as vertex r;

10 return Trl, Tll, Tlh and Trh as four independent spanning trees
of G.
end

We then verify the correctness of our algorithm. Assume that G =
(V, E) is a 4-connected planar graph with a designated vertex r ∈
V , and that Algorithm FourTrees finds a 4-canonical decomposition
Π = (W1, W2, · · · , Wm) of G − {r} and outputs Trl, Tll, Tlh and Trh.
We first have the following lemma.

Lemma 2. Let 1 ≤ k ≤ m, and let T k
rl be a graph induced by the

right legs of all vertices in Gk − {rb}. Then T k
rl is a spanning tree of

Gk.

Proof. We prove the claim by induction on k.



318 K. Miura et al.

AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA

AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA

AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA

AAAAAAAA
AAAAAAAA

AAAAAAAAAA
AA
AAA
AAA
A

AA
AAA
AAA

AAA
AAAAAAAAAA
AAAA

AA
AA
A

A
A
AA
AAAAAAA

(a) (b)

(c) (d)

A
A

AAAAAA
AAAAAAAAAA

Wk+1

Wk+1

Wk+1

rb

r1

rb

r1

rb

r1

rb

r1

Wm

rt

Fig. 7. The four cases for Lemma 2.



A Linear-Time Algorithm to Find Four Independent Spanning Trees 319

Clearly the claim holds for k = 1.
We assume that 1 ≤ k ≤ m − 1 and T k

rl is a spanning tree of Gk,
and we shall prove that T k+1

rl is a spanning tree of Gk+1. There are
the following four cases to consider.

Case 1: k ≤ m − 2 and Wk+1 satisfies Condition (a) of (co3).
Case 2: k ≤ m − 2 and Wk+1 satisfies Condition (b) of (co3).
Case 3: k ≤ m − 2 and Wk+1 satisfies Condition (c) of (co3).
Case 4: k = m − 1.

For each case T k+1
rl is a spanning tree of Gk+1 as shown in Fig. 7; (a)

for Case 1; (b) for Case 2; (c) for Case 3; and (d) for Case 4. Q.E .D.

We then have the following lemma.

Lemma 3. Trl, Tll, Tlh and Trh are spanning trees of G.

Proof. By Lemma 3.2 Tm
rl is a spanning tree of Gm, and hence Trl in

which rb is regarded as r is a spanning tree of G.
Similarly Tll, Tlh and Trh are spanning trees of G. Q.E .D.

Let v be any vertex in V − {r}, and let Prl, Pll, Plh and Prh be
the paths connecting r and v in Trl, Tll, Tlh and Trh, respectively.
For any vertex u in V − {r} we write rank(u) = k if u ∈ Wk;
rank(r) is undefined. If an edge (v, u) of G

′ is a leg of vertex v, and
(v, w) of G

′ is a hand of v, then rank(u) ≤ rank(v) ≤ rank(w) and
rank(u) < rank(w).

Lemma 4. Each of the four pairs of paths, Prl and Plh, Prl and Prh,
Pll and Plh, Pll and Prh, are internally disjoint.

Proof. We prove only that Prl and Plh are internally disjoint. Pro-
ofs for the other pairs are similar. If v = r1 then Prl = (v, r). If
v = r3 then Plh = (v, r). Therefor Prl and Plh are internally disjoint
if v is r1 or r3. Thus we may assume that v 6= r1, r3. Let Prl =
(v, v1, v2, · · · , vl, r), then vl = r1. Let Plh = (v, u1, u2, · · · , ul′ , r),
then ul′ = r3. The definition of a right leg implies that rank(v) ≥
rank(v1) ≥ rank(v2) ≥ · · · ≥ rank(vl), and the definition of a
left hand implies that rank(v) ≤ rank(u1) ≤ rank(u2) ≤ · · · ≤
rank(ul′ ). Thus rank(vl) ≤ · · · ≤ rank(v2) ≤ rank(v1) ≤ rank(v) ≤
rank(u1) ≤ rank(u2) ≤ · · · ≤ rank(ul′ ). We furthermore have
rank(v1) < rank(u1). Therefore Prl and Plh are internally disjoint.
Q.E .D.
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We next have the following lemma.

Lemma 5. Let u ∈ V − {r}, ll(u) = (u, u
′), rl(u) = (u, u

′′), and
N(u) = {v1, v2, · · · , vd(u)}. One may assume that u

′ = v1 and u
′′ = vs

for some s, 1 < s ≤ d(u). Then there exists t, 1 ≤ t ≤ s, such that
rl(vi) = (vi, u) for each i, 2 ≤ i ≤ t − 1, and ll(vj) = (vj, u) for each
j, t + 1 ≤ j ≤ s − 1. (Thus either (i) rl(vt) = (vt, u) 6= ll(vt), (ii)
rl(vt) 6= (vt, u) = ll(vt), or (iii) rl(vt) 6= (vt, u) 6= ll(vt). See Fig. 8.)
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ll(v      )s -1
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vt +1vt -1

v3

rl(v )2

u =vsu =v1
' "

Fig. 8. Illustration for Lemma 5.

Proof. From the definitions of a 4-canonical decomposition and a
right leg, one can observe that if 2 ≤ i ≤ s − 1 and rl(vi) = (vi, u)
then rank(vi−1) < rank(vi). Similarly, if 2 ≤ i ≤ s − 1 and ll(vj) =
(vj, u) then rank(vj) > rank(vj+1).
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Assume for a contradiction that the claim does not hold. Then
rl(vi) = (vi, u) and ll(vj) = (vj, u) for some i and j, 1 ≤ j < i ≤ s.
Let vi ∈ Wi′ and vj ∈ Wj′ for some i

′ and j
′ , 1 ≤ i

′
, j

′ ≤ m. Thus
rank(vi) = i

′ , rank(vj) = j
′ , and both Gi′ and Gj′ are biconnected.

There are the following three cases.

Case 1: i
′ = j

′ . In this case, Gi′ has edges (u, vj) and (vi, u), and
all vertices in Wi

′ appear on Co(Gi
′ ). Therefore, vertex u and

the vertices in Wi′ from vj to vi form a cycle in Gi′ , and Gi′

has at least one vertex in the proper inside of the cycle. None
of the edges of G in the outside of the cycle is incident to any
vertex on the cycle other than u, vj and vi. Hence the removal of
three vertices u, vj and vi from G results in a disconnected graph,
contrary to the 4-connectivity of G.

Case 2: i
′

< j
′ . Since rl(vi) = (vi, u), vi precedes u on Co(Gi′ ).

Since ll(vj) = (vj, u), vj succeeds u on Co(Gj
′ ). Since Gi

′ is a
subgraph of Gj′ , vi must precede vj in N(u), contrary to the
assumption j < i.

Case 3: i
′
> j

′ . Similar to Case 2 above. Q.E .D.

Lemma 5 immediately implies the following lemma.

Lemma 6. Prl and Pll may cross at a vertex u, but do not share a
vertex u without crossing at u.

From the definitions of a left leg and a right leg one can imme-
diately have the following lemma.

Lemma 7. Let 1 ≤ k ≤ m and u ∈ Wk. Then u is on Co(Gk). Let
u

′ be the succeeding vertex of u on Co(Gk). Assume that the ordered
set N(u) starts with u

′ . Let ll(u) = (u, v
′) and rl(u) = (u, v

′′). Then
v

′′ precedes v
′ in N(u).

We then have the following lemma.

Lemma 8. Each of the two pairs of paths, Prl and Pll, Plh and Prh,
are internally disjoint.

Proof. We prove only that Prl and Pll are internally disjoint. Proof
for the other case is similar. Suppose for a contradiction that Prl and
Pll share an intermediate vertex. Let w be the intermediate vertex
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that is shared by Prl and Pll and appear last on the path Prl going
from r to v. Then Prl and Pll cross at w by Lemma 6. However, the
claim in Lemma 7 holds both for k = rank(v) and u = v and for
k = rank(w) and u = w, and hence Prl and Pll do not cross at w, a
contradiction. Q.E .D.

By Lemmas 3, 4 and 8 we have the following lemma.

Lemma 9. Trl, Tll, Tlh and Trh are four independent spanning trees
of G rooted at r.

Clearly the running time of Algorithm FourTrees is O(n). Thus
we have the following theorem.

Theorem 1. Four independent spanning trees of any 4-connected
plane graph rooted at any designated vertex can be found in linear
time.

4 Conclusion

In this paper we give a linear-time algorithm to find four independent
spanning trees of a 4-connected planar graph rooted at any designa-
ted vertex. Using four independent spanning trees, one can efficiently
solve the 4-path query problem for 4-connected planar graphs.

It is remained as future work to find a linear-time algorithm for a
larger class of graphs, say 4-connected graphs which are not always
planar.
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