A Linear-Time Algorithm to Find Four Independent Spanning Trees

in Four-Connected Planar Graphs

Kazuyuki Miura, Daishiro Takahashi, Shin-ichi Nakano, and Takao Nishizeki
Graduate School of Information Sciences
Tohoku University, Sendai 980-8579, Japan
e-mail:\{miura,daishiro,nakano,nishi\}@nishizeki.ecei.tohoku.ac.jp

Abstract

Given a graph G, a designated vertex r and a natural number k, we wish to find k "independent" spanning trees of G rooted at r, that is, k spanning trees such that, for any vertex v, the k paths connecting r and v in the k trees are internally disjoint in G. In this paper we give a linear-time algorithm to find four independent spanning trees in a 4 -connected planar graph rooted at any vertex.

1 Introduction

Given a graph $G=(V, E)$, a designated vertex $r \in V$ and a natural number k, we wish to find k spanning trees $T_{1}, T_{2}, \cdots, T_{k}$ of G such that, for any vertex v, the k paths connecting r and v in $T_{1}, T_{2}, \cdots, T_{k}$ are internally disjoint in G, that is, any two of them have no common intermediate vertices. Such k trees are called k independent spanning trees of G rooted at r. Four independent spanning trees are drawn in Fig. T by thick lines. Independent spanning trees have applications to fault-tolerant protocols in networks [BI96|DHSS84|IR88|OIBI96.

Given a graph $G=(V, E)$ of n vertices and m edges, and a designated vertex $r \in V$, one can find two independent spanning trees of G rooted at any vertex in linear time if G is biconnected [BTV96,IR88], and find three independent spanning trees of G rooted at any vertex in $O(m n)$ and $O\left(n^{2}\right)$ time if G is triconnected [BTV96,CM88]. It is
(C) Springer-Verlag Berlin Heidelberg 1998

Fig. 1. Four independent spanning trees T_{1}, T_{2}, T_{3} and T_{4} of a graph G rooted at r.
conjectured that, for any $k \geq 1$, every k-connected graph has k independent spanning trees rooted at any vertex [KS92/ZI89]. Recently Huck has proved that every 4 -connected planar graph has four independent spanning trees rooted at any vertex [H94]. The proof in H94 yields an algorithm to actually find four independent spanning trees, but it takes time $O\left(n^{3}\right)$.

In this paper we give a simple linear-time algorithm to find four independent spanning trees of a 4 -connected planar graph rooted at any designated vertex. Our algorithm is based on a " 4 -canonical decomposition" of a 4-connected planar graph [NRN97], which is a generalization of an st-numbering [E79, a canonical ordering [CK93] and a canonical 4-ordering [KH94].

The remainder of the paper is organized as follows. In Section 2 we introduce some definitions. In Section 3 we present our algorithm to find four independent spanning trees. Finally we put conclusion in Section 4.

2 Preliminaries

In this section we introduce some definitions.
Let $G=(V, E)$ be a connected graph with vertex set V and edge set E. Throughout the paper we denote by n the number of vertices in G, and we always assume that $n>4$. An edge joining vertices u and v is denoted by (u, v). The degree of a vertex v in G, denoted by $d(v, G)$ or simply by $d(v)$, is the number of neighbors of v in G. The connectivity $\kappa(G)$ of a graph G is the minimum number of vertices whose removal results in a disconnected graph or a single-vertex graph K_{1}. A graph G is k-connected if $\kappa(G) \geq k$. A path in a graph is an ordered list of distinct vertices $v_{1}, v_{2}, \cdots, v_{l}$ such that $v_{i-1} v_{i}$ is an edge for all $i, 2 \leq i \leq l$. We say that two paths having common start and end vertices are internally disjoint if their intermediate vertices are disjoint. We also say that a set of paths having common start and end vertices are internally disjoint if every pair of paths in the set are internally disjoint.

A graph is planar if it can be embedded in the plane so that no two edges intersect geometrically except at a vertex to which they are both incident. A plane graph is a planar graph with a fixed embedding. The contour $C_{o}(G)$ of a biconnected plane graph G is
the clockwise (simple) cycle on the outer face. We write $C_{o}(G)=$ $\left(w_{1}, w_{2}, \cdots, w_{h}\right)$ if the vertices $w_{1}, w_{2}, \cdots, w_{h}$ on $C_{o}(G)$ appear in this order.

3 Algorithm

In this section we give our algorithm to find four independent spanning trees of a 4 -connected planar graph rooted at any designated vertex.

Given a 4-connected planar graph $G=(V, E)$ and a designated vertex $r \in V$, we first find a planar embedding of G in which r is located on $C_{o}(G)$. Let $G^{\prime}=G-\{r\}$ be the subgraph of the plane graph G induced by $V-\{r\}$. In Fig. 2 (a) G is drawn by solid and dotted lines, and G^{\prime} by solid lines. Since G is 4 -connected, $d(r) \geq 4$. We may assume that all the neighbors $r_{1}, r_{2}, \cdots, r_{d(r)}$ of r in G appear on $C_{o}\left(G^{\prime}\right)$ clockwise in this order. Let $C_{o}\left(G^{\prime}\right)=\left(w_{1}, w_{2}, \cdots, w_{h}\right)$, $r_{1}=w_{1}, r_{2}=w_{a}, r_{3}=w_{b}$ and $r_{4}=w_{c}$, where $1<a<b<c \leq d(r)$. We add to G^{\prime} two new vertices r_{b} and r_{t}, join r_{b} with r_{1} and r_{2}, and join r_{t} with $r_{3}, r_{4}, \cdots, r_{d(r)}$. Let $G^{\prime \prime}$ be the resulting plane graph, where vertices $r_{1}, r_{b}, r_{2}, r_{3}, r_{t}$ and $r_{d(r)}$ appear on $C_{o}\left(G^{\prime \prime}\right)$ clockwise in this order. Fig. 2 (b) illustrates $G^{\prime \prime}$.

Let $\Pi=\left(W_{1}, W_{2}, \cdots, W_{m}\right)$ be a partition of the vertex set $V-$ $\{r\}$ of G^{\prime}. We denote by $G_{k}, 1 \leq k \leq m$, the plane subgraph of $G^{\prime \prime}$ induced by $\left\{r_{b}\right\} \cup W_{1} \cup W_{2} \cup \cdots \cup W_{k}$. We denote by $\overline{G_{k}}, 0 \leq k \leq m-$ 1 , the plane subgraph of $G^{\prime \prime}$ induced by $W_{k+1} \cup W_{k+2} \cup \cdots \cup W_{m} \cup\left\{r_{t}\right\}$. We assume that if $1 \leq k \leq m$ and $W_{k}=\left\{u_{1}, u_{2}, \cdots, u_{l}\right\}$ then vertices $u_{1}, u_{2}, \cdots, u_{l}$ consecutively appear on $C_{o}\left(G_{k}\right)$ clockwise in this order. A partition $\Pi=\left(W_{1}, W_{2}, \cdots, W_{m}\right)$ of $V-\{r\}$ is called a 4-canonical decomposition of G^{\prime} if the following three conditions (co1)-(co3) are satisfied.
$(\mathrm{co1}) W_{1}=\left\{w_{a}, w_{a-1}, \cdots, w_{1}\right\}$ and $W_{m}=\left\{w_{b}, w_{b+1}, \cdots, w_{c}\right\}$;
(co2) For each $k, 1 \leq k \leq m-1$, both G_{k} and $\overline{G_{k-1}}$ are biconnected (See Fig. 3); and
(co3) For each $k, 1<k<m$, one of the following three conditions holds (See Fig. 3.3.):
(a) $\left|W_{k}\right| \geq 2$, and each vertex $u \in W_{k}$ satisfies $d\left(u, G_{k}\right)=2$ and $d\left(u, \overline{G_{k-1}}\right) \geq 3$;
(b) $\left|W_{k}\right|=1$, and the vertex $u \in W_{k}$ satisfies $d\left(u, G_{k}\right) \geq 2$ and $d\left(u, \overline{G_{k-1}}\right) \geq 2$; and
(c) $\left|W_{k}\right| \geq 2$, and each vertex $u \in W_{k}$ satisfies $d\left(u, G_{k}\right) \geq 3$ and $d\left(u, \overline{G_{k-1}}\right)=2$.

Fig. 2(b) illustrates a 4-canonical decomposition of $G^{\prime}=G-\{r\}$, where G^{\prime} are drawn in solid lines and each set W_{i} is indicated by an oval drawn in a dotted line. A 4-canonical decomposition is a generalization of an "st-numbering" E79], a "canonical decomposition" CK93 and a "canonical 4-ordering" KH94. Although the definition of a 4-canonical decomposition above is slightly different from one in [NRN97], they are effectively equivalent each other.

Fig. 2. (a) Four-connected plane graph G and (b) plane graph $G^{\prime \prime}$.
We have the following lemma.
Lemma 1. Let $G=(V, E)$ be a 4 -connected plane graph, and let r be a designated vertex on $C_{o}(G)$. Then $G^{\prime}=G-\{r\}$ has a 4canonical decomposition Π. Furthermore Π can be found in linear time.

Proof. Similar to the proof of Lemma 3 in [NRN97].
$\mathcal{Q} . \mathcal{E} . \mathcal{D}$.

Fig. 3. Three conditions for (co3).

We need a few more definitions to describe our algorithm. For a vertex $v \in V-\{r\}$ we write $N(v)=\left\{v_{1}, v_{2}, \cdots, v_{d(v)}\right\}$ if $v_{1}, v_{2}, \cdots, v_{d(v)}$ are the neighbors of vertex v in $G^{\prime \prime}$ and appear around v clockwise in this order. To each vertex $v \in V-\{r\}$ we assign four edges incident to v in $G^{\prime \prime}$ as the left hand $\operatorname{lh}(v)$, the right hand $r h(v)$, the left leg $l l(v)$ and the right leg $r l(v)$ as follows. We will show later that such an assignment immediately yields four independent spanning trees of G. Let $v \in W_{k}$ for some $k, 1 \leq k \leq m$, then there are the following three cases to consider.

Case 1: either (i) $1<k<m$ and W_{k} satisfies Condition (a) of (co3) or (ii) $k=1$. (See Fig. (4)
Let $W_{k}=\left\{u_{1}, u_{2}, \cdots, u_{l}\right\}$. Let u_{0} be the vertex on $C_{o}\left(G_{k}\right)$ preceding u_{1}, and let u_{l+1} be the vertex on $C_{o}\left(G_{k}\right)$ succeeding u_{l}. For each $u_{i} \in W_{k}$ we define $r l\left(u_{i}\right)=\left(u_{i}, u_{i+1}\right), l l\left(u_{i}\right)=\left(u_{i}, u_{i-1}\right)$, $\operatorname{lh}\left(u_{i}\right)=\left(u_{i}, v_{1}\right)$, and $\operatorname{rh}\left(u_{i}\right)=\left(u_{i}, v_{d\left(u_{i}\right)-2}\right)$ where we assume $N\left(u_{i}\right)=\left\{u_{i-1}, v_{1}, v_{2}, \cdots, v_{d\left(u_{i}\right)-2}, u_{i+1}\right\}$.
Case 2: W_{k} satisfies Condition (b) of (co3). (See Fig. 5)
Let $W_{k}=\{u\}$, let u^{\prime} be the vertex on $C_{o}\left(G_{k}\right)$ preceding u, and let $u^{\prime \prime}$ be the vertex on $C_{o}\left(G_{k}\right)$ succeeding u. Let $N(u)=$ $\left\{u^{\prime}, v_{1}, v_{2}, \cdots, v_{d(u)-1}\right\}$, and let $u^{\prime \prime}=v_{x}$ for some $x, 3 \leq x \leq$
$d(u)-1$. Then $r l(u)=\left(u, u^{\prime \prime}\right), l l(u)=\left(u, u^{\prime}\right), \operatorname{lh}(u)=\left(u, v_{1}\right)$, and $r h(u)=\left(u, v_{x-1}\right)$.
Case 3: either (i) $1<k<m$ and W_{k} satisfies Condition (c) of (co3) or (ii) $k=m$. (See Fig. 6.)
Let $W_{k}=\left\{u_{1}, u_{2}, \cdots, u_{l}\right\}$. Let u_{0} be the vertex on $\overline{C_{o}\left(G_{k-1}\right)}$ succeeding u_{1}, and let u_{l+1} be the vertex on $\overline{C_{o}\left(G_{k-1}\right)}$ preceding u_{l}. For each $u_{i} \in W_{k}$ we define $r l\left(u_{i}\right)=\left(u_{i}, v_{1}\right), l l\left(u_{i}\right)=\left(u_{i}\right.$, $\left.v_{d\left(u_{i}\right)-2}\right), \operatorname{lh}\left(u_{i}\right)=\left(u_{i}, u_{i-1}\right)$, and $\operatorname{rh}\left(u_{i}\right)=\left(u_{i}, u_{i+1}\right)$ where we assume $N\left(u_{i}\right)=\left\{u_{i+1}, v_{1}, v_{2}, \cdots, v_{d\left(u_{i}\right)-2}, u_{i-1}\right\}$.

Fig. 4. Assignment for Case 1.

Fig. 5. Assignment for Case 2.
We are now ready to give our algorithm.

Procedure FourTrees (G, r)
 begin

1 Find a planar embedding of G such that $r \in C_{o}(G)$;

Fig. 6. Assignment for Case 3.

2 Find a 4-canonical decomposition $\Pi=\left(W_{1}, W_{2}, \cdots, W_{m}\right)$ of $G-\{r\} ;$
3 For each vertex $v \in V-\{r\}$ find $r l(v), l l(v), r h(v)$ and $l h(v)$;
4 Let $T_{r l}$ be a graph induced by the right legs of all vertices in $V-\{r\}$;
5 Let $T_{l l}$ be a graph induced by the left legs of all vertices in $V-\{r\} ;$
6 Let $T_{l h}$ be a graph induced by the left hands of all vertices in $V-\{r\}$;
7 Let $T_{r h}$ be a graph induced by the right hands of all vertices in $V-\{r\}$;
8 Regard vertex r_{b} in trees $T_{r l}$ and $T_{l l}$ as vertex r;
9 Regard vertex r_{t} in trees $T_{l h}$ and $T_{r h}$ as vertex r;
10 return $T_{r l}, T_{l l}, T_{l h}$ and $T_{r h}$ as four independent spanning trees of G.
end

We then verify the correctness of our algorithm. Assume that $G=$ (V, E) is a 4-connected planar graph with a designated vertex $r \in$ V, and that Algorithm FourTrees finds a 4-canonical decomposition $\Pi=\left(W_{1}, W_{2}, \cdots, W_{m}\right)$ of $G-\{r\}$ and outputs $T_{r l}, T_{l l}, T_{l h}$ and $T_{r h}$. We first have the following lemma.

Lemma 2. Let $1 \leq k \leq m$, and let $T_{r l}^{k}$ be a graph induced by the right legs of all vertices in $G_{k}-\left\{r_{b}\right\}$. Then $T_{r l}^{k}$ is a spanning tree of G_{k}.

Proof. We prove the claim by induction on k.

Fig. 7. The four cases for Lemma 2.

Clearly the claim holds for $k=1$.
We assume that $1 \leq k \leq m-1$ and $T_{r l}^{k}$ is a spanning tree of G_{k}, and we shall prove that $T_{r l}^{k+1}$ is a spanning tree of G_{k+1}. There are the following four cases to consider.

Case 1: $k \leq m-2$ and W_{k+1} satisfies Condition (a) of (co3).
Case 2: $k \leq m-2$ and W_{k+1} satisfies Condition (b) of (co3).
Case 3: $k \leq m-2$ and W_{k+1} satisfies Condition (c) of (co3).
Case 4: $k=m-1$.
For each case $T_{r l}^{k+1}$ is a spanning tree of G_{k+1} as shown in Fig. 7 (a) for Case 1; (b) for Case 2; (c) for Case 3; and (d) for Case 4. Q.E.D.

We then have the following lemma.
Lemma 3. $T_{r l}, T_{l l}, T_{l h}$ and $T_{r h}$ are spanning trees of G.
Proof. By Lemma $3.2 T_{r l}^{m}$ is a spanning tree of G_{m}, and hence $T_{r l}$ in which r_{b} is regarded as r is a spanning tree of G.

Similarly $T_{l l}, T_{l h}$ and $T_{r h}$ are spanning trees of G. $\mathcal{Q . E . D . ~}$
Let v be any vertex in $V-\{r\}$, and let $P_{r l}, P_{l l}, P_{l h}$ and $P_{r h}$ be the paths connecting r and v in $T_{r l}, T_{l l}, T_{l h}$ and $T_{r h}$, respectively. For any vertex u in $V-\{r\}$ we write $\operatorname{rank}(u)=k$ if $u \in W_{k}$; $\operatorname{rank}(r)$ is undefined. If an edge (v, u) of G^{\prime} is a leg of vertex v, and (v, w) of G^{\prime} is a hand of v, then $\operatorname{rank}(u) \leq \operatorname{rank}(v) \leq \operatorname{rank}(w)$ and $\operatorname{rank}(u)<\operatorname{rank}(w)$.
Lemma 4. Each of the four pairs of paths, $P_{r l}$ and $P_{l h}, P_{r l}$ and $P_{r h}$, $P_{l l}$ and $P_{l h}, P_{l l}$ and $P_{r h}$, are internally disjoint.

Proof. We prove only that $P_{r l}$ and $P_{l h}$ are internally disjoint. Proofs for the other pairs are similar. If $v=r_{1}$ then $P_{r l}=(v, r)$. If $v=r_{3}$ then $P_{l h}=(v, r)$. Therefor $P_{r l}$ and $P_{l h}$ are internally disjoint if v is r_{1} or r_{3}. Thus we may assume that $v \neq r_{1}, r_{3}$. Let $P_{r l}=$ $\left(v, v_{1}, v_{2}, \cdots, v_{l}, r\right)$, then $v_{l}=r_{1}$. Let $P_{l h}=\left(v, u_{1}, u_{2}, \cdots, u_{l^{\prime}}, r\right)$, then $u_{l^{\prime}}=r_{3}$. The definition of a right leg implies that $\operatorname{rank}(v) \geq$ $\operatorname{rank}\left(v_{1}\right) \geq \operatorname{rank}\left(v_{2}\right) \geq \cdots \geq \operatorname{rank}\left(v_{l}\right)$, and the definition of a left hand implies that $\operatorname{rank}(v) \leq \operatorname{rank}\left(u_{1}\right) \leq \operatorname{rank}\left(u_{2}\right) \leq \cdots \leq$ $\operatorname{rank}\left(u_{l^{\prime}}\right)$. Thus $\operatorname{rank}\left(v_{l}\right) \leq \cdots \leq \operatorname{rank}\left(v_{2}\right) \leq \operatorname{rank}\left(v_{1}\right) \leq \operatorname{rank}(v) \leq$ $\operatorname{rank}\left(u_{1}\right) \leq \operatorname{rank}\left(u_{2}\right) \leq \cdots \leq \operatorname{rank}\left(u_{l^{\prime}}\right)$. We furthermore have $\operatorname{rank}\left(v_{1}\right)<\operatorname{rank}\left(u_{1}\right)$. Therefore $P_{r l}$ and $P_{l h}$ are internally disjoint. $\mathcal{Q} . \mathcal{E} . \mathcal{D}$.

We next have the following lemma.
Lemma 5. Let $u \in V-\{r\}, l l(u)=\left(u, u^{\prime}\right), r l(u)=\left(u, u^{\prime \prime}\right)$, and $N(u)=\left\{v_{1}, v_{2}, \cdots, v_{d(u)}\right\}$. One may assume that $u^{\prime}=v_{1}$ and $u^{\prime \prime}=v_{s}$ for some $s, 1<s \leq d(u)$. Then there exists $t, 1 \leq t \leq s$, such that $r l\left(v_{i}\right)=\left(v_{i}, u\right)$ for each $i, 2 \leq i \leq t-1$, and $l l\left(v_{j}\right)=\left(v_{j}, u\right)$ for each $j, t+1 \leq j \leq s-1$. (Thus either (i) $r l\left(v_{t}\right)=\left(v_{t}, u\right) \neq l l\left(v_{t}\right)$, (ii) $r l\left(v_{t}\right) \neq\left(v_{t}, u\right)=l l\left(v_{t}\right)$, or (iii) $r l\left(v_{t}\right) \neq\left(v_{t}, u\right) \neq l l\left(v_{t}\right)$. See Fig. [8)

Fig. 8. Illustration for Lemma 5.

Proof. From the definitions of a 4 -canonical decomposition and a right leg, one can observe that if $2 \leq i \leq s-1$ and $\operatorname{rl}\left(v_{i}\right)=\left(v_{i}, u\right)$ then $\operatorname{rank}\left(v_{i-1}\right)<\operatorname{rank}\left(v_{i}\right)$. Similarly, if $2 \leq i \leq s-1$ and $l l\left(v_{j}\right)=$ $\left(v_{j}, u\right)$ then $\operatorname{rank}\left(v_{j}\right)>\operatorname{rank}\left(v_{j+1}\right)$.

Assume for a contradiction that the claim does not hold. Then $r l\left(v_{i}\right)=\left(v_{i}, u\right)$ and $l l\left(v_{j}\right)=\left(v_{j}, u\right)$ for some i and $j, 1 \leq j<i \leq s$. Let $v_{i} \in W_{i^{\prime}}$ and $v_{j} \in W_{j^{\prime}}$ for some i^{\prime} and $j^{\prime}, 1 \leq i^{\prime}, j^{\prime} \leq m$. Thus $\operatorname{rank}\left(v_{i}\right)=i^{\prime}, \operatorname{rank}\left(v_{j}\right)=j^{\prime}$, and both $G_{i^{\prime}}$ and $G_{j^{\prime}}$ are biconnected. There are the following three cases.

Case 1: $i^{\prime}=j^{\prime}$. In this case, $G_{i^{\prime}}$ has edges $\left(u, v_{j}\right)$ and $\left(v_{i}, u\right)$, and all vertices in $W_{i^{\prime}}$ appear on $C_{o}\left(G_{i^{\prime}}\right)$. Therefore, vertex u and the vertices in $W_{i^{\prime}}$ from v_{j} to v_{i} form a cycle in $G_{i^{\prime}}$, and $G_{i^{\prime}}$ has at least one vertex in the proper inside of the cycle. None of the edges of G in the outside of the cycle is incident to any vertex on the cycle other than u, v_{j} and v_{i}. Hence the removal of three vertices u, v_{j} and v_{i} from G results in a disconnected graph, contrary to the 4 -connectivity of G.
Case 2: $i^{\prime}<j^{\prime}$. Since $r l\left(v_{i}\right)=\left(v_{i}, u\right), v_{i}$ precedes u on $C_{o}\left(G_{i^{\prime}}\right)$. Since $l l\left(v_{j}\right)=\left(v_{j}, u\right), v_{j}$ succeeds u on $C_{o}\left(G_{j^{\prime}}\right)$. Since $G_{i^{\prime}}$ is a subgraph of $G_{j^{\prime}}, v_{i}$ must precede v_{j} in $N(u)$, contrary to the assumption $j<i$.
Case 3: $i^{\prime}>j^{\prime}$. Similar to Case 2 above. $\mathcal{Q . E . D . ~}$
Lemma 5 immediately implies the following lemma.
Lemma 6. $P_{r l}$ and $P_{l l}$ may cross at a vertex u, but do not share a vertex u without crossing at u.

From the definitions of a left leg and a right leg one can immediately have the following lemma.

Lemma 7. Let $1 \leq k \leq m$ and $u \in W_{k}$. Then u is on $C_{o}\left(G_{k}\right)$. Let u^{\prime} be the succeeding vertex of u on $C_{o}\left(G_{k}\right)$. Assume that the ordered set $N(u)$ starts with u^{\prime}. Let $l l(u)=\left(u, v^{\prime}\right)$ and $r l(u)=\left(u, v^{\prime \prime}\right)$. Then $v^{\prime \prime}$ precedes v^{\prime} in $N(u)$.

We then have the following lemma.
Lemma 8. Each of the two pairs of paths, $P_{r l}$ and $P_{l l}, P_{l h}$ and $P_{r h}$, are internally disjoint.

Proof. We prove only that $P_{r l}$ and $P_{l l}$ are internally disjoint. Proof for the other case is similar. Suppose for a contradiction that $P_{r l}$ and $P_{l l}$ share an intermediate vertex. Let w be the intermediate vertex
that is shared by $P_{r l}$ and $P_{l l}$ and appear last on the path $P_{r l}$ going from r to v. Then $P_{r l}$ and $P_{l l}$ cross at w by Lemma 6. However, the claim in Lemma 7 holds both for $k=\operatorname{rank}(v)$ and $u=v$ and for $k=\operatorname{rank}(w)$ and $u=w$, and hence $P_{r l}$ and $P_{l l}$ do not cross at w, a contradiction.
$\mathcal{Q} . \mathcal{E} . \mathcal{D}$.
By Lemmas 3, 4 and 8 we have the following lemma.
Lemma 9. $T_{r l}, T_{l l}, T_{l h}$ and $T_{r h}$ are four independent spanning trees of G rooted at r.

Clearly the running time of Algorithm FourTrees is $O(n)$. Thus we have the following theorem.

Theorem 1. Four independent spanning trees of any 4-connected plane graph rooted at any designated vertex can be found in linear time.

4 Conclusion

In this paper we give a linear-time algorithm to find four independent spanning trees of a 4 -connected planar graph rooted at any designated vertex. Using four independent spanning trees, one can efficiently solve the 4 -path query problem for 4 -connected planar graphs.

It is remained as future work to find a linear-time algorithm for a larger class of graphs, say 4 -connected graphs which are not always planar.

References

BI96. F. Bao and Y. Igarashi, Reliable broadcasting in product networks with Byzantime faults, Proc. 26th Annual International Symposium on Fault-Tolelant Computing (FTCS'96) (1996) 262-271.
BTV96. G. Di Battista, R. Tamassia and L.Vismara, Output-sensitive reporting of disjoint paths, Technical Report CS-96-25, Department of Computer Science, Brown University (1996).
CK93. M. Chrobak and G. Kant, Convex grid drawings of 3-connected planar graphs, Technical Report RUU-CS-93-45, Department of Computer Science, Utrecht University (1993).
CM88. J. Cheriyan and S. N. Maheshwari, Finding nonseparating induced cycles and independent spanning trees in 3-connected graphs, J. Algorithms, 9 (1988) 507-537.

DHSS84. D. Dolev, J. Y. Halpern, B. Simons, and R. Strong, A new look at fault tolerant network routing, Proc. 16th Annual ACM Symposium on Theory of Computing (1984) 526-535.
E79. S. Even, Graph Algorithms, Computer Science Press, Potomac (1979).
H94. A. Huck, Independent trees in Graphs, Graphs and Combinatorics, 10 (1994) 29-45.
IR88. A. Itai and M. Rodeh, The multi-tree approach to reliability in distributed networks, Information and Computation, 79 (1988) 43-59.
KH94. G. Kant and X. He, Two algorithms for finding rectangular duals of planar graphs, Proc. 19th Workshop on Graph-Theoretic Concepts in Computer Science (WG'93), LNCS 790 (1994) 396-410.
KS92. S. Khuller and B. Schieber, On independent spanning trees, Information Processing Letters, 42 (1992) 321-323.
NRN97. S. Nakano, M. S. Rahman and T. Nishizeki, A linear time algorithm for fourpartitioning four-connected planar graphs, Information Processing Letters, 62 (1997) 315-322.

OIBI96. K. Obokata, Y. Iwasaki, F. Bao and Y. Igarashi, Independent spanning trees of product graphs and their construction, Proc. 22nd Workshop on GraphTheoretic Concepts in Computer Science (WG'96), LNCS 1197 (1996) 338-351.
ZI89. A. Zehavi and A. Itai, Three tree-paths, J. Graph Theory, 13 (1989) 175-188.

