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Abstract. A grid drawing of a plane graph G is a drawing of G on the
plane so that all vertices of G are put on plane grid points and all edges
are drawn as straight line segments between their endpoints without any
edge-intersection. In this paper we give a very simple algorithm to find a
grid drawing of any given 4-connected plane graph G with four or more
vertices on the outer face. The algorithm takes time O(n) and needs a
rectangular grid of width dn/2e−1 and height dn/2e if G has n vertices.
The algorithm is best possible in the sense that there are an infinite
number of 4-connected plane graphs any grid drawings of which need
rectangular grids of width dn/2e − 1 and height dn/2e.

1 Introduction

Recently automatic aesthetic drawing of graphs has created intense interest due
to their broad applications, and as a consequence, a number of drawing me-
thods have come out [1,2,3,4,5,6,7,8,9,10,11,13,15]. The most typical method is
the straight line drawing in which all edges of a graph are drawn as straight
line segments without any edge-intersection. Every plane graph has a straight
line drawing [8,14,16]. However, not every straight line drawing is an aesthetic
drawing since many vertices may be concentrated in a small area.

A straight line drawing of a plane graph G is called a grid drawing of G if
the vertices of G are put on grid points of integer coordinates. Of course, the
distance between any two vertices in the drawing is at least 1. The integer grid
of size W ×H consists of W +1 vertical segments and H +1 horizontal segments,
and has a rectangular contour. W and H are called the width and height of the
integer grid, respectively. It is known that every plane graph of n ≥ 3 vertices
has a grid drawing on an (n − 2) × (n − 2) grid, and that such a grid drawing
can be found in linear time [3,6,9,13]. It is also shown that, for each n ≥ 3, there
exists a plane graph which needs a grid of size at least b2(n−1)/3c×b2(n−1)/3c
for any grid drawing [4,9]. It has been conjectured that every plane graph has a
grid drawing on a d2n/3e × d2n/3e grid, but it is still an open problem. On the
other hand, a restricted class of graphs has a more compact grid drawing. For
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example, if G is a 4-connected plane graph and has at least four vertices on its
outer face, then G has a grid drawing on a W × H grid such that W + H ≤ n,
W ≤ (n + 3)/2 and H ≤ 2(n − 1)/3, and one can find such a grid drawing in
linear time [10]. However, the algorithm is rather complicated.

In this paper, we give a very simple algorithm which finds a grid drawing of
any given 4-connected plane graph G on a W ×H grid such that W = dn/2e−1
and H = dn/2e in linear time if G has four or more vertices on the outer face.
Since W = dn/2e − 1 and H = dn/2e, W + H ≤ n. Thus our bounds on W
and H are better than He’s bounds [10]. Our bounds are indeed best possible,
because there exist an infinite number of 4-connected plane graphs, for example
the nested quadrangles depicted in Fig. 1, which need grids of size at least
W = dn/2e − 1 and H = dn/2e for any grid drawing. An aspect ratio of a
drawing obtained by the algorithm [10] may be 1 : 4/3, while the ratio of our
algorithm is always 1 : 1. Both our algorithm and the proof of its correctness are
very simple, and it is quite easy to understand them.

W = -1n
2

H= n
2

Fig. 1. Nested quadrangles attaining our bounds.

The outline of our algorithm is as follows. One can assume without loss
of generality that a given graph G is internally triangulated as illustrated in
Fig. 2(a). First, we find a “4-canonical ordering” of G [12]. Using the ordering,
we then divide G into two graphs G

′
and G

′′
, each of which has about n/2 vertices

as illustrated in Fig. 2(b) where G
′
and G

′′
are shaded. Next, we draw the plane

subgraph G
′

in an isosceles right-angled triangle whose base has length W
′

=
n/2−1 and whose height is H

′
= W

′
/2, as illustrated in Fig. 2(c). Similarly, we

draw G
′′

in the same triangle with its upside down. In Fig. 2(c) the two triangles
are drawn by thick dotted lines. We place the two triangles so that their vertices
opposite to their bases are separated by distance 1. Finally, we combine the
drawings of G

′
and G

′′
to obtain a grid drawing of G, as illustrated in Fig. 2(d).

The drawing of G has sizes W = W
′
= n/2−1 and H = 2H

′
+1 = W

′
+1 = n/2.
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The remainder of the paper is organized as follows. In Section 2, we give
some definitions and lemmas, and present our algorithm and a main theorem.
In Section 3, we show how to draw G

′
and G

′′
.
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Fig. 2. Drawing process of our algorithm.

2 Main Theorem

In this section we first introduce some definitions and lemmas, and then present
our algorithm and a main theorem.

Let G = (V, E) be a simple connected graph having no multiple edge or loop.
V is the vertex set and E is the edge set of G. Let n be the number of vertices
of G. An edge joining vertices u and v is denoted by (u, v). The degree of a
vertex v in G is the number of neighbors of v in G, and is denoted by d(v, G).
The connectivity κ(G) of a graph G is the minimum number of vertices whose
removal results in a disconnected graph or a single-vertex graph K1. A graph
G is k-connected if κ(G) ≥ k. Let x(v) and y(v) be the x- and y-coordinates of
vertex v ∈ V , respectively.

A graph is planar if it can be embedded in the plane so that no two edges
intersect geometrically except at a vertex to which they are both incident. A
plane graph is a planar graph with a fixed embedding. A plane graph divides the
plane into connected regions called faces. We denote the boundary of a face by
a clockwise sequence formed by the vertices and edges on the boundary. We call
the boundary of the outer face of a plane graph G the contour of G, and denote
it by Co(G). A plane graph G is internally triangulated if all inner faces of G
are triangles. We can assume without loss of generality that a given graph G is
internally triangulated. Otherwise, we internally triangulate G by adding some
new edges to G, find a drawing of the resulting graph, and finally remove the
added edges to obtain a drawing of G.

We then give a definition of a 4-canonical ordering of a plane graph G [12], on
which both our algorithm and He’s [10] are based. The 4-canonical ordering is a
generalization of the “canonical ordering” [9] which is used to find a grid drawing



148 K. Miura, S.-i. Nakano, and T. Nishizeki

of triangulated plane graph. Let Π = (v1, v2, · · · , vn) be an ordering of set V .
Fig. 3(a) illustrates an ordering of the graph G in Fig. 2(a). Let Gk, 1 ≤ k ≤ n,
be the plane subgraph of G induced by the vertices in {v1, v2, · · · , vk}, and let Gk

be the plane subgraph of G induced by the vertices in {vk+1, vk+2, · · · , vn}. Thus
G = Gn = G0. In Fig. 3(b), Gk is darkly shaded, while Gk−1 is lightly shaded.
We say that Π is a 4-canonical ordering of G if the following two conditions are
satisfied:

(co1) v1 and v2 are the ends of an edge on Co(G), and vn and vn−1 are the
ends of an edge on Co(G); and

(co2) for each k, 3 ≤ k ≤ n − 2, vk is on Co(Gk), d(vk, Gk) ≥ 2, and
d(vk, Gk−1) ≥ 2.

Gk

Gk -1

vk

(a) (b)

15v

v13 1v4

1v 2v

3v 4v
5v

6v
7v

8v9v

v10v11

v12

16v

Fig. 3. (a) A 4-canonical ordering of a 4-connected plane graph of n = 16 vertices, and
(b) an illustration for the condition (co2).

Although the definition of a 4-canonical ordering above is slightly different from
that in [12], they are effectively equivalent each other. The following lemma is
known.

Lemma 1. [12] Let G be a 4-connected plane graph having at least four vertices
on Co(G). Then G has a 4-canonical ordering Π, and Π can be found in linear
time.

We are now ready to present our algorithm Draw.

Procedure Draw(G)
begin

1 Find a 4-canonical ordering Π = (v1, v2, · · · , vn) of a given 4-connected
plane graph G = (V, E);
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2 Divide G into two subgraphs G
′
and G

′′
where n′ = dn/2e, G

′
= Gn′ , and

G
′′

= Gn′ ;
3 Draw G

′
in an isosceles right-angled triangle whose base has length W

′
=

dn/2e − 1 and whose height is H
′
= W

′
/2;

4 Draw G
′′

in the same triangle with its upside down;
5 Place the two triangles so that their vertices opposite to their bases are

separated by distance 1 and have the same x-coordinate;
6 Draw every edge of G joining a vertex in G

′
and a vertex in G

′′
by a straight

line segment;
end.

We say that a curve in the plane is x-monotone if the intersection of the curve
and any vertical line is a single point when it is nonempty. We then have the
following lemma for the drawing of G

′
, the proof of which will be given later in

Section 3.

Lemma 2. One can find in linear time a grid drawing of G
′

satisfying the
following conditions (a), (b) and (c):
(a) the drawing is in an isosceles right-angled triangle whose base has length
W

′
= dn/2e − 1 and whose height is H

′
= W

′
/2, and edge (v1, v2) is drawn as

the base of the triangle;
(b) the absolute value of the slope of every edge on Co(G

′
) is at most 1; and

(c) the drawing of the path going clockwise on Co(G
′
) from v1 to v2 is x-

monotone.

If Π = (v1, v2, · · · , vn) is a 4-canonical ordering, then the reversed ordering
Π

′
= (vn, vn−1, · · · , v1) is also a 4-canonical ordering. Therefore G

′′
has a grid

drawing in the same triangle. Hence we have the following main theorem.

Theorem 1. Algorithm Draw finds in linear time a grid drawing of a given
4-connected plane graph G on a W × H grid such that W = dn/2e − 1 and
H = W + 1 = dn/2e if there are four or more vertices on the contour Co(G).

Proof. If step 6 in Draw does not introduce any edge-intersection, then algorithm
Draw correctly finds a grid drawing of G and clearly the size of a drawing of G
satisfies W = W

′
and H = H

′
+ H

′
+ 1. (See Fig. 2.) By Lemma 2(a) W

′
=

dn/2e − 1 and H
′
= W

′
/2. Therefore W = dn/2e − 1 and H = W + 1 = dn/2e.

Thus we shall show that step 6 does not introduce any edge-intersection.
An oblique side of each isosceles right-angled triangle has slope +1 and the

other oblique side has slope −1. The two vertices of the triangles opposite to
the bases are separated by distance 1 and have the same x-coordinate. Therefore
the absolute value of the slope of any straight line connecting a point in the
triangle of G

′
and a point in the triangle of G

′′
is greater than the slope H/W =

1 + 1/W (> 1) of a diagonal of the W × H rectangle. Thus, the absolute value
of the slope of any edge connecting a vertex on Co(G

′
) and a vertex on Co(G

′′
)

is greater than 1. On the other hand, by Lemma 2(b) the absolute value of the
slope of every edge on Co(G

′
) or Co(G

′′
) is less than or equal to 1. Furthermore,
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by Lemma 2(c) both the drawing of the path from v1 to v2 on Co(G
′
) and the

drawing of the path from vn−1 to vn on Co(G
′′
) are x-monotone. Therefore, the

straight line drawing of any edge of G connecting a vertex on Co(G
′
) and a

vertex on Co(G
′′
) does not intersect the drawings of G

′
and G

′′
. Furthermore

the drawings of all these edges do not intersect each other since G is a plane
graph and the drawings of the two paths above are x-monotone. Thus step 6
does not introduce any edge-intersection.

By Lemma 1 one can execute steps 1 and 2 of procedure Draw in linear
time. By Lemma 2 one can execute steps 3 and 4 in linear time. Clearly one can
execute steps 5 and 6 in linear time. Thus Draw runs in linear time. 2

3 Drawing G
′

In this section, we show how to find a drawing of G
′

satisfying the conditions
(a), (b) and (c) in Lemma 2. It suffices to decide only the coordinates of all
vertices of G

′
, because one can immediately find a straight line drawing from

the coordinates.
We first define some terms. Let Π = (v1, v2, · · · , vn) be a 4-canonical ordering

of G. For any two vertices vi, vj ∈ V , we write vi ≺ vj iff 1 ≤ i < j ≤ n, and
write vi � vj iff 1 ≤ i ≤ j ≤ n. We will show later that the following lemma
holds.

Lemma 3. If (u, v) is an edge in G
′
and u � v, then the y-coordinates of vertices

u and v decided by our algorithm satisfy y(u) ≤ y(v).

We say that a vertex u in a graph G is a smaller neighbor of v if u is a
neighbor of v and u is smaller than v, that is u ≺ v. Similarly, we say that
u is a larger neighbor of v if u is a neighbor of v and u � v. The smallest
one among the neighbors of vertex v is called the smallest neighbor of v, and
is denoted by ws(v). We often denote ws(v) simply by ws. Let 3 ≤ k ≤ n,
and let Co(Gk−1) = w1, w2, · · · , wm, where w1 = v1 and wm = v2. Since G is
internally triangulated, all the smaller neighbors of vk consecutively appear on
Co(Gk−1). Thus one may assume that they are wl, wl+1, · · · , wr for some l and
r, 1 ≤ l < r ≤ m.

We now have the following lemma.

Lemma 4. Let Π = (v1, v2, · · · , vn) be a 4-canonical ordering of G, and let
wl, wl+1, · · · , wr be the smaller neighbors of vk, 3 ≤ k ≤ n. Then the following
(a) and (b) hold:

(a) there is no index t such that l < t < r and wt−1 ≺ wt � wt+1; and
(b) wl � wl+1 � · · · � ws � · · · � wr, and y(wl) ≥ y(wl+1) ≥ · · · ≥ y(ws) ≤

· · · ≤ y(wr) where ws = ws(vk).

Proof. (a) Assume for a contradiction that there is an index t such that l < t < r
and wt−1 ≺ wt � wt+1. Let wt = vi, 1 ≤ i ≤ k − 1. Since vk is adjacent to
wt−1, wt and wt+1 in Gk, wt = vi is neither on Co(Gk) nor on Co(G) and hence
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3 ≤ i ≤ n − 2. Therefore by the condition (co2) of the 4-canonical ordering,
wt has at least two larger neighbors. Let vj be the largest one among the wt’s
neighbors except vk. Then wt = vi ≺ vj 6= vk. Clearly vertex vj is either in the
triangular face vk, wt, wt−1 of graph Gk or in the triangular face vk, wt+1, wt.
Since wt ≺ vj and wt−1 ≺ wt � wt+1, we have vj 6= wt−1, wt+1. Therefore vj

must be in the proper inside of one of the two faces above. Since vj is not on
Co(G), we have 3 ≤ j ≤ n − 2. Since vj is not in Gk−1, we have vk−1 ≺ vj and
hence vk ≺ vj . Therefore vk is contained in Gj , and hence vj is not on Co(Gj),
contrary to the condition (co2) of the 4-canonical ordering.

(b) Since ws � wr, by (a) we have ws � ws+1 � · · · � wr. Therefore by
Lemma 3 we have y(ws) ≤ y(ws+1) ≤ · · · ≤ y(wr). Similarly we have y(wl) ≥
y(wl+1) ≥ · · · ≥ y(ws).

2

We are now ready to show how to find a drawing of G
′
. First, we put vertices

v1, v2, v3 on grid points (0, 0), (2, 0) and (1, 1) so that G3 is drawn as an isosceles
right-angled triangle. Clearly the conditions (b) and (c) in Lemma 2 hold for
G3. Next, for each k, 4 ≤ k ≤ dn/2e, we decide the x-coordinate x(vk) and the
y-coordinate y(vk) of vk so that the conditions (b) and (c) in Lemma 2 hold
for Gk. One may assume that the conditions hold for Gk−1. Let Co(Gk−1) =
w1, w2, · · · , wm, and let wl, wl+1, · · · , wr be the smaller neighbors of vk. Since the
condition (c) of Lemma 2 holds for Gk−1, the drawing of the path wl, wl+1, · · · , wr

is x-monotone. Furthermore, by Lemma 4(b), we have y(wl) ≥ y(wl+1) ≥ · · · ≥
y(ws) ≤ · · · ≤ y(wr), as illustrated in Fig. 4.

We always shift a drawing of Gk−1 to the x-direction before adding vertex
vk, as illustrated in Fig. 4. We have to determine which vertices of Gk−1 must
be shifted to the x-direction. Thus we will maintain a set U(vk) for each vertex
vk, 1 ≤ k ≤ dn/2e. This set will contain vertices located “under” vk that need to
be shifted whenever vk is shifted. Initially, we set U(vk) = {vk} for k = 1, 2, 3.
For k, 4 ≤ k ≤ dn/2e, we set U(vk) = {vk} ∪ (∪r−1

i=l+1U(wi)). Thus all vertices
in U(vk) except vk are not on Co(Gk). The shift operation on a vertex wj ,
denoted by shift(wj), is achieved by increasing the x-coordinate of each vertex
u ∈ ⋃m

i=j U(wi) by 1 [3,4,6,9,10,11].
We then show how to decide y(vk) and x(vk). Let ymax be the maximum value

of y-coordinates of wl, wl+1, · · · , wr, then either ymax = y(wl) or ymax = y(wr).
There are the following six cases:

(i) y(wl) < y(wr) = ymax;
(ii) ymax = y(wl) > y(wr);
(iii) y(wl) = y(wr) = ymax, l < s < r and y(wl+1) 6= ymax;
(iv) y(wl) = y(wr) = ymax, l < s < r and y(wl+1) = ymax;
(v) y(wl) = y(wr) = ymax and s = l; and
(vi) y(wl) = y(wr) = ymax and s = r.

We first consider the three cases (i), (iii) and (v). In these cases ymax = y(wr).
We decide y(vk) and x(vk) as follows. We first execute shift(ws+1), that is, we
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increase the x-coordinates of all vertices ws+1, ws+2, · · · , wm and all vertices
under them by 1, as illustrated in Figs. 4(a), (b) and (c). We then decide

y(vk) =
{

ymax if y(wr−1) < ymax;
ymax + 1 if y(wr−1) = ymax,

and
x(vk) = x(ws) + y(vk) − y(ws).

We denote the slope of a straight line segment uv by slope(uv). Then clearly
we have

slope(wsvk) =
y(vk) − y(ws)
x(vk) − x(ws)

= 1.

Since y(vk) ≥ y(wl) ≥ y(ws) and x(wl) ≤ x(ws) < x(vk), we have

0 ≤ slope(wlvk) =
y(vk) − y(wl)
x(vk) − x(wl)

≤ slope(wsvk) = 1

as illustrated in Figs. 4(a), (b) and (c).
If y(wr−1) < ymax, then y(vk) = ymax = y(wr) and hence slope(vkwr) = 0

as illustrated in Fig. 4(a). On the other hand, if y(wr−1) = ymax, then y(vk) =
y(wr) + 1, x(vk) ≤ x(wr) − 1 and hence we have

−1 ≤ slope(vkwr) =
y(wr) − y(vk)
x(wr) − x(vk)

< 0

as illustrated in Figs. 4(b) and (c).
The absolute slope of each straight line segment on Co(Gk) except wlvk and

vkwr is equal to its absolute slope on Co(Gk−1), and hence is at most 1.
Thus the condition (b) in Lemma 2 holds for Gk.
One can easily observe that the condition (c) in Lemma 2 holds for Gk.

We next consider the remaining three cases (ii), (iv) and (vi). In these cases
we decide y(vk) and x(vk) in a mirror image way of the cases (i), (iii) and (v)
above. That is, we execute shift(ws), and decide

y(vk) =
{

ymax if y(wl+1) < ymax;
ymax + 1 if y(wl+1) = ymax,

and
x(vk) = x(ws) − (y(vk) − y(ws)).

Then, similarly as in Case 1 above, the conditions (b) and (c) hold for Gk.
Since we decide the y-coordinate as above, Lemma 3 clearly holds.
We are now ready to prove Lemma 2.

Proof of Lemma 2 As shown above, the conditions (b) and (c) hold. Therefore
the absolute value of the slope of every edge on Co(G

′
) is at most 1, and the

drawing of the path going clockwise on Co(G) from v1 to v2 is x-monotone.
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(a)
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Fig. 4. How to put vk.

The drawing of G3 has width 2. We execute the shift operation once when
we add a vertex vk, 4 ≤ k ≤ n′ = dn/2e, to the drawing of Gk−1. Therefore
the width W

′
of the drawing of G

′
is W

′
= 2 + (n′ − 3) = dn/2e − 1. Since the

conditions (b) and (c) hold, the height is at most W
′
/2. Therefore G

′
is drawn

in an isosceles right-angled triangle whose base has length W
′

= dn/2e − 1
and whose height is H

′
= W

′
/2. Obviously (v1, v2) is drawn as the base of the

triangle. Thus the condition (a) holds.

We then show that the drawing of G
′

obtained by our algorithm is a grid
drawing. Our algorithm puts each vk, 4 ≤ k ≤ dn/2e, on a grid point. Clearly
each edge (vk, wj), l ≤ j ≤ r, does not intersect any edge of Gk−1. Furthermore,
similarly to the proof of Lemma 2 in [6], one can easily prove by induction on
k that any number of executions of the shift operation for Gk−1 introduce no
edge-intersection in Gk−1. Thus our algorithm obtains a grid drawing of G

′
.

All operations in our algorithm except the shift operation can be executed
total in time O(n). A simple implement of the shift operation takes time O(n),
and our algorithm executes the shift operation at most dn/2e times. Therefore a
straightforward implementation would take time O(n2). However, using a data
structure in [6] representing the sets U(wi), 1 ≤ i ≤ m, one can implement the
shift operation so that the total time required by the operation is O(n).

Thus our algorithm finds a drawing of G
′
in time O(n). 2
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