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Abstract. A convex grid drawing of a plane graph G is a drawing of G
on the plane so that all vertices of G are put on grid points, all edges
are drawn as straight-line segments between their endpoints without any
edge-intersection, and every face boundary is a convex polygon. In this
paper we give a linear-time algorithm for finding a convex grid drawing
of any 4-connected plane graph G with four or more vertices on the
outer face boundary. The algorithm yields a drawing in an integer grid
such that W + H ≤ n − 1 if G has n vertices, where W is the width
and H is the height of the grid. Thus the area W × H of the grid is at
most d(n − 1)/2e · b(n − 1)/2c. Our bounds on the grid sizes are optimal
in the sense that there exist an infinite number of 4-connected plane
graphs whose convex drawings need grids such that W + H = n − 1 and
W × H = d(n − 1)/2e · b(n − 1)/2c.

1 Introduction

Recently automatic aesthetic drawing of graphs created intense interest due
to their broad applications. As a consequence, many drawing methods appea-
red [BETT99,CK97,CN98,CON85,CP95,CYN84,Fa48,FPP90,He97,Ka96,Sc90],
[Tu63]. In this paper, we deal with the “convex grid drawing” of a plane graph.
Throughout the paper we denote by n the number of vertices of a graph G. The
W ×H integer grid consists of W +1 vertical grid lines and H +1 horizontal grid
lines, and has a rectangular contour. W and H are called the width and height
of the integer grid, respectively.

The most typical drawing of a plane graph G is the straight line drawing in
which all vertices of G are drawn as points and all edges are drawn as straight
line segments without any edge-intersection. A straight line drawing of G is
called a grid drawing of G if the vertices of G are put on grid points of integer
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Fig. 1. Nested quadrangles attaining our bounds.

coordinates. Every plane graph has a grid drawing on an (n − 2) × (n − 2)
grid [BETT99,CP95,FPP90,Sc90]. A straight line drawing of a plane graph G is
often aesthetically pretty if every face boundary is drawn as a convex polygon
[CON85,Tu63]. Such a drawing is called a convex drawing of G. Not every plane
graph has a convex drawing, but every 3-connected plane graph has a convex
drawing [Tu63], and such a grid drawing can be found in linear time [CON85,
CYN84]. A convex drawing is called a convex grid drawing if it is a grid drawing.
Every 3-connected plane graph has a convex grid drawing on an (n−2)× (n−2)
grid, and such a grid drawing can be found in linear time [CK97,ST92]. The
size of an integer grid required by a convex grid drawing would be smaller than
(n − 2) × (n − 2) for 4-connected plane graphs, but it has not been known how
small the grid size is.

In this paper we give an answer to this problem. That is, we give an algorithm
which finds in linear time a convex grid drawing of any given 4-connected plane
graph G on an integer grid such that W +H ≤ n−1 if G has four or more vertices
on the outer face boundary. Since W+H ≤ n−1, W×H ≤ d(n−1)/2e·b(n−1)/2c.
The outer face boundary of G is always drawn as a rectangle as illustrated in
Figs. 1 and 5(d). The assumption that a given plane graph has four or more
vertices on the outer face boundary does not lose much generality, because any
4-connected plane graph has at least three vertices on the outer face boundary.
Our bounds on W + H and W × H are optimal in the sense that there exist an
infinite number of 4-connected plane graphs, for example the nested quadrangles
depicted in Fig. 1, which need grids such that W + H = n − 1 and W × H =
d(n − 1)/2e · b(n − 1)/2c. Thus the area of an integer grid can be reduced to
1/4 and the contour length to half for 4-connected plane graphs than those for
3-connected plane graphs. It should be noted that any 4-connected plane graph
G with four or more vertices on the outer face boundary has a grid drawing on
a rectangular grid with W + H ≤ n [He97] and on an almost square grid with
W = d(n − 1)/2e and H = d(n − 1)/2e [MNN99], but the the drawing is not
always convex.
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2 Preliminaries

In this section we introduce some definitions and a lemma.
Let G = (V, E) be a simple connected undirected graph having no multiple

edge or loop. V is the vertex set, and E is the edge set of G. Let x(v) and y(v) be
the x- and y-coordinates of vertex v ∈ V , respectively. An edge joining vertices
u and v is denoted by (u, v). The degree of a vertex v in G is the number of
neighbors of v in G, and is denoted by d(v, G). The connectivity κ(G) of a graph
G is the minimum number of vertices whose removal results in a disconnected
graph or a single-vertex graph K1. A graph G is k-connected if κ(G) ≥ k.

A graph is planar if it can be embedded in the plane so that no two edges
intersect geometrically except at a vertex to which they are both incident. A
plane graph is a planar graph with a fixed embedding. A plane graph divides the
plane into connected regions called faces. We denote the boundary of a face by
a clockwise sequence of the vertices on the boundary. We call the boundary of
the outer face of a plane graph G the contour of G, and denote it by Co(G).

The “4-canonical decomposition” of a plane graph G [NRN97] playing a
crucial role in our algorithm is a generalization of two well-known concepts:
the “canonical ordering,” which is used to find a convex grid drawing of a 3-
connected plane graph [Ka96]; and the “4-canonical ordering,” which is used
to find a “visibility representation” and a grid drawing of a 4-connected plane
graph [He97,KH97,MNN99]. A 4-canonical decomposition Π = (U1, U2, · · · , U12)
is illustrated in Fig. 2 for a 4-connected plane graph. Let m be a natural number,
and let Π = (U1, U2, · · · , Um) be a partition of set V to m subsets U1, U2, · · · , Um

of V where U1
⋃

U2
⋃ · · ·⋃ Um = V and Ui

⋂
Uj = φ for any i and j, i 6= j. Let

Gk, 1 ≤ k ≤ m, be the plane subgraph of G induced by the vertices in U1
⋃

U2
⋃ · · ·⋃ Uk, and let Gk be the plane subgraph of G induced by the vertices in

Uk+1
⋃

Uk+2
⋃ · · ·⋃ Um. Thus G = Gm = G0. We say that Π is a 4-canonical

decomposition of G if the following three conditions are satisfied:

(co1) U1 consists of the two ends of an edge on Co(G), and Um consists of the
two ends of another edge on Co(G);

(co2) for each k, 2 ≤ k ≤ m − 1, both Gk and Gk−1 are biconnected (in Fig. 3
Gk is darkly shaded, and Gk−1 is lightly shaded); and

(co3) for each k, 2 ≤ k ≤ m − 1, one of the following three conditions holds
(the vertices in Uk are drawn by black circles in Fig. 3):

(a) Uk is a singleton set of a vertex u on Co(Gk) such that d(u, Gk) ≥ 2 and
d(u, Gk−1) ≥ 2 (see Fig. 3(a)).

(b) Uk is a set of two or more consecutive vertices on Co(Gk) such that d(u, Gk)
= 2 and d(u, Gk−1) ≥ 3 for each vertex u ∈ Uk (see Fig. 3(b)).

(c) Uk is a set of two or more consecutive vertices on Co(Gk) such that d(u, Gk)
≥ 3 and d(u, Gk−1) = 2 for each vertex u ∈ Uk (see Fig. 3(c)).

Although the definition of a 4-canonical decomposition above is slightly different
from that in [NRN97], they are effectively equivalent to each other. The following
lemma is known.
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Fig. 2. A 4-canonical decomposition of a 4-connected plane graph having n = 21
vertices.
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Fig. 3. Illustration for the three conditions (a)–(c) of (co3).

Lemma 1. [NRN97] Let G be a 4-connected plane graph having at least four
vertices on Co(G). Then G has a 4-canonical decomposition Π, and Π can be
found in linear time.

By the condition (co3), one may assume that for each k, 1 ≤ k ≤ m, the
vertices in Uk consecutively appear clockwise on Co(Gk). However, the clockwise
order on Co(G1) is not well-defined since G1 = K2. So we assume that the two
vertices in U1 consecutively appear counterclockwise on Co(G) as illustrated
in Fig. 2. We number all vertices of G by 1, 2, · · · , n so that they appear in
U1, U2, · · · , Um in this order, and call each vertex in G by the number i, 1 ≤ i ≤ n.
Thus one can define an order < among the vertices in G.

In the remainder of this section, we define some terms which are used in
our algorithm. The lower neighbor of u is the neighbors of u which are smaller
than u. The upper neighbor of u is the neighbors of u which are larger than u.
Every upper neighbor v of any vertex u satisfies y(v) ≥ y(u) in our drawing. The
number of lower neighbors of u is denoted by dlow(u, G), and the number of upper
neighbors of u is denoted by dup(u, G). Every vertex u except vertex 1 satisfies
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dlow(u, G) ≥ 1, and every vertex u except vertex n satisfies dup(u, G) ≥ 1.
Let 2 ≤ k ≤ m − 1 and Uk = {u1, u2, · · · , uh}. If Uk satisfies the condition
(co3)(a), then h = 1 and dlow(u1), dup(u1) ≥ 2. If Uk satisfies condition (co3)(b),
then dlow(ui) = 1 for each ui, 1 ≤ i ≤ h − 1, dlow(uh) = 2, dup(ui) ≥ 3 for
each ui, 1 ≤ i ≤ h − 1, and dup(uh) ≥ 2. If Uk satisfies condition (co3)(c),
then dlow(u1) ≥ 2, dlow(ui) ≥ 3 for each ui, 2 ≤ i ≤ h, dup(u1) = 2, and
dup(ui) = 1 for each ui, 2 ≤ i ≤ h. We denote by wm(u) the largest neighbor of
u, 1 ≤ u ≤ n − 1. The in-degree of a vertex u in a directed graph D is denoted
by din(u, D), while the out-degree of u is denoted by dout(u, D).

3 Algorithm

In this section, we present our algorithm which finds a convex grid drawing of
any given 4-connected plane graph G with four or more vertices on the contour
Co(G). Our algorithm determines only the integer coordinates of the vertices
1, 2, · · · , n of G effectively in this order. One can immediately find a (straight line)
grid drawing of G from the coordinates. We first determine the x-coordinates of
all vertices, and then determine the y-coordinates.

3.1 How to Compute x-Coordinates

We first show how to compute the x-coordinates of all vertices. Our algorithm
puts vertices on the same vertical grid line as many as possible to reduce the
width W of the drawing. Suppose that vertex i has been put on a grid point. If
possible, we put an upper neighbor j of i on the same vertical grid line as i, that
is, we determine x(j) = x(i) and hence y(j) > y(i) of course, as illustrated in
Fig. 4. We wish to choose as j the largest neighbor wm(i) of i (this is crucial for
making every face boundary a convex polygon). However, it is impossible for a
case where wm(i) has been already put on the same vertical grid line as a vertex
i

′
(< i), which was put on a grid point before i, that is, wm(i

′
) = wm(i). Thus,

if there exist upper neighbors of i which have not been put on the same vertical
grid line as any vertex i

′
(< i), then we put the largest one j among them on

the same vertical grid line as i. If there dose not exist such an upper neighbor
of i, then we do not put any vertex (> i) on the same vertical grid line as i.
In this way, the following procedure Construct-F constructs a directed forest
F = (V, EF ). All vertices in each component of F have the same x-coordinate;
if there is a directed edge (i, j) in F , then x(j) = x(i) and y(j) > y(i).

Procedure Construct-F
begin {F = (V, EF )}

1 EF := φ ; {the initial forest F = (V, φ) consists of isolated vertices}
2 for i := 1 to n do

if vertex i has upper neighbors j such that din(j, F ) = 0 then
3 let j be the largest one among them, and add a directed edge (i, j)

to the directed graph F , that is, EF := EF

⋃{(i, j)};
end.
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Fig. 5. Illustration of our algorithm.
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Since din(i, F ), dout(i, F ) ≤ 1 for each vertex i, 1 ≤ i ≤ n, F is a forest and
each component of F is a directed path. Clearly din(1, F ) = din(2, F ) = 0 and
dout(n − 1, F ) = dout(n, F ) = 0. Fig. 5(b) illustrates the directed forest F of the
graph G in Fig. 5(a). Both the path 1, 13, 20 going clockwise on Co(G) from 1
to n − 1 = 20 and the path 2, 14, 21 going counterclockwise on Co(G) from 2 to
n = 21 are directed paths in F , and hence these two paths are put on vertical
grid lines as shown in the bottom figure of Fig. 5(d). Each of the other paths in
F is put on a vertical grid line, too.

We then show how to arrange the paths in F from left to right. That is,
we determine a total order among all starting vertices of paths in F . For this
purpose, using the following procedure Total-Order, we find a directed path
P going from vertex 1 to vertex 2 passing through all starting vertices of F . In
Fig. 5(c), the directed path P is drawn by dotted lines.

Procedure Total-Order
begin

1 let P be the path directly going from vertex 1 to vertex 2;
2 for i := 3 to n do

if din(i, F ) = 0 then {i is a starting vertex of a path in F}
begin

3 let j be the first lower neighbor of i in the i’s adjacency list in which
the i’s neighbors appear counterclockwise around i, and the first
element of which is wm(i);

4 let j
′
be the starting vertex of the path in F containing vertex j;

{2 6= j
′
< i}

5 let k be the successor of j
′
in path P ; {the path starting from vertex

k in F has been put next to the right of the path starting from
vertex j

′
as illustrated in Fig. 6(a)}

6 insert i in P between j
′
and k; {the path starting from i in F is

put between the path starting from j
′
and the path starting from k

as illustrated in Fig. 6(b)}
end

end.

1
2

ij

j' k

1 2

i
j

j ' k

(a) (b)

Fig. 6. Illustration of Total-Order.
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We construct a weighted tree T rooted at vertex 1 by adding the path P to
the forest F ; every edge of F has weight 0, and every edge of P has weight 1 in
T . (See Fig. 5(c).) Then the x-coordinate x(i) of each vertex i, 1 ≤ i ≤ n, is the
length of the path from root 1 to i in T . Thus x(1) = 0, and the width W = x(2)
of our drawing is equal to the number of paths in F except one starting from
vertex 1, i.e., the number of vertices of in-degree 0 in F except vertex 1. Thus
one may regard that a vertex of in-degree 0 in F except vertex 1 increases W
by one.

3.2 How to Compute y-Coordinates

We now show how to compute y-coordinates. For each k, 1 ≤ k ≤ m, y-
coordinates of all vertices in Uk = {u1, u2, · · · , uh} are determined as the same
integer, which is denoted by y(Uk). Thus the path u1, u2, · · · , uh on Co(Gk)
is drawn as a horizontal line segment connecting points (x(u1), y(Uk)) and
(x(uh), y(Uk)). (See Fig. 5(d).) Furthermore, we determine the y-coordinates
y(U1), y(U2), · · · , y(Um) in this order. Thus H = y(Um).

We first determine the y-coordinate y(U1) of U1 = {1, 2} as y(Uk) = 0. Thus
we draw G1 = K2 as a horizontal line segment connecting points (x(1), 0) and
(x(2), 0), as illustrated in the top figure of Fig. 5(d).

Suppose that y(U1), y(U2), · · · , y(Uk−1), k ≥ 2, have already been determi-
ned, that is, Gk−1 has already been drawn, and we are now going to determine
y(Uk) and obtain a drawing of Gk by adding the vertices in Uk to the dra-
wing of Gk−1. Let Co(Gk−1) = w1, w2, · · · , wt, where w1 = 1 and wt = 2. Let
Co(Gk) = w1, w2, · · · , wl, u1, u2, · · · , uh, wr, · · · , wt, where 1 ≤ l < r ≤ t. Let
ymax be the maximum value of y-coordinates of vertices wl, wl+1, · · · , wr; all
these vertices were on Co(Gk−1), but all these vertices except wl and wr are not
on Co(Gk). (See Fig. 7.) Clearly we must determine y(Uk) ≥ ymax to obtain
a plane drawing of Gk. Our algorithm determines y(Uk) to be either ymax or
ymax + 1 so that the height H of the drawing becomes as small as possible.
There are the following six cases.

Uk uhu1

1 2

wl

rw

(f) 

y(U )  k ymax=

Case 6

Gk -1

wl +1

Uk uh
u1

1 2

wl
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y(U )  k ymax=

Uk uh
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(c) 
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Uk uh
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Fig. 7. Illustration for the six cases.
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Case 1: ymax > y(wl), y(wr). (See Fig. 7(a).)
In this case, if we determined y(Uk) = ymax, then Gk could not be a plane

drawing. Therefore we determine y(Uk) = ymax + 1.
Case 2: ymax = y(wl) = y(wr). (See Fig. 7(b).)

In this case, if we determined y(Uk) = ymax, then Gk might not be a plane
drawing. Therefore we determine y(Uk) = ymax + 1.
Case 3: ymax = y(wl) > y(wr), and F has a directed edge (wl, u1), that is,
x(wl) = x(u1). (See Fig. 7(c).)

In this case, if we determined y(Uk) = ymax, then vertices wl and u1 would
overlap each other. Therefore we determine y(Uk) = ymax + 1.
Case 4: ymax = y(wl) > y(wr), and F does not have a directed edge (wl, u1),
that is, x(wl) < x(u1). (See Fig. 7(d).)

In this case, we determine y(Uk) = ymax.
Case 5: ymax = y(wr) > y(wl), and F has a directed edge (wr, uh), that is,
x(wr) = x(uh). (See Fig. 7(e).)

In this case, if we determined y(Uk) = ymax, then vertices wr and uh would
overlap each other. Therefore we determine y(Uk) = ymax + 1.
Case 6: ymax = y(wr) > y(wl), and F does not have a directed edge (wr, uh),
that is, x(uh) < x(wr). (See Fig. 7(f).)

In this case, we determine y(Uk) = ymax.

We then have the following theorem.

Theorem 1. Our algorithm takes linear time.

Proof. By Lemma 1, a 4-canonical decomposition can be found in linear time.
Clearly the forest F and the rooted tree T can be found in linear time, and the
x-coordinates of vertices can be found from T in linear time. Furthermore, the
y-coordinates can be found in linear time as above. Thus our algorithm runs in
linear time.

4 Proof for Convex Grid Drawing

In this section, we prove that our algorithm finds a convex grid drawing of G.
Since clearly every vertex has integer coordinates, it suffices to show that the
drawing obtained by our algorithm is a convex drawing.

If Uk = {u1, u2, · · · , uh} satisfies the condition (co3)(b), then for each i,
2 ≤ i ≤ h− 1, din(ui, F ) = 0 and hence ui is a starting vertex of a directed path
of F . Similarly, if Uk satisfies the condition (co3)(c), then for each i, 2 ≤ i ≤ h−1,
dout(ui, F ) = 0 and hence ui is an ending vertex of a directed path of F . We
thus have the following lemma.

Lemma 2. Let 2 ≤ k ≤ m, let Uk = {u1, u2, · · · , uh}, and let Co(Gk) =
w1, w2, · · · , wl, u1, u2, · · · , uh, wr, · · · , wt, where w1 = 1, wt = 2, and 1 ≤ l <
r ≤ t. Then x(wl) ≤ x(u1) < x(u2) < · · · < x(uh) ≤ wr.
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Since y(Uk) is equal to either ymax or ymax + 1, the following lemma clearly
holds.

Lemma 3. If vertices u and v are adjacent and u < v, then y(u) ≤ y(v).

Our algorithm finds the drawing of G1, G2, · · · , Gm(= G) in this order, as
illustrated in Fig. 5(d). Thus, assuming that the drawing of Gk−1, k ≥ 2, is
convex, we shall show that the drawing of Gk is convex. However, it is difficult
to show that the drawing of Gk is convex for the case where either k = m or Uk,
2 ≤ k ≤ m − 1, satisfies the condition (co3)(c). Therefore, subdividing all such
sets Uk, we obtain another partition of V as follows. Let Π = (U1, U2, · · · , Um)
be a 4-canonical decomposition of G. For each Uk such that either k = m
or Uk satisfies the condition (co3)(c), let Uk = {u1, u2, · · · , ulk} and replace
Uk in Π with singleton sets {u1}, {u2}, · · · , {ulk}. We call the resulting par-
tition Π

′
= (U1, U

1
2 , U2

2 , · · · , U l2
2 , U1

3 , U2
3 , · · · , U l3

3 , · · · , U1
m, U2

m) of V a refined
decomposition of G. If either k = m or Uk satisfies the condition (co3)(c), then
Uk = U1

k

⋃
U2

k

⋃ · · ·⋃ U lk
k , lk = |Uk| and |U i

k| = 1 for each i, 1 ≤ i ≤ lk.
Otherwise, lk = 1 and Uk = U1

k .
For each k, 2 ≤ k ≤ m, and for each i, 1 ≤ i ≤ lk, we denote by Gi

k the plane
subgraph of G induced by the vertices in U1

⋃
U2

⋃ · · ·⋃ Uk−1
⋃

U1
k

⋃
U2

k

⋃ · · ·⋃
U i

k. Moreover, for each k, 2 ≤ k ≤ m, and for each i, 0 ≤ i ≤ lk − 1, we denote
by Gi

k the plane subgraph of G induced by the vertices in U i+1
k

⋃
U i+2

k

⋃ · · ·⋃ U lk
k⋃

Uk+1
⋃ · · ·⋃ Um. For notational convenience, let G0

k = Gk−1 and Glk
k = Gk.

Let k ≥ 2 and U i
k = {u1, u2, · · · , uh}. By the definition of a refined de-

composition, vertices u1, u2, · · · , uh consecutively appear clockwise on Co(Gi
k)

in this order. Let Co(Gi−1
k ) = w1, w2, · · · , wt, where w1 = 1 and wt = 2. Let

Co(Gi
k) = w1, w2, · · · , wl, u1, u2, · · · , uh, wr, · · · , wt, where 1 ≤ l < r ≤ t. We call

wl the left leg of U i
k, and wr the right leg of U i

k. By the definition of a 4-canonical
decomposition and a refined decomposition, the left leg of U i

k is different from
the right leg of U i

k.
We now have the following lemma for the drawing of Gi

k.

Lemma 4. For each k, 2 ≤ k ≤ m, and each i, 0 ≤ i ≤ lk, the following (i)–(iii)
hold:

(i) the path going clockwise on Co(Gi−1
k ) from vertex w1 = 1 to vertex wt = 2

is “x-monotone,” that is, x(w1) ≤ x(w2) ≤ · · · ≤ x(wt) (such a path is drawn by
thick solid lines in Fig. 8);

(ii) the path going clockwise on Co(Gi−1
k ) from wl to wr is “quasi-convex,”

that is, there is no vertex wp such that l < p < r and y(wp−1) < y(wp) >
y(wp+1) (all vertices in such a path are drawn by gray circles in Fig. 8), and
wl, wl+1, · · · , wr, wl is a convex polygon in particular if Uk satisfies the condition
(co3)(b) (as illustrated in Fig. 8(a)); and

(iii) if a vertex v on Co(Gi−1
k ) is an inner vertex of G, that is, v is not on

Co(G), and the interior angle of the polygon Co(Gi−1
k ) at vertex v is less than

180◦, then v has at least one neighbor in Gi−1
k (the edges joining v and such

neighbors are drawn by thin dotted line in Fig. 8).
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Proof. Investigating the algorithm in detail and using Lemmas 2 and 3, one can
prove the lemma. The detail is omitted in this extended abstract due to the page
limitation.

1 2

rw
wl

(a) 

wp

wp -1 wp +1

Uk
i

Uk
i

| | >= 2

Uk
i

Gk
i -1

1 2

rw
wl

wp

wp -1 wp +1

Gk
i -1

(b) Uk
i

| | =1

Fig. 8. Illustration for Lemma 5.

Using Lemma 4, one can prove that our algorithm obtains a convex grid
drawing. Note that all inner face boundaries newly formed in Gi

k are convex
polygons as illustrated in Fig. 8 (all such faces are not shaded in Fig. 8).

5 Grid Size

In this section, we prove the following theorem.

Theorem 2. Our algorithm finds a convex grid drawing of G on a grid such
that W + H ≤ n − 1.

Proof. Due to the page limitation, we outline a proof in this extended abstract.
We denote the height of the drawing of Gi

k by H(Gi
k). We say that a vertex

uj ∈ U i
k, 3 ≤ uj ≤ n, is increasing if din(uj , F ) = 0 and H(Gi

k) = H(Gi−1
k ) + 1,

that is, uj increases W +H by two. We say that a vertex uj ∈ U i
k is preserving if

din(uj , F ) 6= 0 and H(Gi
k) = H(Gi−1

k ), that is, uj preserves W +H. In particular,
we say that vertex 1 is preserving, since the graph consisting of only vertex 1
can be drawn on a 0×0 grid with W +H = 0. Vertex 2 is neither increasing nor
preserving, since G1 can be drawn on a 1 × 0 grid with W + H = 1 and hence
vertex 2 increases W +H by one. Let I be the set of all increasing vertices in G,
and let P be the set of all preserving vertices in G. Then each of the vertices in
V − P − I increases W + H by one. Therefore W + H = 2|I| + (n − |I| − |P |) =
n + |I| − |P |. Investigating the method for deciding x- and y-coordinates of
vertices in detail, one can prove that for each increasing vertex v there is at least
one preserving vertex (other than vertex 1) around v and all these preserving
vertices are distinct from each other. For example, if u1 is increasing in Case 1
illustrated in Fig. 7(a), then u2 is preserving. (The detail is omitted in this
extended abstract.) Thus we have |P | ≥ |I| + 1, and hence W + H ≤ n − 1.
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