
Labeling Points with Rectangles of Various
Shapes

Shin-ichi Nakano1, Takao Nishizeki2, Takeshi Tokuyama2, and
Shuhei Watanabe2

1 Department of Information Engineering, Gunma University, Kiryu 376-8515,
Japan, Email: nakano@cs.gunma-u.ac.jp

2 Graduate School of Information Sciences, Tohoku University, Aobayama, Sendai
980-8579, Japan. Emails: (nabe,nishi)@nishizeki.ecei.tohoku.ac.jp,

tokuyama@dais.is.tohoku.ac.jp

Abstract. We deal with a map-labeling problem, named LOFL (Left-
part Ordered Flexible Labeling), to label a set of points in a plane with
polygonal obstacles. The label for each point is selected from a set of
rectangles with various shapes satisfying the left-part ordered property,
and is placed near to the point after scaled by a scaling factor σ which is
common to all points. In this paper, we give an optimal O((n+m) log(n+
m)) algorithm to decide the feasibility of LOFL for a fixed scaling factor
σ, and an O((n + m) log2(n + m)) time algorithm to find the largest
feasible scaling factor σ, where n is the number of points and m is the
number of edges of polygonal obstacles.

1 Introduction

Annotating a set of points is a common task to be performed in Geographic
Information Systems. It is crucial that important objects in a map have labels
indicating their names or other attributes. The objects to be labeled in a map
highly depend on user’s interest; for example, a drainage maintainer may want
to have locations and identification labels of manholes, although they are almost
useless information for ordinary users. Therefore, a digital map should have a
database of sets of points representing locations of objects together with labels
of the objects, and should have a function to insert labels to a non-labeled map
efficiently.

The problem of locating labels in a map is called the map labeling (or map
lettering) [9,14,15,16]. Approximating a label (a string of characters) by its
bounding rectangle, one can formulate the map-labeling problem as the problem
of locating a set of n rectangles in a plane (with obstacles containing m edges) in
a way that (1) each rectangle representing a label of an object should be near to
the object, (2) rectangles do not overlap each other, and (3) each rectangle does
not overlap any obstacle in the map. The condition (1) will be mathematically
formulated in a suitable fashion.

We restrict ourselves to the point feature label placement problem, where each
object is a point (object point) in the map. The rightmost point of an object

J. Marks (Ed.): GD 2000, LNCS 1984, pp. 91–102, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



92 S.-i. Nakano et al.

is often chosen as an object point. Moreover, we only consider axis parallel
rectangles as labels. See [3,7] for more complicated labeling problems.

If the size of each character is given (therefore, the size of each label is
given), we want to decide whether there exists a feasible solution satisfying the
conditions (1), (2), and (3) above. Such a problem is called the decision problem.
We also want to consider the optimization problem in which we compute the
maximum character size σ, called a scaling factor, for which there is a feasible
solution. For convenience’s sake, we assume that rectangles are closed, but we
allow a rectangle to touch other rectangles or obstacles on its boundary.

The decision problem is hard in general: Formann and Wagner [5] showed
that if there are four candidates of the placement for each label, it is NP-hard in
general to decide the feasibility. Indeed, it is NP-hard even if each label is a unit
square and must be placed in a way that the corresponding object point is at
one of its four corners (four-position model); we say that such a label is pinned
at a corner. Kato [8] showed that the problem remains to be NP-hard if there
are three candidates for each label.

On the other side, if each label is a unit square pinned at one of its two
left corners (two-position model), the problem is polynomial time solvable. In
general, if there are at most two candidates of the placement for each label,
the problem is polynomial-time solvable since it can be formulated as a 2-SAT
problem [5]. Moreover, approximation algorithms with provable approximation
ratios are given for several useful versions of the map labeling [9,14]. If we fix the
scaling factor and measure the quality of the solution by the number of labels
that can be placed without overlapping, there are PTAS algorithms for several
cases [1,9].

We deal with another type of a map labeling, called a shape-flexible labeling,
where we can flexibly choose the shape of each label from a candidate set of
rectangles. The chosen labels are placed in the map after scaled by a scaling
factor σ which is common for all labels. The problem of deciding the feasibility
of a shape-flexible labeling problem is NP-hard in general, and the complexity
of solving the problem heavily depends on features of candidate sets. If each
candidate set is the set of all rectangles with a given area, the labeling is called
an elastic labeling, and some special cases were investigated by Iturriaga and
Lubiw [6].

Our motivation is as follows: Consider a rectangular label representing a
character string of length l. It needs width l (character units) if it is written in
a single line. However, we can fold the label to decrease the width. Moreover, in
the Chinese (also Japanese or Korean) language system, we can write a character
string vertically, and hence we can transpose a label (i.e. exchange its width and
height). It is often seen that folding and transposition can improve the labeling
layout: Suppose that we represent a character string “GSIS”1 by using three
ways: horizontal, in two lines, and vertical. Each of the first three pictures (a),
(b), and (c) of Figure 1 illustrates a label placement using single-shape labels

1 acronym of “Graduate School of Information Sciences”



Labeling Points with Rectangles of Various Shapes 93

pinned at the left-upper corner. The picture (d) shows the improvement of the
scaling factor if we can use three different kinds of shapes all together.

�D� �E�

*6

,6

*6

,6

*6

,6

*6

,6

*6

,6

*6

,6

*6

,6

*6

,6

*6

,6

*6

,6
*6

,6

*6

,6

*6,6

*6,6

*6,6

*6,6

*6,6

*6,6

*6,6

*6,6

*6,6

*6,6
*6,6

*6,6

�F� �G�

*

6

,

6

*

6

,

6

*6,6

*6

,6

*

6

,

6

*6,6

*6

,6

*6,6

*6

,6

*

6

,

6

*

6

,

6
*6,6

*

6

,

6

*

6

,

6

*

6

,

6

*

6

,

6

*

6

,

6

*

6

,

6

*

6

,

6

*

6

,

6 *

6

,

6

*

6

,

6

*

6

,

6

*

6

,

6

Fig. 1. Placements using three kinds of labels. Each of (a),(b), and (c) uses a single
kind of labels, whereas (d) uses three kinds of labels.

Therefore, the following fixed-corner-position shape-flexible labeling problem
naturally arises:

Suppose that we have n points and each point has a set of candidate
labels of various rectangular shapes pinned at the upper-left corner. The
label for each point must be selected from the candidate set and placed
after scaled by σ. How difficult is it to find the largest scaling factor σ
to label all points?

In this paper, we propose a new class of shape-flexible labeling problems,
named Left-part Ordered Flexible Labeling (LOFL), where the candidate set of
rectangles given to each object point must be a left-part ordered set. The defini-
tion of a left-part ordered set will be given in the next section; a typical example
is a set of rectangles pinned at their left-upper corners. Thus, the fixed-corner-
position shape-flexible labeling problem is a special case of LOFL.

We show that the decision problem for LOFL can be solved in O((n +
m) log(n + m)) time by a simple plane-sweep algorithm. As a consequence, the
optimization problem for LOFL can be solved in O((n+m) log(n+m) log Γ ) time
if the coordinate values of points are represented by log Γ -bit integers. We also
give an O((n+m) log2(n+m)) time algorithm for the optimization problem. To
design this algorithm, we use the parametric search paradigm in a novel way; we
use parallel sort and point location query to design a “guide algorithm” required
for the parametric search.

Our method can be used as a subroutine in heuristic algorithms for a practical
labeling system. We have done a preliminary experiment on the ability of LOFL
to enlarge the labeling size compared to single-shaped models.



94 S.-i. Nakano et al.

2 Preliminaries

2.1 Left-Part Ordered Sets

A set R of rectangles in the plane is totally ordered with respect to inclusion if
any pair R and R′ of rectangles in R satisfies either R ⊆ R′ or R′ ⊆ R.

For a rectangle L representing a label, we fix a point q(L), which we call
the pinning point of L, in the closure of L. Consider a set L of rectangles with
pinning points as a set of candidate labels. Suppose that we place the rectangles
in L so that their pinning points are translated to the origin. Let H− be the
closed halfplane defined by x ≤ 0. L ∩H− (or its translated/scaled copy if L is
translated/scaled) is called the left-part of L.

Then, L− = {L ∩H−|L ∈ L} is a set of rectangles. If L− is totally ordered,
we say the set L satisfies the left-part ordered property, and call the set L a
left-part ordered set.

We say that a left-part ordered set L is degenerate if the pinning point of
each label L ∈ L is on the left edge; in other word, L∩H− is a vertical segment.
Otherwise, we say L is non-degenerate. Figure 2 (a) is an example of a degenerate
left-part ordered set, and Figure 2 (b) is an example of non-degenerate left-part
ordered set. For simplicity, we mainly consider a degenerate left-part ordered set
to describe algorithms and proofs, since it is routine to generalize them for a
non-degenerate case.

SLQQLQJ�SRLQW

�D�

SLQQLQJ�SRLQW

�E�

Fig. 2. (a) A degenerate left-part ordered set consisting of four rectangles, and (b) a
nondegenerate left-part ordered set.

We are given a set P = {p1, p2, . . . , pn} of n object points on the plane.
Let pi = (xi, yj) for i = 1, 2, . . . , n. We also consider a set Q of polygonal (not
necessarily rectilinear) obstacles in the plane, which no label is permitted to
overlap. We permit labels to touch obstacles. We assume that the obstacles do
not intersect each other. Let m be the number of edges of polygons in Q. A left-
part ordered set Li of rectangular labels is given to each object point pi ∈ P . Li
and Lj may be different from each other if i 6= j.

Let σ be a positive real value, called a scaling factor. We choose a suitable
label Li from Li for each pi ∈ P , scale Li by the factor σ, and place it in the plane



Labeling Points with Rectangles of Various Shapes 95

so that its pinning point is located at pi. The placement L = {L1, L2, . . . , Ln}
is called feasible if (1) no two labels overlap each other and (2) no label overlaps
any obstacle. Our aim is to find the largest scaling factor σ for which a feasible
placement exists, and to compute the placement.

We assume that there is no pair of labels L and L′ in Li such that L ⊂ L′,
since we need not use the larger label L′ (called a redundant label) in our solution.
If we have a label set with such pairs, we preprocess the label sets by removing
all redundant labels.

We define an order > on the set Li as follows: L > L′ for two labels L and
L′ in Li if and only if L ∩H− ⊃ L′ ∩H−. We say that L′ is left-smaller than L
if L > L′.

Using the order, we can naturally give a lexicographical order among the
set of feasible solutions (for a fixed σ) as follows: We sort the object points
p1, p2, . . . , pn in nonincreasing order with respect to the x-coordinates, and re-
arrange the numbering; hence, p1 is the rightmost point and pn is the leftmost
point. Let L = (L1, L2, ..., Ln) and L′ = (L′

1, L
′
2, ..., L

′
n) be two different feasible

placements where Li ∈ Li and L′
i ∈ Li are labels for pi, 1 ≤ i ≤ n. Then we

define L > L′ if there is an index j such that Lj > L′
j and Li = L′

i for every
i < j. The minimum feasible placement with respect to this order is called the
left-minimum solution.

Let N =
∑n
i=1 |Li|: N is the number of all candidate rectangles. In Geogra-

phic Information System, the cardinality of a left-part ordered set for a point is
usually bounded by a constant. Therefore, we assume N = O(n) in this paper,
although it is not difficult to generalize our argument to the cases where N is
much larger than n. Indeed, the decision problem can be solved without increa-
sing the time complexity even if the label set of each point is an infinite set,
provided that we have an efficient (in precise, O(log(n + m)) amortized time)
method to query the left-smallest label that does not intersect the “frontier”
defined in Section 3.2. A typical example is the fixed-corner-position elastic la-
beling problem, where each label set consists of all rectangles with same area
and each label is pinned at its upper-left corner. Another example is the 1-slider
model labeling problem proposed by van Kreveld et al.[9].

2.2 Approximation Hardness for Label Sets without Left-Part
Ordered Property

Before presenting algorithms for LOFL, we remark that the left-part ordered
property is crucial for designing a polynomial time algorithm. Indeed, it is NP-
hard to compute a feasible placement whose scaling factor is larger than 1

2 + ε
times the optimal scaling factor for any positive constant ε. The hardness result
can be easily obtained by modifying the reduction of the planar 3SAT problem to
a labeling problem with three candidate labels [8], and hence the proof is omitted
in this version. On the other hand, one cannot construct an “alternating cycle”
gadget representing a graph-edge in the reduction if only a left-part ordered set
is allowed to each point.



96 S.-i. Nakano et al.

3 Decision Problem

3.1 Algorithm for the Decision Problem

In this section, we present an O((n + m) log(n + m)) time algorithm to solve
the decision problem for a fixed scaling σ. Without loss of generality, we may
assume σ = 1 in this section. We first sort the object points in nonincreasing
order with respect to the x-coordinate values, and re-arrange the numbering as
we noted before. We start with the following observation:

Lemma 1. Let L = (L1, L2, . . . , Ln) be a feasible placement, and let 1 ≤ i ≤ n.
If there is a label L ∈ Li which is left-smaller than Li and intersects none of the
labels L1, L2, . . . , Li−1 and the obstacles, then we can replace Li by L to obtain
another feasible placement L′, where L′ = (L1, L2, . . . , Li−1, L, Li+1, . . . , Ln).

Proof. Suppose for a contradiction that the placement L′ is infeasible. Then
there must be an index j > i such that the label Lj assigned to pj in the original
placement L intersects L. Since pj is located to the left of pi, Lj must intersect
the left-part of L. However, Lj must also intersect the left-part of Li because L
is left-smaller than Li. This contradicts the feasibility of the original placement
L.

From this observation, we can design a simple incremental algorithm, named
DECIDE, to decide the feasibility. It is clear that DECIDE is correct, and it
outputs the left-minimum solution if the input instance is feasible:

Algorithm DECIDE
(*decide the feasibility of a LOFL instance for a given σ)
1. for i← 1 to n
2. do
3. if every label in Li overlaps an obstacle or a label placed so far
4. then return “The problem is infeasible”
5. else assign pi the left-smallest label Li that overlaps

neither any obstacle nor any label placed so far
6. fi
7. end
8. return L = (L1, L2, . . . , Ln) as a feasible solution

3.2 Implementation and Analysis of the Algorithm

We give an implementation of DECIDE by using a standard plane sweep method,
and show that it takes O((n + m) log(n + m)) time. We remark that the plane
sweep method is widely used in the rectangle placement and labeling problems;
See for example, van Kreveld et al. [9].

First, we assume for simplicity that there is no obstacle, and give an algorithm
for the case; we will briefly explain later how to modify it for the case with
obstacles. For a label L, its right-part width is the horizontal distance between



Labeling Points with Rectangles of Various Shapes 97

its pinning point and its right edge. As a preprocessing, we sort the rectangles
in Li in descending order of right-part width for each i = 1, 2, . . . , n. It takes
O(N log N) = O(n log n) time. For each set Li and a positive real number w, let
Li(w) be the left-smallest label in Li whose right-part width is at most w.

Let U be a set of geometric objects (in our case, placed labels) in the plane,
and let l be a vertical line, then we say that a point q in an object in U is
left-visible from l if q is on the right of l and the horizontal half-line emanating
from q to the left does not intersect any objects of U until it meets l. The union
of all left-visible points of objects in U is called the frontier of U at l.

We denote by L[i] the labeling of points p1, p2, . . . , pi obtained by the algo-
rithm DECIDE. Recall that pi = (xi, yi). For t, xi > t ≥ xi+1, the frontier of
L[i] at the vertical line x = t is a union of all left-visible segments on left edges
of labels (rectangles) in L[i]. The frontier has O(i) segments, and its orthogonal
projection onto the y-axis induces a partition of the y axis into O(i) intervals
(in precise, at most 2i+1 intervals). The sorted list Proj(L[i]) of these intervals
with respect to the y-coordinate values of the endpoints is called the projected
frontier. To each interval I in the projected frontier, we assign the x-coordinate
value xI of the segment in the frontier whose projected image is I. The value
xI is set to be ∞ if there is no label in L[i] whose projection contains I. We
implement the list Proj(L[i]) of intervals by using a suitable dynamic binary-
search data structure [11]. Thus, we can find the interval I containing yi+1 in
time O(log n), and scan the list of intervals in O(log n) time per interval.

Our plane sweep algorithm moves the sweep line x = t to the left from
t = ∞ to t = −∞. While xi > t ≥ xi+1, we maintain the projected frontier
Proj(L[i]) together with the values xI for all intervals I. When the sweep line
comes to t = xi+1, we insert a label of pi+1 to L[i], and update Proj(L[i]) to
Proj(L[i + 1]). We omit details in this version because of space limitation.

Proposition 1. The time complexity of the algorithm is O(n log n).

The decision problem is at least as difficult as the element uniqueness pro-
blem [13], and hence the O(n log n) time complexity is optimal on the algebraic
decision tree model.

If there are obstacles, the framework of the algorithm is the same as one
described above. However, the frontier contains “parts” of obstacles as well as
left edges of placed labels. Each of such parts may be a segment of an edge of
an obstacle or a connected component of the intersection of obstacles and the
sweep line. If a part is a segment of an edge, the corresponding interval in the
projected frontier should contain the equation of the edge.

A major difficulty is in handling of obstacles intersecting the sweep line. For
each connected component of the intersection of obstacles with the sweep line,
we have an interval, which linearly changes in the parameter t, in the projected
frontier. Such an interval or its adjacent interval may shrink and be eliminated.
Therefore, we need to consider a new type of events where an interval in the
projected frontier is eliminated. However, the number of such events is O(n+m).
We maintain a priority queue to query the earliest elimination time of intervals in



98 S.-i. Nakano et al.

the projected frontier. This priority queue can be updated in O(log(m+n)) time
per each of insertion, deletion and cut-down operations of intervals. Analogously
to the analysis in the previous subsection, we can prove that O(n+m) intervals in
the projected frontier are inserted, deleted, or cut down in the whole plane sweep
procedure. Hence, we can maintain the priority queue in O((n + m) log(n + m))
time in total.

4 Optimization Problem

4.1 A Precision-Dependent Algorithm

We consider the problem of finding the maximum feasible value of the scaling
factor σ. A simple binary search algorithm on σ works; the algorithm for the
decision problem can decide whether we should try a larger σ or a smaller one
than the current scaling factor for the next search. If coordinate values of all
points are integral and Γ is the maximum of their absolute value, then it suffices
to run the algorithm given in Section 3.1 an O(log Γ ) number of times (note
that Γ 2 ≥ n). Thus, we have:

Theorem 1. The optimization problem of LOFL can be solved in
O((n + m) log(n + m) log Γ ) time.

4.2 Precision-Independent Algorithms

The binary search algorithm above is efficient for practical inputs for which
log Γ = O(log(n + m)) holds. However, an efficient algorithm with time comple-
xity independent of Γ is desirable from the theoretical point of view. We design
such an O((n + m) log2(n + m)) time algorithm for the optimization problem.

One possible method is to consider the conflict graph of candidate labels,
and first list up all possible critical values of σ, and then apply the binary search
to the list. For several labeling problems [5], a list of size O(n) of the critical
values can be found, and the above method is efficient. This is because the size
of the conflict graph at σ = σopt is reduced to O(n) for those problems if “clearly
useless” labels are omitted. Unfortunately, the property does not hold for the
LOFL, and we do not know how to obtain such a list of size o(n2). Thus, we
apply another approach.

Meggido’s parametric search [10] is a famous method to transform a precision-
dependent binary search algorithm into a precision-independent algorithm. Es-
pecially, the method is quite useful in computational geometry [12].

We give a brief introduction to the parametric search paradigm (see [12] for
details). Suppose that F is a 0-1 valued monotone function on a parameter θ:
there is a value θopt such that F (θ) = 1 if θ ≤ θopt and F (θ) = 0 if θ > θopt. Our
aim is to compute the value θopt. Parametric search assumes that the following
two algorithms, A and D, for computing F (θ) for a given value θ are available:
The algorithm D is called a decision algorithm, which is the fastest available



Labeling Points with Rectangles of Various Shapes 99

algorithm to compute F (θ). Assume that D takes O(TD) time. The other algo-
rithm A is called a guide algorithm. We simulate the behavior of A for θ = θopt
without knowing the value θopt in cooperation with the decision algorithm D,
and find the value θopt in the course of the simulation. It is advantageous to
use a guide algorithm that has a parallel structure, although we do not use a
parallel machine in our computation. If A takes O(tA) parallel time with M
processors, then we can simulate A for θ = θopt without inputting the value θopt
in O(tAM log M + tATD log M) sequential time. Cole’s acceleration method [4]
can often improve the time complexity to O(tAM log M + tATD).

Let us consider our LOFL problem. We define a monotone function F as
follows: F (σ) = 1 if and only if there is a feasible placement for the scaling factor
σ. We can use the parametric search paradigm regarding σ as the parameter.
We use DECIDE for the decision algorithm. Unfortunately, for our problem,
a guide algorithm with tA = O(log(n + m)) and M = O(n + m) seems to
be difficult to design. To overcome the difficulty, we adopt a “heterogeneous”
version of parametric search. The heterogeneous parametric search paradigm
uses a “weaker” guide algorithm A that cannot compute F (σ) itself even if σ is
given as an input. Instead, A computes another function G(σ), where the range
of G(σ) is not {0, 1} but is a much larger category. The required condition is
that G(σ) = G(σ′) always implies F (σ) = F (σ′) for any σ and σ′. Intuitively, G
gives a refinement of F . In particular, we will use a guide algorithm consisting
of parallel sort and point location query algorithms.

The idea of the heterogeneous parametric search was implicitly given in Me-
giddo’s paper [10], in which he solved a problem on the parametric minimum
spanning tree of a graph by using a parallel sorting algorithm as its guide al-
gorithm. Cole [4] dealt with the heterogeneous parametric search in which the
guide algorithm is a parallel sort using a sorting network. However, to the aut-
hor’s knowledge, this is the first time that a heterogeneous parametric search
algorithm using a guide algorithm involving a computational geometric proce-
dure is proposed.

4.3 Parametric Search Algorithm for LOFL

As preprocessing of our parametric search algorithm, we prepare a point loca-
tion data structure from the set Q of polygonal obstacles as follows: We first
construct a triangulation D(Q) of the plane into O(m) triangles so that each
triangle is either contained in an obstacle or completely outside obstacles. All
vertices, edges, and triangles in D(Q) are called faces of D(Q). Then, we prepare
a point location data structure so that we can find the face of D(Q) containing
a query point in O(log m) time. The triangulation and the point location data
structure can be constructed in O(m log m) time (e.g. [13]), and we do not need
to construct it in parallel since it is independent of the value of the scaling factor.

Let L = ∪ni=1Li be the set of all candidate labels, and let S(σ) be the set of
corner points of rectangles in L after scaled by σ and placed so that the pinning
points come to their corresponding object points in P . Let V (Q) be the set of
all vertices of polygonal obstacles in Q.



100 S.-i. Nakano et al.

Our guide algorithm first computes the sorting lists X(S(σ) ∪ V (Q)) and
Y (S(σ)∪V (Q)) of the point set S(σ)∪V (Q) with respect to x- and y-coordinate
values, and then locates all points of S(σ) in D(Q) in parallel.

A pair τ and σ of parameter values are called equivalent to each other if (1)
X(S(σ)∪V (Q)) = X(S(τ)∪V (Q)), (2) Y (S(σ)∪V (Q)) = Y (S(τ)∪V (Q)) and
(3) each point in S(τ) is contained in the same face of D(Q) as the corresponding
point in S(σ) is.

Lemma 2. Let σ and τ be equivalent, then there is a feasible solution of LOFL
for the scaling factor τ if and only if there is a feasible solution for σ. Moreover,
there is no value τ 6= σopt such that τ is equivalent to σopt.

Hence, by simulating our guide algorithm, we can compute σopt. Sorting
of O(n + m) elements can be done by applying AKS sorting network [2] in
O(log(n+m)) parallel time using O(n+m) processors. The point location query
can be done in parallel for each of O(n) points in O(log m) time. Thus, the guide
algorithm runs in O(log(n + m)) time using O(n + m) processors, Moreover, we
can apply Cole’s acceleration method [4]. Hence, our parametric search algorithm
runs in O((n + m) log2(n + m)) sequential time. Thus, we have obtained the
following theorem:

Theorem 2. In O((n+m) log2(n+m)) time, we can find the maximum scaling
factor permitting a feasible labeling of LOFL of n points in a plane with polygonal
obstacles of m edges.

5 Heuristics by Using LOFL

In a practical GIS system, a map labeling problem is often given in a form that
is theoretically NP-hard. Therefore, heuristics methods or hybrid methods are
often effective in practice [14,15,16]. LOFL can be used as a powerful weapon
to design heuristics combined with other methods. Suppose we have a feasible
labeling with a scaling factor σ given by some method, and want to improve
the factor by changing the shape of labels. Let Li be the label for pi ∈ P
in the labeling. In place of the single label Li, to each pi ∈ P , we assign an
appropriate left-part ordered set Li such that Li 3 Li. Thus, we have an instance
of LOFL. The scaling factor in the solution of this LOFL instance is larger than
or equal to σ, and is often much larger than σ. This can be considered as a “local
improvement routine,” which is an important tool in meta-heuristics.

5.1 A Heuristic Algorithm for the Two-Position LOFL

Suppose that we are given an instance for which the set of candidate labels for
each pi ∈ P is a union of two left-part ordered sets Li and Mi. We call this
model two-position LOFL, since it can be regarded as a combination of LOFL
and the two-position model [5,9]. As we have noted before, the problem is NP-
hard to approximate the optimal scaling factor within a ratio 1

2 + ε; therefore,



Labeling Points with Rectangles of Various Shapes 101

we need a heuristic. We solve the two-position LOFL by using a combination of
solutions of LOFL and 2LABEL, where 2LABEL is an algorithm for solving the
two-position labeling problem where we have (at most) two candidate rectangles
for each object point. Forman and Wagner [5] gave an efficient implementation
of 2LABEL.

If we have an oracle to determine from which of Li or Mi the label for pi,
i = 1, 2, . . . , n, should be selected, we can reduce the problem to LOFL. In our
heuristic, we use 2LABEL to substitute for such an oracle. We can also use LOFL
to construct an instance of 2LABEL. We omit details in this version. Thus, we
alternately apply 2LABEL and LOFL until the increase of the scaling factor
stops. We can similarly combine the one-slider (vertical slider) model [9] and
LOFL.

6 Preliminary Experimental Results

We have done a preliminary experiment to see the ability of LOFL to enlarge
the scaling factor. We compared four different labeling models: (1) fixed-position
model, (2) LOFL, (3) two-position model , and (4) two-position LOFL.

In precise, for each object point, we assign the following candidate labels for
the respective labeling models: (1) A left-upper pinned rectangle with height 3σ
and breadth 4σ. (2) A set of six kinds of left-upper pinned rectangles of area 12σ2

whose height-breadth ratios are 12, 3, 4/3, 3/4, 1/3, and 1/12 (they correspond
to factorizations of 12 to 12× 1, 6× 2 and 4× 3). (3) A pair of rectangles with
height 3σ and breadth 4σ, one of which is left-upper pinned and the other is
left-lower pinned2. (4) A set of rectangles consisting of those in (2) and their
reflected copies pinned at the left-lower corner.

We randomly generate n integral object points in a square region of size
50000 × 50000 for each of n = 20, 40, 60, and 80. We did not place obstacles.
Table 1 shows the average scaling factor over 1000 instances for each of (1), (2),
(3), and (4) for each of n. Note that the table does not indicate the quality of
labeling outputs: Although (2) can use labels with a larger area than (3), it does
not say that it is better than (3), since a labeling with various shapes is often
less beautiful than a labeling with a single shape. Indeed, in a practical map
labeling instance, only a portion of the point set should be given labels with
various shapes.

7 Concluding Remarks

Our current implementation of LOFL in the experiment is rather naive; We
are preparing for an experiment by using larger and practical instances, and
performance of algorithms will be reported there.

In practical applications, we often want to have an algorithm to place as
many labels as possible for a given instance of LOFL which is infeasible for a
2 It is also a LOFL if we rotate the instance by 90◦.



102 S.-i. Nakano et al.

Table 1. Scaling factors of the labeling models

fixed-position LOFL two-position two-position LOFL
n=20 447 1146 1044 1477
n=40 235 643 550 835
n=60 155 445 359 598
n=80 115 333 250 467

fixed scaling factor σ. Design of efficient algorithms or heuristics for this problem
is an important future problem.

References

1. P. Agarwal, M. van Kreveld, and S. Suri, Label placement by maximum inde-
pendent set in rectangles, Computational Geometry, Theory and Applications, 11
(1998) 209–218.

2. M. Ajtai, J. Komlos, and E. Szemeredi, Sorting in c log(n) parallel steps, Combi-
natorica, 3 (1983), pp.1–19.

3. H. Aonuma, H. Imai, K. Imai, and T. Tokuyama, Maximin locations of convex
objects in a polygon and related dynamic Voronoi diagrams, Proc. 6th ACM Symp.
on Computational Geometry (1990) 225–234.

4. R. Cole, Slowing down sorting network to obtain faster sorting algorithms, J. ACM,
34 (1987) 200–208.

5. M. Formann and F. Wagner, A packing problem with applications to lettering of
maps, Proc. 7th ACM Symp. on Computational Geometry (1991) 281–290.

6. C. Iturriaga and A. Lubiw, Elastic labels around the perimeter of a map, Proc.
WADS’99 (1999) 306–317

7. K. Kakoulis and I. Tollis, A unified approach to labeling graphical features, Proc.
14th ACM Symp. on Computational Geometry (1998) 347–356.

8. K. Kato, Studies on the Geometric Location Problems, L1 Approximation and
Character Placing, Master Thesis, Kyushu University (February 1989).

9. M. van Kreveld, T. Strijk, and A. Wolff, Point set labeling with sliding labels,
Computational Geometry, Theory and Applications, 13 (1999) 21–47.

10. N. Megiddo, Applying parallel computation algorithms in the design of serial al-
gorithms, J. ACM, 30 (1983) 852–865.

11. K. Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching, ETACS
Monograph 1, Springer Verlag, 1984.

12. J. Salowe, Parametric search, Section 37 of Handbook of Discrete and Computatio-
nal Geometry, 683–695, (ed. J. Goodman and R. Polack), (1997) CRC Press.

13. I. Shamos and F. Preparata, Computational Geometry – An Introduction, Springer
Verlag, 1985.

14. F. Wagner and A. Wolff, A practical map labeling heuristics algorithm Computa-
tional Geometry, Theory and Applications, 7 (1997) 387–404.

15. F. Wagner and A. Wolff, A combinatorial framework for map labeling, Proc. Graph
Drawing ’98, LNCS 1547 (1998) 316–331.

16. M. Yamamoto, G. Camara, L. Lorena, Tabu search heuristics for point-
feature cartographical label placement, GeoInformatica (2000) (also see
http://www.lac.inpe.br/˜lorena/missae/index.html)


	Labeling Points with Rectangles of Various Shapes
	Introduction
	Preliminaries
	Left-Part Ordered Sets
	Approximation Hardness for Label Sets without Left-Part Ordered Property

	Decision Problem
	Algorithm for the Decision Problem
	Implementation and Analysis of the Algorithm

	Optimization Problem
	A Precision-Dependent Algorithm
	Precision-Independent Algorithms
	Parametric Search Algorithm for LOFL

	Heuristics by Using LOFL
	A Heuristic Algorithm for the Two-Position LOFL

	Preliminary Experimental Results
	Concluding Remarks
	References


