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Abstract. A canonical decomposition, a realizer, a Schnyder labeling
and an orderly spanning tree of a plane graph play an important role in
straight-line grid drawings, convex grid drawings, floor-plannings, graph
encoding, etc. It is known that the triconnectivity is a sufficient condition
for their existence, but no necessary and sufficient condition has been
known. In this paper, we present a necessary and sufficient condition
for their existence, and show that a canonical decomposition, a realizer,
a Schnyder labeling, an orderly spanning tree, and an outer triangular
convex grid drawing are notions equivalent with each other. We also show
that they can be found in linear time whenever a plane graph satisfies
the condition.

1 Introduction

Recently automatic aesthetic drawing of graphs has created intense interest due
to their broad applications, and as a consequence, a number of drawing methods
have come out [3–9, 11–13, 15, 18, 21, 23]. The most typical drawing of a plane
graph G is the straight line drawing in which all vertices of G are drawn as points
and all edges are drawn as straight line segments without any edge-intersection.
A straight line drawing of G is called a grid drawing if the vertices of G are put
on grid points of integer coordinates. A straight line drawing of G is called a
convex drawing if every face boundary is drawn as a convex polygon [4, 22, 23].
A convex drawing of G is called an outer triangular convex drawing if the outer
face boundary is drawn as a triangle, as illustrated in Fig. 1.

A canonical decomposition, a realizer, a Schnyder labeling and an orderly
spanning tree of a plane graph G play an important role in straight-line draw-
ings, convex grid drawings, floor-plannings, graph encoding, etc. [1, 2, 5–8, 12,
13, 15–18, 21]. It is known that the triconnectivity is a sufficient condition for
their existence in G [5, 10, 12, 21], but no necessary and sufficient condition has
been known. In this paper, we present a necessary and sufficient condition for
their existence, and show that a canonical decomposition, a realizer, a Schnyder
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Fig. 1. An outer triangular convex drawing of a plane graph.

labeling, an orderly spanning tree, and an outer triangular convex grid drawing
are notions equivalent with each other. We also show that they can be found in
linear time whenever G satisfies the condition. Algorithms for finding them have
only been available for the triconnected case.

2 Main Theorem and Definitions

Let G be a plane biconnected simple graph. We assume for simplicity that the
degrees of all vertices are larger than or equal to three, since the two edges
adjacent to a vertex of degree two are often drawn on a straight line. Our main
result is the following theorem; some terms will be defined later.

Theorem 1. Let v1, v2 and v3 be vertices on the outer face Fo(G) of G appear-
ing counterclockwise in this order, as illustrated in Fig. 2. Let P1 be the path
from v1 to v2 on Fo(G), let P2 be the path from v2 to v3, and let P3 be the path
from v3 to v1. Then the following six propositions (a)–(f) are equivalent with
each other.

(a) G has a canonical decomposition with respect to v1, v2 and v3.
(b) G has a realizer with respect to v1, v2 and v3.
(c) G has a Schnyder labeling with respect to v1, v2 and v3.
(d) G has an outer triangular convex grid drawing such that Fo(G) is drawn as

a triangle v1v2v3.
(e) G is internally triconnected, and has no separation pair {u, v} such that

both u and v are on the same path Pi, 1 ≤ i ≤ 3. (See Figs. 1,2,3,4.)
(f) G has an orderly spanning tree such that v3 is the root, v1 is the minimum

leaf, and v2 is the maximum leaf.

It is known that (a)⇒(b), (b)⇔(c) and (c)⇒(d) [10, 12, 21]. Furthermore,
(d)⇒(e) holds as shown later in Lemma 1. In this paper, we complete a proof of
Theorem 1 by proving (e)⇒(a) in Section 3 and (b)⇔(f) in Section 4.

In the remainder of this section, we present some definitions and known
lemmas.

We denote by G = (V, E) an undirected simple graph with vertex set V and
edge set E. Let n be the number of vertices of G. An undirected edge joining
vertices u and v is denoted by (u, v). We denote by 〈u, v〉 a directed edge from
u to v.
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Fig. 2. Illustration for the necessary
and sufficient condition.

v1
v2

v3

P3

v

u

H

Fig. 3. A separation pair {u, v} on P3.

A graph is planar if it can be embedded in the plane so that no two edges
intersect geometrically except at a vertex to which they are both incident. A
plane graph is a planar graph with a fixed embedding. A plane graph divides the
plane into connected regions called faces. We denote by Fo(G) the outer face of
G. The boundary of Fo(G) is also denoted by Fo(G). A vertex on Fo(G) is called
an outer vertex, while a vertex not on Fo(G) is called an inner vertex. An edge
on Fo(G) is called an outer edge, while an edge not on Fo(G) is called an inner
edge.

We call a vertex v of G a cut vertex if its removal from G results in a dis-
connected graph. A graph G is biconnected if G has no cut vertex. We call a
pair {u, v} of vertices in a biconnected graph G a separation pair if its removal
from G results in a disconnected graph, that is, G − {u, v} is not connected. A
biconnected graph G is triconnected if G has no separation pair. A plane bicon-
nected graph G is internally triconnected if, for any separation pair {u, v} of G,
both u and v are outer vertices and each connected component of G − {u, v}
contains an outer vertex. In other words, G is internally triconnected if and only
if it can be extended to a triconnected graph by adding a vertex in an outer
face and joining it to all outer vertices. An internally triconnected plane graph
is depicted in Fig. 1, where all the vertices of separation pairs are drawn as white
circles. If a biconnected plane graph G is not internally triconnected, then G has
a separation pair {u, v} as illustrated in Figs. 4(a)–(c) and a “split component”
H contains a vertex other than u and v.

We now have the following lemma.

Lemma 1. (d)⇒(e).

Proof. Suppose that a biconnected plane graph G is not internally triconnected.
Then G has a separation pair {u, v} as illustrated in Figs. 4(a)–(c), and a “split
component” H has a vertex w other than u and v. The degree of w is larger
than or equals to three by the assumption of this paper, and hence the two faces
marked by × cannot be simultaneously drawn as convex polygons. Thus G has
no outer triangular convex drawing.

Suppose that G has a separation pair {u, v} such that both u and v are
on Pi, 1 ≤ i ≤ 3, as illustrated in Fig. 3. Then G has no outer triangular
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Fig. 4. Biconnected plane graphs which are not internally triconnected.

convex drawing, because Pi must be drawn as a straight line segment, the split
component H has a vertex of degree three or more other than u and v, and hence
the face marked by × in Fig. 3 cannot be drawn as a convex polygon.

The two facts above immediately implies (d)⇒(e). �

We then define a canonical decomposition [5]. Let V = {u1, u2, · · · , un}. Let
u1, u2 and un be three outer vertices appearing counterclockwise on Fo(G) in
this order. We may assume that u1 and u2 are consecutive on Fo(G); otherwise,
let G be the graph obtained by adding a virtual edge (u1, u2) to the original
graph. Let Π = (V1, V2, · · · , Vh) be an ordered partition of V into nonempty
subsets V1, V2, · · · , Vh. Then V1

⋃
V2

⋃ · · ·⋃ Vh = V and Vi

⋂
Vj = ∅ for any

indices i and j, 1 ≤ i < j ≤ h. We denote by Gk, 1 ≤ k ≤ h, the subgraph
of G induced by V1

⋃
V2

⋃ · · ·⋃ Vk, and by Gk the subgraph of G induced by
Vk+1

⋃
Vk+2

⋃ · · ·⋃ Vh. Note that G = Gh. We say that Π is a canonical decom-
position of G (with respect to u1, u2 and un) if the following three conditions
(cd1)–(cd3) hold:

(cd1) V1 consists of all the vertices on the boundary of the inner face containing
the outer edge (u1, u2), and Vh = {un}.

(cd2) For each index k, 1 ≤ k ≤ h, Gk is internally triconnected.
(cd3) For each index k, 2 ≤ k ≤ h, all the vertices in Vk are outer vertices of

Gk, and
(a) if |Vk| = 1, then the vertex w in Vk has two or more neighbors in Gk−1

and has at least one neighbor in Gk when k < h; and
(b) if |Vk| ≥ 2, then the vertices in Vk consecutively appear on Fo(Gk),

each of the first and last vertices in Vk has exactly one neighbor in
Gk−1, and all the other intermediate vertices in Vk have no neighbor
in Gk−1, and each vertex in Vk has at least one neighbor in Gk.

A canonical decomposition of the graph in Fig. 1 is illustrated in Fig. 5.
Although the definition of a canonical decomposition above is slightly different
from one in [5], they are effectively equivalent with each other. The following
lemma is known.

Lemma 2. [5] Every triconnected plane graph G has a canonical decomposition.

The definition of a realizer [10] is omitted in this extended abstract, due to
the page limitation. The following lemma is known on a realizer and a canonical
decomposition.
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Fig. 5. A canonical decomposition Π = (V1, V2, · · · , V15) of the graph G in Fig. 1.

Lemma 3. [10] If a plane graph G has a canonical decomposition with respect
to u1, u2 and un, then G has a realizer with respect to u1, u2 and un.

The definition of a Schnyder labeling [12, 21] is omitted in this extended
abstract, due to the page limitation. The following three lemmas are known on
the Schnyder labeling.

Lemma 4. [12, 21] Every triconnected plane graph G has a Schnyder labeling,
and it can be computed in linear time.

Lemma 5. [12] A plane graph G has a realizer if and only if G has a Schnyder
labeling.

Lemma 6. [12] If a plane graph G has a Schnyder labeling with respect to a1, a2

and a3, then G has an outer triangular convex grid drawing such that Fo(G) is
drawn as a triangle a1a2a3 and the size of grid is (n − 1) × (n − 1).

We then define an orderly spanning tree [1, 2, 17]. Let T be a spanning tree of
G rooted at an outer vertex u1 of G. Let u1, u2, · · · , un be the counterclockwise
preordering of vertices in T as illustrated in Fig. 6, where T is drawn by thick
lines and each vertex ui, 1 ≤ i ≤ n, is attached an index i. We call the leaf uα

of T having the maximum index the maximum leaf of T . Clearly α = n. We
call the leaf uβ having the minimum index the minimum leaf of T . We say that
two distinct vertices of G are unrelated if any of them is not an ancestor of the
other in T . Let N(ui) be the set of all the neighbors of ui in G. The set N(ui)
is partitioned into the following four subsets N1(ui), N2(ui), N3(ui) and N4(ui):

N1(ui) = {uj ∈ N(ui) | uj is the parent of ui in T },
N2(ui) = {uj ∈ N(ui) | j < i, uj is not the parent of ui},
N3(ui) = {uj ∈ N(ui) | uj is a child of ui in T }, and
N4(ui) = {uj ∈ N(ui) | j > i, uj is not a child of ui in T }.
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Note that N1(u1) = ∅, |N1(ui)| = 1 for each vertex ui, 2 ≤ i ≤ n, and |N3(ui)| =
∅ for each leaf ui of T . We call T an orderly spanning tree of G if the following
conditions (ost1) and (ost2) hold:

(ost1) For each vertex ui, 1 ≤ i ≤ n, ui and any vertex uj ∈ N2(ui)
⋃

N4(ui) are
unrelated, and the vertices in N1(ui), N2(ui), N3(ui) and N4(ui) appear
around ui counterclockwise in this order, as illustrated in Fig. 7; and

(ost2) For each leaf ui of T other than uα and uβ , N2(ui), N4(ui) 	= ∅.

Chiang et al. [2] define an orderly spanning tree only for maximal plane
graphs, and there is no Condition (ost2) in their definition. They show that a
maximal plane graph G has an orderly spanning tree if and only if G has a
realizer [2]. We add Condition (ost2) since G is not necessarily a maximal plane
graph in this paper.

We have (a)⇒(b) by Lemma 3, (b)⇔(c) by Lemma 5, (c)⇒(d) by Lemma 6,
and (d)⇒(e) by Lemma 1. In order to prove Theorem 1, it suffices to prove
(e)⇒(a) and (b)⇔(f).
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Fig. 6. An orderly spanning tree of the
graph G in Fig. 1.
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Fig. 7. Four sets N1(ui), N2(ui),
N3(ui) and N4(ui).

3 Proof of (e)⇒(a)

In this section, we give a proof of (e)⇒(a). We first define some terms.
If an internally triconnected plane graph G is not triconnected, then G has

a separation pair of outer vertices and hence has a “chord path” defined below
when G is not a single cycle.

Let G be a biconnected plane graph, and let w1, w2, · · · , wt be the vertices
appearing on Fo(G) clockwise in this order. We call a path Q in G a chord-path
if Q satisfies the following (i)–(iv):

(i) Q connects two outer vertices wp and wq, p < q;
(ii) {wp, wq} is a separation pair of G;
(iii) Q lies on an inner face; and
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(iv) Q does not pass through any outer edge and any outer vertex other than
the ends wp and wq.

A chord-path Q connecting wp and wq is minimal if none of wp+1, wp+2, · · · , wq−1

is an end of a chord-path. Thus the definition of a minimal chord-path depends
on which vertex is considered as the starting vertex w1 of Fo(G).

Let {x1, x2, · · · , xp}, p ≥ 3, be a set of three or more outer vertices consecutive
on Fo(G) such that d(x1) ≥ 3, d(x2) = d(x3) = · · · = d(xp−1) = 2, and d(xp) ≥
3. Then we call the set {x2, x3, · · · , xp−1} an outer chain of G.

We are now ready to prove (e)⇒(a).

[Proof of (e)⇒(a)]. Assume that the proposition (e) holds for G, that is, G
is internally triconnected and has no separation pair {u, v} such that both u
and v are on the same path Pi, 1 ≤ i ≤ 3, where P1 connects v1 and v2, P2

connects v2 and v3, and P3 connects v3 and v1. We shall show that G has a
canonical decomposition Π = (V1, V2, · · · , Vh). If the outer vertices v1 and v2 are
not consecutive on Fo(G), then add a virtual edge (v1, v2) to the original graph
and let G be the resulting graph. Take u1 = v1, u2 = v2, and un = v3. Take as V1

the set of all the vertices on the boundary of the inner face containing the edge
(u1, u2), and take Vh = {un}. (See Fig. 5.) Then un = v3 /∈ V1; otherwise, {v1, v3}
would be a separation pair of G on P3, a contradiction. Hence Condition (cd1)
of a canonical decomposition holds. Since Gh = G is internally triconnected,
Condition (cd2) holds for k = h. Since un = v3 has degree three or more,
Condition (cd3) holds for k = h. G is internally triconnected, and the outer
vertex un of G is not contained in any separation pair of G since (v1, v2) is an
edge of G and {v3, x} is not a separation pair of G for any vertex x on path P2

or P3. Therefore Gh−1 = G−un is also internally triconnected, and hence (cd2)
holds for k = h − 1. If V = V1

⋃
Vh, then simply setting h = 2 we can complete

a proof. One may thus assume that V 	= V1

⋃
Vh and hence h ≥ 3. We choose

Vh−1, Vh−2, · · · , V2 in this order and show that (cd2) and (cd3) hold.
Assume as an inductive hypothesis that h ≥ i + 1 ≥ 3 and the sets Vh, Vh−1,

· · · , Vi+1 have been appropriately chosen so that
(1) (cd2) holds for each index k ≥ i, and
(2) (cd3) holds for each index k ≥ i + 1.

We then show that there is a set Vi of outer vertices of Gi such that
(1) (cd2) holds for the index k = i − 1, and
(2) (cd3) holds for the index k = i.
Let w1, w2, · · · , wt be the outer vertices of Gi appearing clockwise on Fo(G)

in this order, where w1 = v1 and wt = v2. There are the following two cases to
consider.

Case 1: Gi is triconnected. Since Gi is triconnected and at least one vertex in
Vi+1 has a neighbor in Gi, there is an outer vertex w /∈ V1 of Gi which has a
neighbor in Gi. We choose the singleton set {w} as Vi. Since Gi is triconnected
and w is an outer vertex of Gi, Gi−1 = Gi − w is internally triconnected and w
has three or more neighbors in Gi−1. Thus (cd2) holds for k = i − 1, and (cd3)
holds for k = i.
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Case 2: Otherwise. Since i ≥ 2, Gi is not a single cycle. Gi is internally tricon-
nected, but is not triconnected. Therefore there is a chord-path for Fo(Gi). Let
Q be a minimal chord-path, let wp and wq be the two ends of Q, and let p < q.
Then q ≥ p + 2; otherwise, Gi would not be internally triconnected. We now
have the following two subcases.

Subcase 2a: {wp+1, wp+2, · · · , wq−1} is an outer chain of Gi. In this case we
choose {wp+1, wp+2, · · · , wq−1} as Vi. Since Vi is an outer chain and Q is a
minimal chord-path, we have Vi

⋂
V1 = ∅. Each of wp+1 and wq−1 has exactly

one neighbor in Gi−1, and each vertex w ∈ Vi has a neighbor in Gi because w
has degree three or more in G and has degree two in Gi. One can thus know
that (cd3) holds for k = i.

We next show that (cd2) holds for k = i−1. Assume for a contradiction that
Gi−1 is not internally triconnected. Then Gi−1 has either a cut vertex v or a
separation pair {u, v} having one of the three types illustrated in Fig. 4.

Consider first the case where Gi−1 has a cut vertex v, as illustrated in Fig. 8.
Then v must be an outer vertex of Gi and v 	= wp, wq; otherwise, Gi would not
be internally triconnected. The minimal chord-path Q above must pass through
the outer vertex v, contrary to Condition (iv) of the definition of a chord-path.

Consider next the case where Gi−1 has a separation pair {u, v} having one
of the three types illustrated in Fig. 4. Then {u, v} would be a separation pair
of Gi having one of the three types illustrated in Fig. 4, and hence Gi would not
be internally triconnected, a contradiction.

Subcase 2b: Otherwise. In this case, every vertex in {wp+1, wp+2, · · · , wq−1} has
degree three or more in Gi; otherwise, Q would not be minimal. Furthermore,
we can show that at least one vertex w in {wp+1, wp+2, · · · , wq−1} has a neigh-
bor in Gi, as follows. Suppose for a contradiction that none of the vertices in
{wp+1, wp+2, · · · , wq−1} has a neighbor in Gi. Then {wp, wq} is a separation pair
of G, and wp, wp+1, · · · , wq is a path on Fo(G), as illustrated in Fig. 9. Since
i ≤ h − 1, none of wp, wp+1, · · · , wq is v3 = un. Thus both wp and wq are either
on path P2 or on path P3, and hence Proposition (e) would not hold for G, a
contradiction.

We choose the singleton set {w} as Vi for the vertex w above. Then clearly
Vi

⋂
V1 = ∅, and (cd3) holds for the index k = i. Since w is not an end of a chord-

path of Fo(Gi) and Gi is internally triconnected, Gi−1 = Gi − w is internally
triconnected and hence (cd2) holds for the index k = i − 1. �

4 Proof of (b)⇔(f)

In this section, we give a proof of (b)⇔(f).

Sketchy proof of (b)⇔(f). We can prove that if (Tr, Tb, Tg) is a realizer of G
then Tg is an orderly spanning tree of G rooted at rg. The detail is omitted in
this extended abstract, due to the page limitation.

From an orderly spanning tree T of G we can construct a realizer (Tr, Tb, Tg)
of G. We take Tg = T . For each vertex ui, 1 ≤ i ≤ n, we appropriately choose
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Fig. 9. Graph Gi.

an edge incident to ui as an outgoing edge of Tb (or Tr) according to some rules.
The detail is omitted in this extended abstract, due to the page limitation. �

Since the proof of (e)⇒(a) is constructive, we can immediately have a linear
algorithm to find a canonical decomposition of G if Proposition (e) holds for G.
Moreover, we can examine whether Proposition (e) holds for a given graph G, by
using the linear algorithm for decomposing a graph to triconnected components
[14]. Furthermore, one can know from the proof of (b)⇒(f) that if G has a
realizer then one can immediately find an orderly spanning tree of G. We thus
have the following corollary from Theorem 1.

Corollary 1. If a plane graph G is internally triconnected and has no separation
pair {u, v} such that both u and v are on the same path Pi, 1 ≤ i ≤ 3, then
one can find in linear time a canonical decomposition, a realizer, a Schnyder
labeling, an orderly spanning tree, and an outer triangular convex grid drawing
of G having size (n − 1) × (n − 1).
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