Inner Rectangular Drawings of Plane Graphs
(Extended Abstract)

Kazuyuki Miura, Hiroki Haga, and Takao Nishizeki
Graduate School of Information Sciences,
Tohoku University, Sendai 980-8579, Japan
{miura, haga}@nishizeki.ecei.tohoku.ac.jp
nishi@ecei.tohoku.ac.jp

Abstract. A drawing of a plane graph is called an inner rectangular
drawing if every edge is drawn as a horizontal or vertical line segment so
that every inner face is a rectangle. In this paper we show that a plane
graph G has an inner rectangular drawing D if and only if a new bipartite
graph constructed from G has a perfect matching. We also show that D
can be found in time $O(n^{1.5}/\log n)$ if G has n vertices and a sketch of
the outer face is prescribed, that is, all the convex outer vertices and
concave ones are prescribed.

1 Introduction

A drawing of a plane graph G is called a rectangular drawing if every edge is drawn
as a horizontal or vertical line segment so that every face boundary is a rectan-
gle. Figures 1(a) and 2(d) illustrate rectangular drawings. A rectangular drawing
often appears in VLSI floor-planning and architectural layout [DETT99, FW74,
GT97, Len90, SY99]. Each inner face of a plane graph G represents a module of a
VLSI circuit or a room of an architectural layout. Suppose that a plane graph G_a
representing the requirement of adjacency among modules is given as illustrated
in Fig. 2(a). Each vertex of G_a corresponds to a module of a VLSI circuit, and each
edge of G_a means that the two modules corresponding to the ends are required to
be adjacent in the VLSI floor-planning, that is, the two rectangular modules must
share a common boundary. A conventional method obtains a floor plan meeting
the adjacency requirement represented by G_a, as follows:

1. add dummy edges to G_a so that every inner face of the resulting graph
 G_a' is a triangle, as illustrated in Fig. 2(b) where dummy edges are
drawn by dotted lines;
2. construct a new plane graph G from a dual-like graph of G_a' by adding
 four vertices of degree two corresponding to the four corners of the
 rectangular chip, as illustrated in Fig. 2(c) where G_a' is drawn by dotted
 lines, G by solid lines, and the four added vertices by white circles;
3. find a rectangular drawing D of G as a floor plan meeting the require-
ment of G_a, as illustrated in Fig. 2(d).
Fig. 1. Rectangular drawing (a), and inner rectangular drawings of (b) L-shape, (c) T-shape, (d) U-shape, (e) Z-shape, and (f) staircase-shape

Fig. 2. (a) Adjacency requirement graph G_a, (b) inner triangulated graph G_a' augmented from G_a, (c) dual-like graph G of G_a', and (d) rectangular drawing D of G with $\Delta = 3$

In the plane graph G appearing in the conventional method above, all vertices have degree three except for the four vertices of degree two corresponding to the four corners, because every inner face of G_a' is a triangle. Hence the maximum degree Δ of G is three. However, some plane graphs with $\Delta = 4$ may have rectangular drawing, as illustrated in Fig. 2(d). Of course, Δ must be four or less if G has a rectangular drawing. A necessary and sufficient condition for a plane graph G with $\Delta \leq 3$ to have a rectangular drawing is known, and linear or $O(n^{2.5}/\log n)$ algorithms to find a rectangular drawing of G is obtained [BS88, He93, KH97, KK84, LL90, RNN02, RNN98, Tho84]. However, it has been an open problem to obtain a necessary and sufficient condition and an efficient algorithm for plane graphs G with $\Delta \leq 4$ [MMN02, RNN98].

Let G_a'' be a plane graph obtained from an adjacency requirement graph G_a by adding dummy edges to G_a so that every inner face is either a triangle or a quadrangle, as illustrated in Fig. 2(b). Let G be a plane graph obtained from a dual-like graph of G_a'' by adding four vertices of degree two corresponding to the corners. Of course, the maximum degree Δ of G may be four since G_a'' may
have a quadrangular inner face. If one can find a rectangular drawing D of G with $\Delta \leq 4$ as illustrated in Fig. 3(d), then one can use D as a floor plan meeting the requirement of G_a.

The outer face boundary must be rectangular in a rectangular drawing, as illustrated in Fig. 1(a). However, the outer boundary of a VLSI chip or an architectural floor plan is not always rectangular, but is often a rectilinear polygon of L-shape, T-shape, U-shape or staircase-shape, as illustrated in Figs. 4(b)–(f) [FW74, Len90, MMN02, SS93, YS93]. We call such a drawing of a plane graph G an inner rectangular drawing if every inner face of G is a rectangle although the outer face boundary is not always a rectangle.

In the paper we show that a plane graph G has an inner rectangular drawing D if and only if a new bipartite graph constructed from G has a perfect matching. We also show that D can be found in time $O(n^{1.5}/\log n)$ if a “sketch” of the outer face is prescribed, that is, all the convex outer vertices and concave ones are prescribed, where n is the number of vertices of G. We do not assume $\Delta \leq 3$, and an inner rectangular drawing is a rectangular drawing if the outer face is sketched as a rectangle. Thus we solve the open problem above.

The remainder of the paper is organized as follows. In Section 2 we define some terms, describe some fundamental facts, and present our main results, Theorems 1–3. In Section 3 we prove Theorem 1 for the case where a sketch of the outer face is prescribed. In Section 4 we prove Theorem 2 for the case where the numbers of “convex” and “concave” outer vertices are prescribed. In Section 5 we prove Theorem 3 for a general case.

2 Preliminaries and Main Results

We assume in the paper that G is a plane undirected simple graph. We denote by $d(v)$ the degree of a vertex v in G. We denote by F_o the outer face of G. The boundary of F_o is called the outer boundary, and is denoted also by F_o. A vertex on F_o is called an outer vertex, and a vertex not on F_o is called an inner vertex. We may assume without loss of generality that G is 2-connected and $\Delta \leq 4$, and hence every vertex of G has degree 2, 3 or 4.
An angle formed by two edges e and e' incident to a vertex v in G is called an \textit{angle of v} if e and e' appear consecutively around v. An angle of a vertex in G is called an \textit{angle of G}. An angle formed by two consecutive edges on a boundary of a face F in G is called an \textit{angle of F}. An angle of the outer face is called an \textit{outer angle} of G, while an angle of an inner face is called an \textit{inner angle}.

In any inner rectangular drawing, every inner angle is $\pi/2$ or π, and every outer angle is $\pi/2$, π or $3\pi/2$. Consider a labeling f which assigns a label 1, 2, or 3 to every angle of G, as illustrated in Fig. 4(c). Labels 1, 2 and 3 correspond to angles $\pi/2$, π and $3\pi/2$, respectively. We denote by n_{cv} the number of outer angles having label 3, and by n_{cc} the number of outer angles having label 1. Thus n_{cv} is the number of “convex” outer vertices, and n_{cc} is the number of “concave” outer vertices. For example $n_{cv} = 5$ and $n_{cc} = 1$ for the labeling f in Fig. 4(c).

We call f a \textit{regular labeling} of G if f satisfies the following three conditions (a)–(c):

(a) For each vertex v of G, the labels of all the angles of v total to 4;
(b) The label of any inner angle is 1 or 2, and every inner face has exactly four angles of label 1; and
(c) $n_{cv} - n_{cc} = 4$.

Figure 4(c) illustrates a regular labeling f of the plane graph in Fig. 4(a) and an inner rectangular drawing D corresponding to f.

Conditions (a) and (b) imply the following (i)–(iii):

(i) If a vertex v has degree 2, that is, $d(v) = 2$, then the two labels of v are either 2 and 2 or 1 and 3. In particular, if v is an inner vertex, then the two labels are 2 and 2.
(ii) If $d(v) = 3$, then exactly one of the three angles of v has label 2 and the other two have label 1.
(iii) If $d(v) = 4$, then all the four angles of v have label 1.

If G has an inner rectangular drawing, then clearly G has a regular labeling. Conversely, if G has a regular labeling, then G has an inner rectangular drawing, as can be proved by means of elementary geometric considerations. We thus have the following fact.
Fact 1. A plane graph G has an inner rectangular drawing if and only if G has a regular labeling.

A drawing of a plane graph is called an orthogonal drawing if each edge is drawn as an alternating sequence of horizontal and vertical line segments. A point at which an edge changes its direction is called a bend. An inner rectangular drawing is an orthogonal drawing with no bend such that every inner face is a rectangle. Tamassia gives an algorithm to find an orthogonal drawing of a given plane graph with the minimum number of bends in time $O(n^2 \log n)$ by solving the “minimum cost flow problem” of a new graph constructed from G [Tam87]. Garg and Tamassia refine the algorithm so that it takes time $O(n^{1.75} \sqrt{\log n})$ [GT97]. Tamassia presents an “orthogonal representation” of a plane graph for characterizing an orthogonal drawing [DETT99, Tam87]. Our regular labeling can be regarded as a special case of his orthogonal representation. He gives also a linear algorithm to find an orthogonal “grid” drawing from an orthogonal representation, in which every vertex has an integer coordinate. Similarly, one can find an inner rectangular “grid” drawing from a regular labeling in linear time.

A sketch of the outer face F_o of a plane graph G is to assign a label 1, 2 or 3 to the outer angle α of each outer vertex v of G, as illustrated in Fig. 1. If $d(v) = 2$, then the label of α must be either 2 or 3. If $d(v) = 3$, then the label must be either 1 or 2. If $d(v) = 4$, then the label must be 1. Furthermore, $n_{cv} - n_{cc} = 4$. For example, $n_{cv} = 5$ and $n_{cc} = 1$ for the sketches in Figs. 1(b) and 1(a), and hence the sketches imply that the outer face boundary F_o must have an L-shape.

Suppose first that a sketch of F_o is prescribed. Then one can immediately determine some of the inner angles by Conditions (a) and (b) of a regular labeling, as illustrated in Fig. 4(a). The remaining undetermined inner angles are labeled with x, which means either 1 or 2. We construct from G a new graph G_d, called a decision graph of G, as illustrated in Fig. 4(b) where G_d is drawn by solid lines and G by dotted lines. We then have the following theorem.

Theorem 1. Suppose that a sketch of the outer face of a plane graph G is prescribed. Then G has an inner rectangular drawing D with the sketched outer face if and only if the decision graph G_d of G has a perfect matching. D can be found in time $O(n^{1.5}/\log n)$ whenever G has D, where n is the number of vertices in G.

The proof of Theorem 1 and together with the construction of G_d will be given in Section 3.

Suppose next that a sketch of F_o is not prescribed but the numbers n_{cv} and n_{cc} of convex and concave outer vertices are prescribed. Of course, $n_{cv} - n_{cc} = 4$. For example, $n_{cv} = 4$ and $n_{cc} = 0$ mean that F_o is rectangular as illustrated in Fig. 1(a), while $n_{cv} = 6$ and $n_{cc} = 2$ mean that F_o has a T-shape, U-shape, Z-shape or staircase-shape as illustrated in Figs. 1(c)–(f). Let G_d^* be a graph constructed from G, as illustrated in Fig. 6(b). Then we have the following theorem.
Theorem 2. Suppose that a pair of non-negative integers \(n_{cv}\) and \(n_{cc}\) are prescribed. Then a plane graph \(G\) has an inner rectangular drawing \(D\) with \(n_{cv}\) convex outer vertices and \(n_{cc}\) concave ones if and only if \(G_d^*\) has a perfect matching. \(D\) can be found in time \(O(\sqrt{n}(n+n_{cv}n_o)/\log n)\) whenever \(G\) has \(D\), where \(n_o\) is the number of outer vertices.

The proof of Theorem 2 together with the construction of \(G_d^*\) will be given in Section 4.

Consider finally a general case where neither a sketch of \(F_o\) nor a pair \((n_{cv}, n_{cc})\) is prescribed. Let \(G_d^*\) be a graph constructed from \(G\). Then we have the following theorem.

Theorem 3. A plane graph \(G\) has an inner rectangular drawing \(D\) if and only if \(G_d^*\) has a perfect matching. \(D\) can be found in time \(O(\sqrt{n}(n+(n_{o2}−n_{o4})n_o)/\log n)\) whenever \(G\) has \(D\), where \(n_{o2}\) and \(n_{o4}\) are the numbers of outer vertices of degrees 2 and 4, respectively.

The proof of Theorem 3 together with the construction of \(G_d^*\) will be given in Section 5.

We assume that some trivial conditions for the existence of an inner rectangular drawing hold in Theorems 1, 2 and 3, as we will explain in Sections 3, 4 and 5.

3 Inner Rectangular Drawing with Sketched Outer Face

In this section we prove Theorem 1.

Suppose that a sketch of the outer face of a plane graph \(G\) is prescribed, that is, all the outer angles of \(G\) are labeled with 1, 2 or 3, as illustrated in Figs. 1 and 4(a). Of course, the number \(n_{cv}\) of outer angles labeled with 3 and the number \(n_{cc}\) of outer angles labeled with 1 must satisfy \(n_{cv} − n_{cc} = 4\). The outer angle of an outer vertex \(v\) must be labeled with either 2 or 3 if \(d(v) = 2\), with either 1 or 2 if \(d(v) = 3\), and with 1 if \(d(v) = 4\). Then some of the inner angles of \(G\) can be immediately determined, as illustrated in Fig. 1(a). If \(v\) is an outer vertex of degree 2 and the outer angle of \(v\) is labeled with 2 and 3, then the inner angle of \(v\) must be labeled with 2 and 1, respectively. The two angles of any inner vertex of degree 2 must be labeled with 2. If \(v\) is an outer vertex of degree 3 and the outer angle of \(v\) is labeled with 2, then both of the inner angles of \(v\) must be labeled with 2 and 1, respectively. On the other hand, if \(v\) is an outer vertex of degree 3 and the outer angle of \(v\) is labeled with 1, then we label both of the inner angles of \(v\) with \(x\), because one cannot determine their labels at this moment although one of them must be labeled with 1 and the other with 2. We also label all the three angles of an inner vertex of degree 3 with \(x\), because one cannot determine their labels although exactly one of them must be labeled with 2 and the others with 1. We label all the four angles of each vertex of degree 4 with 1. Label \(x\) means that \(x\) is either 1 or 2, and exactly one of the labels \(x\)'s attached to the same vertex must be 2 and the others must be 1. (See Figs. 1(a) and (c).)
We now present how to construct a decision graph G_d of G. Let all vertices of G attached a label x be vertices of G_d. Thus all the inner vertices of degree 3 and all the outer vertices of degree 3 whose outer angles are labeled with 1 are vertices of G_d, and none of the other vertices of G is a vertex of G_d. We then add to G_d a complete bipartite graph inside each inner face F of G. Let n_x be the number of angles of F labeled with x. Let n_1 be the number of angles of F which have been labeled with 1. One may assume that $n_1 \leq 4$; otherwise, G has no inner rectangular drawing. Exactly $4 - n_1$ of the n_x angles of F labeled with x must be labeled with 1 by a regular labeling. We add a complete bipartite graph $K(4-n_1)n_x$ in F, and join each of the n_x vertices in the second partite set with one of the n_x vertices on F whose angles are labeled with x. Repeat the operation above for each inner face F of G. The resulting graph is a decision graph G_d of G. The decision graph G_d of the plane graph G in Fig. 4(a) is drawn by solid lines in Fig. 4(b), where G is drawn by dotted lines. The idea of adding a complete bipartite graph originates from Tutte’s transformation for finding an “f-factor” of a graph [Tut54].

A matching of G_d is a set of pairwise non-adjacent edges in G_d. A maximum matching of G_d is a matching of the maximum cardinality. A matching M of G_d is called a perfect matching if an edge in M is incident to each vertex of G_d. A perfect matching is drawn by thick solid lines in Fig. 4(b).

Each edge e of G_d incident to a vertex v attached a label x corresponds to an angle α of v labeled with x. A fact that e is contained in a perfect matching M of G_d means that the label x of α is 2. Conversely, a fact that e is not contained in M means that the label x of α is 1.

We are now ready to prove Theorem 1.

[Proof of Theorem 1]
Suppose that G has an inner rectangular drawing with a sketched outer face. Then by Fact 1 G has a regular labeling f which is an extension of the sketch, that is, a labeling of the outer angles. We include in a set M all the edges of G_d corresponding to angles of label $x = 2$, while we do not include in M the edges of G_d corresponding to angles of label $x = 1$. For each vertex v of G_d attached a label x, the labeling f assigns 2 to exactly one of the angles of v labeled with x. Therefore exactly one of the edges of G_d incident to v is contained in M. The labeling f labels exactly four of the angles of each inner face F with 1. Therefore exactly $4 - n_1$ of the n_x angles of F labeled with x must be labeled with 1 by f, and hence all the edges of G_d corresponding to these angles are not contained in M. Including in M a number $4 - n_1$ of edges in each complete bipartite graph, we can extend M to a perfect matching of G_d. Thus G_d has a perfect matching.

Conversely, if G_d has a perfect matching, then G has a regular labeling which is an extension of a sketch of the outer face, and hence by Fact 1 G has an inner rectangular drawing with a sketched outer face.

Clearly, G_d is a bipartite graph, and $4 - n_1 \leq 4$. Obviously, n_x is no more than the number of edges on face F. Let m be the number of edges in G, then we have $2m \leq 4n$ since $\Delta \leq 4$. Therefore the sum $2m$ of the numbers of edges on
all faces is at most 4\(n\). One can thus know that both the number \(n_d\) of vertices in \(G_d\) and the number \(m_d\) of edges in \(G_d\) are \(O(n)\). Since \(G_d\) is a bipartite graph, a maximum matching of \(G_d\) can be found either in time \(O(\sqrt{n_d m_d}) = O(n^{1.5})\) by an ordinary bipartite matching algorithm [HK73, MV80, PS82] or in time \(O(\sqrt{n_d m_d / \log n_d}) = O(n^{1.5} / \log n)\) by a recent pseudoflow-based bipartite matching algorithm using boolean word operations on \(\log n\)-bit words [FM91, Hoc04, HC04].

This complete a proof of Theorem 1.

Lai and Leinwand show that a plane graph \(G\) with \(\Delta \leq 3\) have a rectangular drawing if and only if a new bipartite graph constructed from \(G\) and its dual has a perfect matching [LL90]. Their bipartite graph has an \(O(n)\) number of vertices, but has an \(O(n^2)\) number of edges. Therefore their method takes time \(O(n^{2.5} / \log n)\) to find a rectangular drawing of \(G\).

We also remark that one can enumerate all inner rectangular drawings of \(G\) by enumerating all perfect matchings of \(G_d\).

Clearly the bipartite matching problem can be reduced to the maximum flow problem [AMO93, PS82]. Conversely, modifying Tamassia’s formulation of the bend-minimum orthogonal drawing problem [Tam87], one can directly reduce the inner rectangular drawing problem to a flow problem on a new planar bipartite network \(N\) with multiple sources and sinks. A network \(N\) for the plane graph \(G\) in Fig. 4(a) is illustrated in Fig. 5. \(N\) is drawn by solid lines, a flow value is attached to each arc, and an inner rectangular drawing of \(G\) corresponding to the flow is drawn by dotted lines. Every arc of \(N\) has a capacity 1. A node of \(N\) corresponding to a vertex of \(G\) is a source, the supply of which is written in a circle in Fig. 5. A node of \(N\) corresponding to an inner face of \(G\) is a sink, the demand of which is written in a square in Fig. 5. An inner angle of \(\pi/2\) is represented by an arc of flow 1, while an inner angle of \(\pi\) is represented by an arc of flow 0. One can observe that \(G\) has an inner rectangular drawing with the sketched outer face if and only if \(N\) has a feasible (single commodity) flow satisfying all the demands. A feasible flow in such a planar network or a bipartite network can be found either in time \(O(n^{1.5})\) by a planar flow algorithm [MN95] or a bipartite flow algorithm [AMO93, ET75] or in time \(O(n^{1.5} / \log n)\) by the pseudoflow-based bipartite flow algorithm [Hoc04, HC04].

Thus both our matching approach and the flow approach solve the inner rectangular drawing problem in the same time complexity. However, the bipartite matching algorithm in [HK73] can be quite easily implemented in comparison with the flow algorithms in [Hoc04, HC04, MN95].

4 Inner Rectangular Drawing with Prescribed Numbers \(n_{cv}\) and \(n_{cc}\)

In this section we prove Theorem 2.

Suppose that an outer face of a plane graph \(G\) is not sketched but a pair \((n_{cv}, n_{cc})\) is prescribed, where \(n_{cv}\) is the number of convex outer vertices and \(n_{cc}\) is the number of concave outer vertices. If \((n_{cv}, n_{cc})\) is prescribed as \(n_{cv} = 5\)
and $n_{cc} = 1$ like in Fig. 6(a), then the outer boundary must have an L-shape as illustrated in Fig. 6(c), but it has not been prescribed which outer vertices are convex and which outer vertices are concave. We label all the four angles of each vertex of degree 4 in G with 1, and label both of the angles of each inner vertex of degree 2 with 2. The labels of all the other angles of G are not determined at this moment, and we label them with x or y as follows:

1. label all the three angles of any vertex v of degree 3 with x; and
2. label the inner angle of any outer vertex v of degree 2 with x, and label the outer angle of v with y.

The labeling of the same plane graph as in Fig. 4(a) is depicted in Fig. 6(a). Label x means that x is either 1 or 2, similarly as in Section 3. On the other hand, label y means that y is either 2 or 3. Each outer vertex of degree 2 is attached two labels x and y, and if $x = 1$ then $y = 3$ and if $x = 2$ then $y = 2$.

We now present how to construct a decision graph G_d^* of G. The construction is similar to that of G_d. Let all the vertices of G attached label x or y be vertices of G_d^* as illustrated in Fig. 6(b). Thus all the outer vertices of degree 2 in G and all the vertices of degree 3 in G are vertices of G_d^*. All the other vertices of G are not vertices of G_d^*: all the vertices of degree 4 and all the inner vertices of degree 2 are not vertices of G_d^*.

For each inner face F of G, we add a complete bipartite graph $K_{(4-n_1)n_x}$ inside F, where n_x is the number of angles of F labeled with x and n_1 is the number of angles of F labeled with 1. Of course, one may assume that $n_1 \leq 4$.

We then add two complete bipartite graphs inside the outer face F_o, as follows. Let n_{ox} be the number of outer angles of G labeled with x, and let n_{oy} be the number of outer angles labeled with y. For the example in Fig. 6(a) $n_{ox} = 4$ and $n_{oy} = 7$. Let n_o4 be the number of outer vertices v of degree 4. For the example in Fig. 6(a) $n_o4 = 0$. The outer angle of v must be labeled with 1, and v must be a concave outer vertex. One may assume without loss of generality that $n_{cc} \geq n_{o4}$; otherwise, G has no inner rectangular drawing with n_{cc} concave outer vertices. Exactly $n_{cc} - n_{o4}$ of the n_{ox} outer angles of label x must be labeled with 1. We add a complete bipartite graph $K_{(n_{cc}-n_{o4})n_{ox}}$ in F_o, and joint each of the n_{ox} vertices in the second partite set with one of the n_{ox} outer vertices of
Fig. 6. (a) Plane graph G and pair (n_{cv}, n_{cc}), (b) decision graph G_d^*, and (c) inner rectangular drawing D and regular labeling f of G

degree 3. Exactly n_{cv} of the n_{oy} outer angles of label y must be labeled with 3. We add a complete bipartite graph $K_{n_{cv}n_{oy}}$ inside F_o, and connect each of the n_{oy} vertices in the second partite set with one of the n_{oy} outer vertices of degree 2 via a path of length 2.

This completes a construction of G_d^*. In Fig. 6(b) G_d is drawn by solid lines, and G by dotted lines. A perfect matching of G_d^* is drawn by thick solid lines in Fig. 6(b).

Let α be an angle of a vertex v of G labeled with x or y, and let e be the edge of G_d^* which is incident to v and corresponds to α. A fact that e is contained in a perfect matching M of G_d^* means that the label of α is 2 if it is x and the label is 3 if it is y. Conversely, a fact that e is not contained in M means that the label of α is 1 if it is x and the label is 2 if it is y. Similarly as for Theorem 1, one can easily prove that G has an inner rectangular drawing with n_{cv} convex outer vertices and n_{cc} concave ones if and only if G_d^* has a perfect matching. Clearly G_d^* is a bipartite graph. Since $n_o \geq n_{cv} > n_{cc}$, G_d^* has an $O(n)$ number of vertices and an $O(n + n_{cv}n_o)$ number of edges, where n_o is the number of outer vertices of G. Thus a maximum matching of G_d^* can be found in time $O(\sqrt{n(n + n_{cv}n_o)}/\log n)$.

This completes a proof of Theorem 2.

5 Inner Rectangular Drawing

In this section we prove Theorem 3.

Suppose that neither a sketch of the outer face F_o nor a pair of integers (n_{cv}, n_{cc}) is prescribed for a plane graph G. Let n_{o2}, n_{o3} and n_{o4} be the numbers of outer vertices having degrees 2, 3 and 4, respectively, then $n_o = n_{o2} + n_{o3} + n_{o4}$. Since $n_{cv} \leq n_{o2}$ and $n_{cv} - n_{cc} = 4$, there are at most a number n_{o2} of pairs which are possible as (n_{cv}, n_{cc}). Examining all these pairs, one can know whether G has an inner rectangular drawing for some pair. Such a straightforward method would take time $O(n_{o2}\sqrt{n(n + n_{o2}n_o)}/\log n)$. However, we can show as in Theorem 3 that G has an inner rectangular drawing D for some pair if and only if a new
graph G_d^* constructed from G has a perfect matching, and that D can be found in time $O(\sqrt{n}(n + (n_{o2} - n_{o4})n)/\log n)$ whenever G has D.

We label each angle of G with 1, 2, x or y in the same way as in Section 4, as illustrated in Fig. 6(a). There are n_{o4} outer angles labeled with 1, n_{o3} with x, and n_{o2} with y. One may assume without loss of generality that $n_{o2} \geq n_{o4} + 4$; otherwise, G has no inner rectangular drawing. The construction of a new graph G_d^* is the same as G_d^* except for the outer face F_O. We add a complete bipartite graph $B = K_{(n_{o2} - n_{o4} - 4)(n_{o2} + n_{o3})}$ in F_O, and join each of the $n_{o2} + n_{o3}$ vertices in the second partite set of B with one of the $n_{o2} + n_{o3}$ outer vertices of degree 2 or 3.

Suppose that G_d^* has a perfect matching M. Let a be the number of edges of G_d^* which correspond to outer angles of outer vertices of degree 2 and are contained in M. Let b be the number of edges of G_d^* which correspond to outer angles of outer vertices of degree 3 and are contained in M. Since M covers all the $n_{o2} - n_{o4} - 4$ vertices in the first partite set of B, we have $(n_{o2} - a) + (n_{o3} - b) = n_{o2} - n_{o4} - 4$, and hence $a + b = n_{o3} + n_{o4} + 4$. We assign 2 to the b outer angles of outer vertices which have label x and are ends of edges of M in F_O, and assign 1 to the remaining $(n_{o3} - b)$ outer angles of label x. We assign 3 to the a outer angles of outer vertices which have label y and are ends of edges of M in F_O, and assign 2 to the remaining $(n_{o2} - a)$ outer angles of label y. Then we have $n_{cv} = a$ and $n_{cc} = (n_{o3} - b) + n_{o4}$, and hence $n_{cv} - n_{cc} = a - (n_{o3} - b + n_{o4}) = 4$. One can thus know that G has a regular labeling if G_d^* has a perfect matching.

Conversely G_d^* has a perfect matching if G has an inner rectangular drawing. This completes a proof of Theorem 3.

Acknowledgments. We thank Ayako Miyazawa, Md. Saidur Rahman and Xiao Zhou for fruitful discussions on an early version of the paper.

References

