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Abstract. Digital watermarking used for fingerprinting may receive a
collusion attack; two or more users collude, compare their data, find
a part of embedded watermarks, and make an unauthorized copy by
masking their identities. In this paper, assuming that at most c users
collude, we give a characterization of the fingerprinting codes that have
the best security index in a sense of “(c, p/q)-secureness” proposed by
Orihara et al. The characterization is expressed in terms of intersecting
families of sets. Using a block design, we also show that a distributor of
data can only find asymptotically a set of c users including at least one
culprit, no matter how good fingerprinting code is used.

1 Introduction

Various kinds of data such as documents, music, movies, etc. are digitized, and
are processed as digital contents. The digital data can be sent to millions of peo-
ple instantly through the Internet, and copyright violation is now a serious social
problem. One of the key techniques for the problem is digital watermarking. It
embeds a secret mark in the digital contents so that the secret mark cannot be
detected when the resulting contents are conventionally replayed. The digital
watermarking usually embeds either “author’s ID” or “user’s ID” as a secret
mark. In the former case, the author of the contents can insist that the contents
are produced by himself/herself. In the latter, a distributor of the contents can
identify a user from his/her contents. The latter is called fingerprinting.

Digital watermarking used for fingerprinting may receive a collusion-attack;
two or more users collude, compare their data, find a part of embedded wa-
termarks, and make an unauthorized copy by masking their identities. In this
paper we assume that at most c users collude for some number c. The “(c, p/q)-
secureness” has been proposed as an index to measure the resilience of finger-
printing codes for such a collusion attack; a code for fingerprinting is (c, p/q)-
secure for integers p ≥ 0 and q ≥ 1 if a distributor can find a set of q users such
that at least p of them are surely collusive [5]. The largest fraction p/q among all
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fingerprinting codes is called the best security index and denoted by s(c). Some
upper and lower bounds on s(c) are given, and it is known that s(1) = 1/1,
s(2) = 2/3 and s(3) = 3/7 [5]. However, it has been remained open to determine
accurately the value of s(c) for c ≥ 4.

In this paper, we first characterize the fingerprinting codes that have the best
security index s(c), and then show that s(c) is determined by the intersecting
families of sets. Using a block design, we furthermore show that s(c) ≤ c/(c2 −
c + 1) for an infinite number of c and hence s(c) = 1/c holds asymptotically.
Thus a distributor can only find a set of c users including at least one culprit,
no matter how good fingerprinting code is used.

The remainder of the paper is organized as follows. In Sect. 2, we formally
describe a model of watermarking and define the “(c, p/q)-secureness” and the
best security index s(c). In Sect. 3, we present a characterization of fingerprinting
codes that have the best security index s(c). In Sect. 4, we show that s(c) = 1/c
holds asymptotically. Finally, in Sect. 5, we conclude with discussions.

2 Preliminaries

In this section, we first present a model of watermarking used in the paper, and
then define some terms.

2.1 The Model of the Watermark

Assume that there are a number n of (legal) users, u1, u2, · · · , un, and a dis-
tributor of contents. A watermark w is a binary sequence of length l ≥ 1:
w ∈ W = {0, 1}l. The distributor chooses a watermark wi ∈ W for each user ui,
1 ≤ i ≤ n. The watermarks w1, w2, · · · , wn are distinct with each other, and are
called the legal watermarks. The set Γ = {w1, w2, · · · , wn} is called an (l, n)-code
or simply a code. The distributor embeds a watermark wi in the contents, and
distributes the resulting contents to each user ui. The i-th bit of a watermark
w ∈ W is denoted by 〈w〉i.

We make the following assumption throughout the paper.

Assumption 1 (Marking Assumption [3]). Any single user cannot find out
where his/her watermark is embedded in the contents. However, if two or more
users collude, then, since their watermarks are different from each other, they
can realize some of the bit positions of their contents in which their watermarks
are embedded by comparing their data and finding some differences in their data.
These discovered bits cannot be deleted, but can be arbitrarily changed to either
0 or 1.

We call a nonempty subset C ⊆ Γ a coalition of a code Γ . Let r = |C|, and
let C = {wc1 , wc2 , · · · , wcr}. Thus the r users uc1, uc2 , · · · , ucr are collusive. If all
the i-th bits of their watermarks are same, i.e. 〈wc1〉i = 〈wc2〉i = · · · = 〈wcr 〉i,
then the users in coalition C cannot change the i-th bits of their watermarks
because they cannot know where their i-th bits are embedded in the contents.
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Otherwise, the users in C can change the i-th bits of their watermarks to either
0 or 1 arbitrarily because they can know where the i-th bits of their watermarks
are embedded. The set of all watermarks that are obtained in this way is called
the set of falsified watermarks by coalition C, and is denoted by F (C). Thus,
each falsified watermark w ∈ F (C) satisfies

〈w〉i =

⎧
⎨

⎩

0 if 〈wc1〉i = 〈wc2〉i = · · · = 〈wcr 〉i = 0;
1 if 〈wc1〉i = 〈wc2〉i = · · · = 〈wcr 〉i = 1;
0 or 1 otherwise

for each bit position i, 1 ≤ i ≤ l. We hence have

F (C) = {w ∈ W | for each i, 1 ≤ i ≤ l,

there is w′ ∈ C with 〈w〉i = 〈w′〉i}. (1)

One can observe from Eq. (1) that the set F (C) of bit sequences can be rep-
resented by a sequence of characters 0, 1 and ∗ of length l; the i-th character
〈F (C)〉i of F (C), 1 ≤ i ≤ l, satisfies

〈F (C)〉i =

⎧
⎨

⎩

0 if 〈wc1〉i = 〈wc2〉i = · · · = 〈wcr 〉i = 0;
1 if 〈wc1〉i = 〈wc2〉i = · · · = 〈wcr 〉i = 1;
∗ otherwise,

(2)

where ∗ means DON’T CARE. It should be noted that C ⊆ F (C) for any
coalition C ⊆ Γ .

When a distributor finds an unauthorized copy, he/she detects an illegal
watermark w ∈ (W −Γ ) embedded in the copy and finds a coalition C such that
w ∈ F (C). We assume that a bounded number of users, say at most c users,
take part in the coalition C.

An illegal watermark w ∈ (W − Γ ) may be contained in F (C) for several
coalitions C of at most c users. So we define a set S(c, w; Γ ) of coalitions as
follows.

Definition 1. For a code Γ , a watermark w ∈ W and an integer c ≥ 1, we
define a suspected family for w as

S(c, w; Γ ) = {C ⊆ Γ | 1 ≤ |C| ≤ c, w ∈ F (C)}.

We often denote S(c, w; Γ ) simply by S(c, w).
Thus S(c, w; Γ ) ⊆ 2Γ . If S(c, w; Γ ) = ∅, then there is no coalition of at

most c users that can make the watermark w. From Definition 1 and Eq. (2) we
immediately have the following lemma.

Lemma 1. Let w ∈ W , C ⊆ Γ , 1 ≤ |C| = r ≤ c and C = {wc1 , wc2 , · · · , wcr}.
Then C /∈ S(c, w; Γ ) if and only if there exists a bit position i, 1 ≤ i ≤ l, such
that

〈wc1〉i = 〈wc2〉i = · · · = 〈wcr 〉i 	= 〈w〉i. (3)
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A distributor can find S(c, w; Γ ) as follows.

– First, the distributor considers a family Ew
0 = {C | C ⊆ Γ, 1 ≤ |C| ≤ c}.

– Then, for each bit-position i, 1 ≤ i ≤ l, the distributor removes from Ew
0 all

sets C ∈ Ew
0 such that

〈wc1〉i = 〈wc2〉i = · · · = 〈wcr 〉i 	= 〈w〉i.

By Lemma 1, the resulting family is the suspected family S(c, w; Γ ).
The c-coalition detection problem is to detect a coalition that made the unau-

thorized copy, assuming that at most c users collude.

2.2 Secureness of Codes

Various research has been done on the secureness of codes (e.g. [3,4,5,6,7,8]).
Boneh and Shaw defined “c-secureness” as an index to measure the resilience
of watermarks for collusion attacks [3]; a code is c-secure if a distributor can
detect at least one of the collusive users when at most c users collude. However,
they showed that there is indeed no c-secure code [3]. They also defined “ε-error
c-secureness”; a code is ε-error c-secure if a distributor can detect at least one of
the collusive users with probability at least 1 − ε when at most c users collude.
They constructed an example of an ε-error c-secure code [3]. If a code is ε-error
c-secure, then a distributor can detect at least one of the collusive users with
small error, but cannot surely detect a definitely collusive user. Orihara et al.
introduced the “(c, p/q)-secureness” as an index to measure the quality of a code;
if a code is (c, p/q)-secure, then the distributor may not detect all the collusive
users, but can detect a group of q users including at least p collusive users [5].
Yoshioka et al. [7,8] investigated the relationships among c-secureness, ε-error c-
secureness, (c, p/q)-secureness, c-frameproofness [3], c-secure frameproofness [6],
and so on. Note that the more basic collusion problem was discussed first by
Blakley, Meadows and Purdy [2].

In the remainder of this section, we explain (c, p/q)-secureness.
We first define some terms.

Definition 2. For integers p ≥ 0 and q ≥ 1, we call [p/q] an index. For a set
V , we say that a family S ⊆ 2V is [p/q]-detectable if there exists a set X ⊆ V
such that |X | = q and |C ∩ X | ≥ p for any set C ∈ S.

If a suspected family S(c, w) is [p/q]-detectable, then there is a set X of q
suspicious users and a distributor can insist that at least p of them are surely
culprits.

For a family S ⊆ 2V , there are many pairs of integers p and q for which S is
[p/q]-detectable. For example, if V = {w1, w2, w3, w4} and

S =
{
{w1, w2}, {w2, w3}, {w3, w1}

}
,

then S is [1/2]-detectable and [2/3]-detectable. So we wish to specify a pair of
integers p and q best to describe the feature of S. We thus define a total order
“�” on the set of indices as follows.
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Definition 3. Let p ≥ 0 and q ≥ 1. If either p
q < r

s , or p
q = r

s and q < s,
then [p/q] ≺ [r/s]. If p = r and q = s, then [p/q] = [r/s]. If [p/q] ≺ [r/s] or
[p/q] = [r/s], then [p/q] � [r/s].

For example, we have [0/4] ≺ [1/4] ≺ [1/3] ≺ [1/2] ≺ [2/4] ≺ [2/3] ≺ [3/4] ≺
[1/1] ≺ [2/2] ≺ [3/3] ≺ [4/4].

We then define the “detectable index” of a family S ⊆ 2V as follows.

Definition 4. For a set V and a nonempty family S ⊆ 2V , we define a de-
tectable index d(S) of S to be the “best” index [p/q] such that the S is [p/q]-
detectable, that is

d(S) = max {[p/q] | S is [p/q]-detectable}

where max (�) is taken over all indices. We define d(S) = [∞/∞] if S = ∅, and
define [p/q] � [∞/∞] for any indices [p/q].

We now define a (c, p/q)-secureness as follows.

Definition 5. Let Γ be a code and let c is a natural number. We say that Γ is
(c, p/q)-secure if d(S(c, w; Γ )) � [p/q] for any watermark w ∈ W .

If a code Γ is (c, p/q)-secure, then for any (illegal) watermark w ∈ W there
is a set X of q suspicious users such that at least p of them are surely culprits,
under an assumption that at most c users collude.

We now define a “security index” s(Γ, c) of a code Γ as follows.

Definition 6. For a natural number c, a security index s(Γ, c) of a code Γ is

s(Γ, c) = min {d (S(c, w; Γ )) | w ∈ W}

where min (�) is taken over all watermarks w ∈ W .

The security index s(Γ, c) is the minimum detectable index d(S(c, w; Γ )) for
all watermarks w ∈ W . Clearly, s(Γ, c) is also the maximum one for all indices
[p/q] such that a code Γ is (c, p/q)-secure.

We now define the best security index s(c) as follows.

Definition 7. The best security index s(c) for collusions of at most c users is

s(c) = max{s(Γ, c) | Γ is a code}

where max (�) is taken over all codes Γ .

3 c-Intersecting Code

In this section, we present a characterization of fingerprinting codes that have
the best security index s(c).

We first define some terms.
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Definition 8. A family S of sets is intersecting if C ∩ C′ 	= ∅ for any sets
C, C′ ∈ S. An intersecting family S is c-intersecting if |C| ≤ c for every set
C ∈ S.

Definition 9. A code Γ is c-intersecting if the suspected family S(c, w; Γ ) is
intersecting for every watermark w ∈ W .

The code Γc in Sect. 4, the c-secure frameproof code in [6], and the (c,c)-
separating code in [4] are examples of c-intersecting codes.

For a set V , we denote by F(V, c) the set of all c-intersecting families E ⊆ 2V :

F(V, c) = {E ⊆ 2V | E is c-intersecting}.

We define an index d(n, c) as follows:

d(n, c) = min{d(E) | E ∈ F(V, c)}

where V is a set of n elements, i.e., |V | = n. The index d(n, c) is determined
only by n and c, and does not depend on the set V . For example, d(3, 2) = [2/3],
because d(E) = [2/3] for a 2-intersecting family

E =
{
{w1, w2}, {w2, w3}, {w3, w1}

}
∈ F(V, 2)

and d(E ′) = [1/1] � [2/3] for any other 2-intersecting family E ′ ∈ F(V, 2) where
V = {w1, w2, w3}. Note that d(E ′) = [1/1] for E ′ =

{
{w1, w2}, {w1, w3}

}
∈

F(V, 2).
A main result of this section is the following theorem.

Theorem 1. If a code Γ is c-intersecting, then s(Γ, c) = s(c) = d(n, c) and
hence the s(Γ, c) is the maximum among all codes.

We give a proof of Theorem 1 in the remainder of this section. For a Boolean
value x ∈ {0, 1}, we define x as follows:

x =
{

1 if x = 0;
0 if x = 1.

We then have the following lemma, the proof of which is omitted in this extended
abstract due to the page limitation.

Lemma 2. A code Γ is c-intersecting if and only if, for any coalitions C1, C2 ⊆
Γ such that C1 ∩ C2 = ∅ and |C1| = |C2| = c, there exists a bit position i, 1 ≤
i ≤ l, such that 〈F (C1)〉i = x and 〈F (C2)〉i = x, x ∈ {0, 1}.

If S(c, w; Γ ) is intersecting, then C ∩ C′ 	= ∅ for any coalitions C, C′ ∈
S(c, w; Γ ). For a legal watermark wi ∈ Γ ,

{wi} ∈ S(c, wi; Γ )

and hence
⋂

{C | C ∈ S(c, wi; Γ )} = {wi}. Thus every coalition that can make
a legal watermark wi includes wi. On the other hand, if a coalition C ∈ Γ
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could make a legal watermark wi ∈ (Γ − C), then an innocent user ui would
be suspected. However, if Γ is c-intersecting, then such a false charge would not
occur.

The fewer coalitions included in a suspected family are, the more accurate
information a distributor obtains about the collusive users. However, we have
the following lemma.

Lemma 3. For any code Γ and any c-intersecting family E ⊆ 2Γ , there is a
watermark w ∈ W such that E ⊆ S(c, w; Γ ).

Proof. If E = ∅, then clearly ∅ = E ⊆ S(c, w; Γ ) for any watermark w ∈ W .
One may thus assume that |E| = m ≥ 1 and E = {C1, C2, · · · , Cm}. Since E is
c-intersecting,

Ci ∩ Cj 	= ∅ (4)

for any indices i and j, 1 ≤ i < j ≤ m. If

m⋂

i=1

F (Ci) 	= ∅ (5)

then there is a watermark w′ ∈ W such that w′ ∈
⋂m

i=1 F (Ci), and E =
{C1, C2, · · · , Cm} ⊆ S(c, w′; Γ ). It thus suffices to verify Eq. (5).

Suppose for a contradiction that
⋂m

i=1 F (Ci) = ∅. Since C1 ⊆ F (C1) 	= ∅,
there is an integer r, 1 < r ≤ m, such that

⋂r−1
i=1 F (Ci) 	= ∅ and

⋂r
i=1 F (Ci) = ∅.

Thus there exists a bit position k, 1 ≤ k ≤ l, such that 〈
⋂r−1

i=1 F (Ci)〉k = x and
〈F (Cr)〉k = x̄, where x ∈ {0, 1}. Since 〈

⋂r−1
i=1 F (Ci)〉k = x, we have 〈F (Cj)〉k = x

for some index j, 1 ≤ j ≤ r−1. Therefore by Eq. (2) we have 〈w〉k = x for every
watermark w ∈ Cj . On the other hand, since 〈F (Cr)〉k = x̄, we have 〈w〉k = x̄
for every watermark w ∈ Cr. We thus have Cj ∩Cr = ∅, contrary to Eq. (4). ��

If, for any watermark w ∈ W , S(c, w; Γ ) is intersecting and is of a star type
in particular, that is, there is a legal watermark wi ∈ Γ which is included in
every coalition C ∈ S(c, w; Γ ), then a distributor can surely detect the user ui

as one of the collusive users. However, when n ≥ 3 and c ≥ 2, there is no code
Γ such that S(c, w; Γ ) is of a star type for every watermark w ∈ W , because
E =

{
{w1, w2}, {w2, w3}, {w3, w1}

}
is intersecting but is not of a star type, and

by Lemma 3 there is a watermark w ∈ W such that E ⊆ S(c, w; Γ ).
The following lemma is known [5].

Lemma 4 ([5]). If S1 ⊆ S2 ⊆ 2Γ , then d(S1) � d(S2).

Using Lemmas 2, 3 and 4, we now prove the following Lemma 5 on the
secureness of an intersecting code.

Lemma 5. If Γ is a c-intersecting code and |Γ | = n, then s(Γ, c) = d(n, c).

Proof. Let Γ = {w1, w2, · · · , wn}. One may assume that

d(n, c) = d(Emin) (6)
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for a c-intersecting set Emin ∈ F(Γ, c). Then,

d(Emin) � d(E) (7)

for every E ∈ F(Γ, c). It should be noted that the value d(Emin) is determined
only by n and c and does not depend on what bit-sequence each watermark
wi ∈ Γ is.

We first verify d(n, c) � s(Γ, c). By Definition 6,

s(Γ, c) = min
w∈W

{
d
(
S(c, w; Γ )

)}
.

One may assume that a watermark wmin ∈ W attains the minimum above. Then

s(Γ, c) = d
(
S(c, wmin; Γ )

)
� d

(
S(c, w; Γ )

)
(8)

for every watermark w ∈ W . Since the code Γ is c-intersecting, S(c, wmin; Γ ) is
c-intersecting and hence

S(c, wmin; Γ ) ∈ F(Γ, c). (9)

By Eqs. (6) – (9), we have

d(n, c) = d(Emin) � d
(
S(c, wmin; Γ )

)
= s(Γ, c).

We then verify d(n, c) � s(Γ, c). Since Emin is c-intersecting, by Lemma 3
there is a watermark w′ ∈ W such that

Emin ⊆ S(c, w′; Γ ).

Therefore, by Lemma 4, we have

d(Emin) � d
(
S(c, w′; Γ )

)
,

and hence

d(n, c) = d(Emin) � d
(
S(c, w′; Γ )

)

� min
w∈W

{
d
(
S(c, w; Γ )

)}
= s(Γ, c),

as desired. ��

We are now ready to prove Theorem 1.
Proof of Theorem 1. Let Γ = {w1, w2, · · · , wn}. By Lemma 5 s(Γ, c) = d(n, c).
Therefore it suffices to verify s(Γ, c) = s(c).

Suppose for a contradiction that there is a code Γa = {wa
1 , wa

2 , · · · , wa
n} such

that s(Γa, c) � s(Γ, c). Let la be the length of the code Γa, and let l be the length
of the code Γ . From Γa and Γ we construct a new code Γb = {wb

1, w
b
2, · · · , wb

n}
of length lb = la + l where wb

i = wa
i ‖ wi, 1 ≤ i ≤ n, that is, the bit-sequence wb

i

is a concatenation of wa
i and wi.
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We claim that Γb is c-intersecting. Let w ∈ {0, 1}lb be an arbitrary watermark
of length lb. Let Ew

0 = {C | C ⊆ Γb, 1 ≤ |C| ≤ c}. Compare the i-th bits of w
and wb

i ∈ Γb for each i, la + 1 ≤ i ≤ lb, and remove C from Ew
0 if Eq. (3)

holds for C. (See Lemma 1.) The resulting family is intersecting, because the
bit-subsequences of Γb from the (la + 1)-th position to the lb-th correspond to
the bit-sequences of a c-intersecting code Γ . S(c, w; Γb) can be obtained from
the resulting intersecting family by repeating the operation above from the first
position to the la-th, and hence S(c, w; Γb) is a subset of the resulting intersecting
family. Thus S(c, w; Γb) is intersecting, and hence Γb is c-intersecting.

Let Ew
la

be a family obtained from Ew
0 by repeating the operation for the

watermark w ∈ {0, 1}lb and each watermark wb
i ∈ Γb from the first position to

the la-th, and let Ew
lb

be the family obtained from Ew
la

by repeating the operation
from the (la + 1)-th position to the lb-th. Then Ew

lb
= S(c, w; Γb), and hence

d(Ew
lb

) = d(S(c, w; Γb)). Since Ew
lb

⊆ Ew
la

, by Lemma 4 we have

d
(
S(c, w; Γb)

)
= d(Ew

lb ) � d(Ew
la). (10)

Let w′ be the first la bits sequence of w. Let Ew′

la
be the family obtained from

Ew′

0 = {C | C ⊆ Γa, 1 ≤ |C| ≤ c} by repeating the operation for w′ and wa
i ∈ Γa

from the first position to the la-th. Then Ew′

la
= S(c, w′; Γa). Although Ew′

la
⊆ 2Γa

and Ew
la

⊆ 2Γb , the families Ew′

la
and Ew

la
are isomorphic. We therefore have

d(Ew
la) = d(Ew′

la ) = d
(
S(c, w′; Γa)

)
. (11)

By Eqs. (10) and (11), for an arbitrary watermark w ∈ {0, 1}lb and the
watermark w′ that is the first la bits sequence of w, we have

d
(
S(c, w; Γb)

)
� d(Ew

la) = d
(
S(c, w′; Γa)

)
. (12)

Let ŵ be a watermark w ∈ {0, 1}lb that minimizes the index d
(
S(c, w; Γb)

)
.

Then

d
(
S(c, ŵ; Γb)

)
= min

w∈{0,1}lb

{
d
(
S(c, w; Γb)

)}

= s(Γb, c). (13)

Let ŵ′ be the watermark that is the first la bits sequence of ŵ, then by Eq. (12)
we have

d
(
S(c, ŵ; Γb)

)
� d

(
S(c, ŵ′; Γa)

)
. (14)

By Eqs. (13) and (14) we have

s(Γb, c) � d
(
S(c, ŵ′; Γa)

)

� min
w′∈{0,1}la

{
d
(
S(c, w′; Γa)

)}

= s(Γa, c). (15)
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Since both Γ and Γb are c-intersecting, by Lemma 5

s(Γ, c) = s(Γb, c) = d(n, c). (16)

By Eqs. (15) and (16) we have

s(Γ, c) � s(Γa, c).

However, this contradicts to the assumption s(Γa, c) � s(Γ, c). ��

4 The Best Security Index

In this section, using theory of block designs, we show that s(c) = [1/c] holds
asymptotically.

Orihara et al. obtained the following Theorems 2 and 3 for the upper bound
on the security index s(Γ, c) [5].

Theorem 2 ([5]). If c ≤ (n + 1)/2, then s(Γ, c) � [c/(2c − 1)] for every code
Γ . If n ≥ 7 and c ≥ 3, then s(Γ, c) � [3/7] for every code Γ .

A code Γc = {w1, w2, · · · , wn} is defined by the following n× l binary matrix

Γc =

w1
w2
...

wn

⎡

⎢
⎢
⎢
⎣

1000 · · ·0110 · · ·
0100 · · ·0100 · · ·

...
0000 · · ·1000 · · ·

· · · · · ·

0
0
...
1

⎤

⎥
⎥
⎥
⎦

,

︸ ︷︷ ︸

(n
1)

︸ ︷︷ ︸

(n
2)

︸ ︷︷ ︸

(n
c)· · ·

where l =
(
n
1

)
+

(
n
2

)
+ · · ·+

(
n
c

)
. The i-th row represents wi for each i, 1 ≤ i ≤ n.

Each column corresponds to a set C ⊆ Γ such that 1 ≤ |C| ≤ c. The first(
n
1

)
= n columns list all bit patterns of length n, each having exactly one 1.

The succeeding
(
n
2

)
columns list all bit patterns, each having exactly two 1’s,

and so on. The last
(
n
c

)
columns list all bit patterns, each having exactly c 1’s.

Thus each watermark has length l. The following theorem is known for s(c) and
s(Γc, c) [5].

Theorem 3 ([5]). For any natural number c, s(c) � s(Γc, c) � [1/c]. If n ≥ 3
then s(2) = s(Γ2, 2) = [2/3], and if n ≥ 8 then s(3) = s(Γ3, 3) = [3/7].

Thus a lower bound [1/c] on s(c) is known, but the exact value of s(c) has
not been known for c ≥ 4. We now have the following theorem on s(c).

Theorem 4. If 1 ≤ c ≤ n/2, then s(c) = s(Γc, c) = d(n, c).

Proof. Let C1, C2 ⊆ Γc be any coalitions such that C1 ∩ C2 = ∅ and |C1| =
|C2| = c. Then there exists a bit position i such that every watermark w ∈ Γc

satisfies

〈w〉i =
{

1 if w ∈ C1
0 otherwise
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Fig. 1. The best security index s(c) = s(Γc, c)

and (
n

1

)

+
(

n

2

)

+· · ·+
(

n

c − 1

)

<i≤
(

n

1

)

+
(

n

2

)

+· · ·+
(

n

c

)

.

Since 〈w〉i = 1 for every watermark w ∈ C1, we have 〈F (C1)〉i = 1. Since
〈w〉i = 0 for every watermark w ∈ C2, we have 〈F (C2)〉i = 0. Thus Γc is c-
intersecting by Lemma 2, and hence s(c) = s(Γc, c) = d(n, c) by Theorem 1. ��

The results in Theorems 2, 3 and 4 are illustrated in Figure 1. Note that s(c) =
s(Γc, c), c ≥ 4, takes some value in the shaded region in Fig. 1.

We then give a new upper bound on s(c). Remember that s(c) = d(n, c), and
that

d(n, c) = min {d(E) | E ∈ F(Γ, c)} (17)

for an arbitrary set Γ with |Γ | = n. Therefore a detectable index d(E) for any
family E ∈ F(Γ, c) is an upper bound on s(c). We thus wish to find a family
E ∈ F(Γ, c) for which d(E) is as smaller as possible in order to obtain a good
upper bound on s(c). For the purpose, we use “block designs.”

Definition 10. Let V = {x1, x2, · · · , xv} be a set of v elements x1, x2, · · · , xv.
We call a family E = {B1, B2, · · · , Bb} of b subsets B1, B2, · · · , Bb of V a block
design on V with parameters (b, v, r, k, λ) or a (b, v, r, k, λ)-block design if

(1) each block Bi, 1 ≤ i ≤ b, contains exactly k elements;
(2) each element xi, 1 ≤ i ≤ v, belongs to exactly r blocks; and
(3) any two distinct elements xi and xj, i 	= j, belong to exactly λ blocks.

The parameters b, v, r, k and λ must satisfy the following two equations [1]:

vr = kb (18)

and
(k − 1)r = (v − 1)λ. (19)
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If b = v, r = k and λ ≥ 1, then any two distinct blocks Bi and Bj , i 	= j, in a
(v, v, k, k, λ)-block design E = {B1, B2, · · · , Bv} have exactly λ common elements
[1], and hence a family E = {B1, B2, · · · , Bv} is intersecting.

We have the following lemma.

Lemma 6. Let E = {B1, B2, · · · , Bv} be a (v, v, k, k, λ)-block design. If d(E) =
[p/q] for integers p ≥ 0 and q ≥ 1, then

p ≤

⎧
⎨

⎩

⌊
kq

v

⌋

if 1 ≤ q ≤ v

k if v < q.

Proof. Let V =
⋃v

i=1 Bi. We shall consider only the case of 1 ≤ q ≤ v, because
the case of v < q is similar (and easier).

Let 1 ≤ q ≤ v. Suppose for a contradiction that p >

⌊
kq

v

⌋

. Then

p ≥
⌊

kq

v

⌋

+ 1.

Since d(E) = [p/q], there exists a set X ⊆ V such that |X | = q and

|Bi ∩ X | ≥ p ≥
⌊

kq

v

⌋

+ 1

for every block Bi ∈ E . We thus have
v∑

i=1

|Bi ∩ X | ≥ pv ≥
(
⌊

kq

v

⌋

+ 1
)
v > kq. (20)

Since |X | = q, one may assume that X = {x1, x2, · · · , xq}. Then we have

v∑

i=1

|Bi ∩ X | =
v∑

i=1

q∑

j=1

|Bi ∩ {xj}|

=
q∑

j=1

v∑

i=1

|Bi ∩ {xj}|. (21)

Since each element in V belongs to exactly k blocks, we have
v∑

i=1

|Bi ∩ {xj}| = k. (22)

Thus, by Eqs. (21) and (22), we have

v∑

i=1

|Bi ∩ X | =
q∑

j=1

k = kq,

contrary to Eq. (20). ��
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We can prove the following Lemma 7 by Lemma 6.

Lemma 7. Let Γ be a set, and let E = {B1, B2, · · · , Bv} be a (v, v, k, k, λ)-block
design on V ⊆ Γ . Then d(E) = [k/v].

Proof. V =
⋃v

i=1 Bi, |V | = v, and |Bi ∩V | = k for each block Bi ∈ E . Therefore
E is [k/v]-detectable, and hence d(E) � [k/v]. Thus it suffices to verify that
d(E) � [k/v], that is, [p/q] � [k/v] for any index [p/q] such that E is [p/q]-
detectable.

We first consider the case where 1 ≤ q ≤ v. In this case p ≤
⌊

kq

v

⌋

by

Lemma 6, and hence
p

q
≤

⌊
kq
v

⌋

q
≤

kq
v

q
=

k

v
.

We thus have [p/q] � [k/v].
We then consider the case where q > v. In this case p ≤ k by Lemma 6, and

hence
p

q
≤ k

q
<

k

v
.

We thus have [p/q] ≺ [k/v]. ��

If there exists a (v, v, c, c, λ)-block design E = {B1, B2, · · · , Bv} on a set V
such that V ⊆ Γ and |Γ | = n, then E ∈ F(Γ, c) and hence d(E) is an upper
bound on s(c) and d(E) = [c/v] � s(c) by Lemma 7. By Eq. (19), the parameter
v of a (v, v, c, c, λ)-block design satisfies

v =
c2 − c

λ
+ 1. (23)

We thus have

s(c) � d(E) = [c/v] =

[

c

/(
c2 − c

λ
+ 1

)]

.

We wish to make the index d(E) = [c/v] as smaller as possible in order to obtain
a good upper bound on s(c). We thus wish to make v bigger and hence λ smaller
by Eq. (23). Hence we let λ = 1, because by Eq. (19) λ ≥ 1 when c ≥ 2. Then

v = c2 − c + 1,

and we have
s(c) � d(E) = [c/(c2 − c + 1)].

There does not always exist a (c2 − c + 1, c2 − c + 1, c, c, 1)-block design for
every natural number c. However, there exists a (c2−c+1, c2−c+1, c, c, 1)-block
design if c−1 is a prime power: c−1 = pq for some prime p and natural number
q [1]. We thus have the following theorem.

Theorem 5. Let n be any natural number. If c is a natural number such that
c2 − c + 1 ≤ n and c − 1 is a prime power, then s(c) � [c/(c2 − c + 1)].
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Fig. 2. The best security index s(c)

Proof. Since c − 1 is a prime power, there exists a (c2 − c + 1, c2 − c + 1, c, c, 1)-
block design E = {B1, B2, · · · , Bc2−c+1} [1]. By Lemma 7, d(E) = [c/(c2−c+1)].
Since E ∈ F(Γ, c) for a set Γ with |Γ | = n, we have s(c) = d(n, c) � d(E) =
[c/(c2 − c + 1)] by Eq. (17). ��

We immediately have the following corollary on s(c) for every natural num-
ber c.

Corollary 1. Let n be any natural number, and let c be any natural number
such that 3 ≤ c ≤ n. If c′ is a natural number such that

c′ = max{c′′ | c′′ ≤ c, c′′ − 1 is a prime power, c′′2 − c′′ + 1 ≤ n},

then s(c) � [c′/(c′2 − c′ + 1)].

The results of Theorem 5 and Corollary 1 are illustrated in Figure 2. If
c ≥ 4, then s(c) takes some value in the shaded region in Fig. 2. Theorem 5 and
Corollary 1 imply that s(c) = [1/c] holds asymptotically when c becomes large.
Hence, a distributor can only find a set of c users including at least one culprit,
no matter how good fingerprinting code is used.

5 Conclusions

This paper deals with the problem of fingerprinting codes for collusion attacks.
We presented a characterization of fingerprinting codes that have the best se-
curity index s(c), that is, we showed that every c-intersecting code has the best
security index s(c). We also showed that the value s(c) depends only on the
number c of collusive users and the number n of users, and that s(c) = [1/c]
holds asymptotically. Thus a distributor can find only a set of c users such that
at least one of them is surely collusive, regardless of how good code is used.

Stinson et al. introduced a “c-secure frameproof code” [6], and Cohen et al.
studied a “(t, u)-separating code” [4]. One can easily know that the following
(a), (b) and (c) are equivalent with each other:
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(a) Γ is a c-intersecting code;
(b) Γ is a c-secure frameproof code; and
(c) Γ is a (c, c)-separating code.
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