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Abstract. Assume that each vertex of a graph G is assigned a constant
number q of nonnegative integer weights, and that q pairs of nonnegative
integers li and ui, 1 ≤ i ≤ q, are given. One wishes to partition G into
connected components by deleting edges from G so that the total i-th
weights of all vertices in each component is at least li and at most ui

for each index i, 1 ≤ i ≤ q. The problem of finding such a “uniform”
partition is NP-hard for series-parallel graphs, and is strongly NP-hard
for general graphs even for q = 1. In this paper we show that the problem
and many variants can be solved in pseudo-polynomial time for series-
parallel graphs. Our algorithms for series-parallel graphs can be extended
for partial k-trees, that is, graphs with bounded tree-width.

1 Introduction

Let G = (V, E) be an undirected graph with vertex set V and edge set E. Assume
that each vertex v ∈ V is assigned a constant number q of nonnegative integer
weights ω1(v), ω2(v), · · · , ωq(v), and that q pairs of nonnegative integers li and
ui, 1 ≤ i ≤ q, are given. We call ωi(v) the i-th weight of vertex v, and call li
and ui the i-th lower bound and upper bound on component size, respectively.
We wish to partition G into connected components by deleting edges from G so
that the total i-th weights of all components are almost uniform for each index
i, 1 ≤ i ≤ q, that is, the sum of i-th weights ωi(v) of all vertices v in each
component is at least li and at most ui for some bounds li and ui with small
ui− li. We call such a partition a uniform partition of G. Figure 1(a) illustrates a
uniform partition of a graph, where q = 2, (l1, u1) = (10, 15), (l2, u2) = (10, 20),
each vertex v is drawn as a circle, the two weights ω1(v) and ω2(v) of v are
written inside the circle, and the deleted edges are drawn by dotted lines.

The problem of finding a uniform partition often appear in many practical
situations such as image processing [4,6], paging systems of operation systems [8],
and political districting [3,9]. Consider, for example, political districting. Let M
be a map of a country, which is divided into several regions, as illustrated in
Fig. 1(b). Let G be a dual-like graph of the map M , as illustrated in Fig. 1(a).
Each vertex v of G represents a region, the first weight ω1(v) represents the
number of voters in the region v, and the second weight ω2(v) represents the
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Fig. 1. (a) A uniform partition of a graph into p = 4 components, and (b) electoral
zoning of a map corresponding to the partition

area of the region. Each edge (u, v) of G represents the adjacency of the two
regions u and v. For the political districting, one wishes to divide the country
into electoral zones. Each zone must consist of connected regions, that is, the
regions in each zone must induce a connected subgraph of G. Each zone must
have an almost equal number of voters, and must be almost equal in area. Such
electoral zoning corresponds to a uniform partition of the plane graph G for two
appropriate pairs (l1, u1) and (l2, u2) of bounds.

In the paper we deal with the following three problems to find a uniform
partition of a given graph G: the minimum partition problem is to find a uniform
partition of G with the minimum number of components; the maximum partition
problem is defined similarly; and the p-partition problem is to find a uniform
partition of G with a given number p of components. All the problems are NP-
hard for series-parallel graphs even when q = 1 [5]. Therefore, it is very unlikely
that the three partition problems can be solved in polynomial time even for
series-parallel graphs. Moreover, all the three partition problems are strongly
NP-hard for general graphs even if q = 1 [5], and hence there is no pseudo-
polynomial-time algorithm for any of the three problems on general graphs unless
P = NP. Furthermore, for any ε > 0, there is no ε-approximation algorithm for
the minimum partition problem or the maximum partition problem on series-
parallel graphs unless P = NP [5], and the problems for the case q = 1 can be
solved in pseudo-polynomial time for series-parallel graphs [5]; the minimum and
maximum partition problems can be solved in time O(u4

1n) and the p-partition
problem can be solved in time O(p2u4

1n) for series-parallel graphs G, where n
is the number of vertices in G. However, it has not been known whether the
problems can be solved in pseudo-polynomial time for the case q ≥ 2.

In this paper, we obtain pseudo-polynomial-time algorithms to solve the three
problems on series-parallel graphs for an arbitrary constant number q. More
precisely, we show that the minimum and maximum partition problems can be
solved in time O(u4qn) and hence in time O(n) for any fixed constant u, and
that the p-partition problem can be solved in time O(p2u4qn), where u is the
maximum upper bound, that is, u = max{ui | 1 ≤ i ≤ q}. Our algorithms for
series-parallel graphs can be extended for partial k-trees, that is, graphs with
bounded tree-width [1,2].
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2 Terminology and Definitions

In this section we give some definitions.
A (two-terminal ) series-parallel graph is defined recursively as follows [7]:

(1) A graph G with a single edge is a series-parallel graph. The end vertices
of the edge are called the terminals of G and denoted by s(G) and t(G).
(See Fig. 2(a).)

(2) Let G′ be a series-parallel graph with terminals s(G′) and t(G′), and let
G′′ be a series-parallel graph with terminals s(G′′) and t(G′′).
(a) A graph G obtained from G′ and G′′ by identifying vertex t(G′) with

vertex s(G′′) is a series-parallel graph, whose terminals are s(G) =
s(G′) and t(G) = t(G′′). Such a connection is called a series connec-
tion, and G is denoted by G = G′ • G′′. (See Fig. 2(b).)

(b) A graph G obtained from G′ and G′′ by identifying s(G′) with s(G′′)
and identifying t(G′) with t(G′′) is a series-parallel graph, whose ter-
minals are s(G) = s(G′) = s(G′′) and t(G) = t(G′) = t(G′′). Such a
connection is called a parallel connection, and G is denoted by G =
G′ ‖ G′′. (See Fig. 2(c).)

The terminals s(G) and t(G) of G are often denoted simply by s and t, respec-
tively. Since we deal with partition problems, we may assume without loss of
generality that G is a simple graph and hence G has no multiple edges.

s(G)
=s(G' )

t(G)
=t(G'' )

t(G' )

s(G'' )
G' G''

G''

G'
s(G)

=s(G' )
=s(G'')

t(G)
=t(G' )
=t(G'')

(a) (c)

s(G) t(G)

(b) 

Fig. 2. (a) A series-parallel graph with a single edge, (b) series connection, and (c)
parallel connection

A series-parallel graph G can be represented by a “binary decomposition
tree” [7]. Figure 3(a) illustrates a series-parallel graph G, and Figure 3(b) depicts
a binary decomposition tree T of G. Labels s and p attached to internal nodes
in T indicate series and parallel connections, respectively. Nodes labeled s and
p are called s- and p-nodes, respectively. Every leaf of T represents a subgraph
of G induced by a single edge. Each node v of T corresponds to a subgraph
Gv of G induced by all edges represented by the leaves that are descendants of
v in T . Thus Gv is a series-parallel graph for each node v of T , and G = Gr

for the root r of T . Figure 3(c) depicts Gv for the left child v of the root r of
T . Since a binary decomposition tree of a given series-parallel graph G can be
found in linear time [7], we may assume that a series-parallel graph G and its
binary decomposition tree T are given. We solve the three partition problems
by a dynamic programming approach based on a decomposition tree T .
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Fig. 3. (a) A series-parallel graph G, (b) its binary decomposition tree T , and (c) a
subgraph Gv

3 Minimum and Maximum Partition Problems

In this section we have the following theorem.

Theorem 1. Both the minimum partition problem and the maximum partition
problem can be solved for any series-parallel graph G in time O(u4qn), where n
is the number of vertices in G, q is a fixed constant number of weights, and u is
the maximum upper bound on component size.
In the remainder of this section we give an algorithm to solve the minimum
partition problem as a proof of Theorem 1; the maximum partition problem can
be similarly solved. We indeed show only how to compute the minimum number
pmin(G) of components. It is easy to modify our algorithm so that it actually
finds a uniform partition having the minimum number pmin(G) of components.

Every uniform partition of a series-parallel graph G naturally induces a parti-
tion of its subgraph Gv for a node v of a decomposition tree T of G. The induced
partition is not always a uniform partition of Gv but is either a “connected par-
tition” or a “separated partition” of Gv, which will be formally defined later
and are illustrated in Fig. 4 where s and t represent the terminals of Gv. We
denote by X a q-tuple (x1, x2, · · · , xq) of integers with 0 ≤ xi ≤ ui, 1 ≤ i ≤ q.
We introduce two functions f and h; for a series-parallel graph Gv and a q-tuple
X = (x1, x2, · · · , xq), the value f(Gv, X) represents the minimum number of com-
ponents in some particular connected partitions of Gv; for a series-parallel graph
Gv and a pair of q-tuples X = (x1, x2, · · · , xq) and Y = (y1, y2, · · · , yq), the value
h(Gv, X, Y) represents the minimum number of components in some particular
separated partitions of Gv. Our idea is to compute f(Gv, X) and h(Gv, X, Y)
from leaves of T to the root r of T by means of dynamic programming.

PstPst
s t

Ps Pt
s t

(a)                                                               (b)

Fig. 4. (a) A connected partition, and (b) a separated partition
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We now formally define the notion of connected and separated partitions of
a series-parallel graph G = (V, E). Let P = {P1, P2, . . . , Pm} be a partition of
the vertex set V of G into m nonempty subsets P1, P2, · · · , Pm for some integer
m ≥ 1. Thus |P| = m. The partition P of V is called a partition of G if Pj

induces a connected subgraph of G for each index j, 1 ≤ j ≤ m. For a set P ⊆ V
and an index i, 1 ≤ i ≤ q, we denote by ωi(P ) the sum of i-th weights of vertices
in P , that is, ωi(P ) =

∑
v∈P ωi(v). Let ωst(G, i) = ωi(s) + ωi(t). We call a

partition P of G a connected partition if P satisfies the following two conditions
(see Fig. 4(a)):

(a) there exists a set Pst ∈ P such that s, t ∈ Pst; and
(b) for each index i, 1 ≤ i ≤ q, the inequality ωi(Pst) ≤ ui holds, and the

inequalities li ≤ ωi(P ) ≤ ui hold for each set P ∈ P − {Pst}.

Note that the inequality li ≤ ωi(Pst), 1 ≤ i ≤ q, does not necessarily hold for
Pst. For a connected partition P , we always denote by Pst the set in P containing
both s and t. A partition P of G is called a separated partition if P satisfies the
following two conditions (see Fig. 4(b)):

(a) there exist two distinct sets Ps, Pt ∈ P such that s ∈ Ps and t ∈ Pt; and
(b) for each index i, 1 ≤ i ≤ q, the two inequalities ωi(Ps) ≤ ui and ωi(Pt) ≤ ui

hold, and the inequalities li ≤ ωi(P ) ≤ ui hold for each set P ∈ P−{Ps, Pt}.

Note that the inequalities li ≤ ωi(Ps) and li ≤ ωi(Pt), 1 ≤ i ≤ q, do not always
hold for Ps and Pt. For a separated partition P , we always denote by Ps the set
in P containing s and by Pt the set in P containing t.

We then formally define f(G, X) for a series-parallel graph G and a q-tuple
X = (x1, x2, · · · , xq) of integers with 0 ≤ xi ≤ ui, 1 ≤ i ≤ q, as follows:

f(G, X) = min{p∗ ≥ 0 | G has a connected partition P such that
xi = ωi(Pst) − ωst(G, i) for each i, and p∗ = |P| − 1}. (1)

If G has no connected partition P such that ωi(Pst) − ωst(G, i) = xi for each i,
then let f(G, X) = +∞.

We now formally define h(G, X, Y) for a series-parallel graph G and a pair
of q-tuples X = (x1, x2, · · · , xq) and Y = (y1, y2, · · · , yq) of integers with 0 ≤
xi, yi ≤ ui, 1 ≤ i ≤ q, as follows:

h(G, X, Y) = min{p∗ ≥ 0 | G has a separated partition P such that
xi = ωi(Ps) − ωi(s) and yi = ωi(Pt) − ωi(t) for each i,
and p∗ = |P| − 2}. (2)

If G has no separated partition P such that ωi(Ps) − ωi(s) = xi and ωi(Pt) −
ωi(t) = yi for each i, then let h(G, X, Y) = +∞.

Our algorithm computes f(Gv, X) and h(Gv, X, Y) for each node v of a binary
decomposition tree T of a given series-parallel graph G from leaves to the root
r of T by means of dynamic programming. Since G = Gr, one can compute
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the minimum number pmin(G) of components from f(G, X) and h(G, X, Y) as
follows:

pmin(G) = min
{
min{f(G, X) + 1 | li ≤ xi + ωst(G, i) ≤ ui for each i},

min{h(G, X, Y) + 2 | li ≤ xi + ωi(s) ≤ ui and

li ≤ yi + ωi(t) ≤ ui for each i}
}
. (3)

Note that pmin(G) = +∞ if G has no uniform partition.
We first compute f(Gv, X) and h(Gv, X, Y) for each leaf v of T , for which the

subgraph Gv contains exactly one edge. We thus have

f(Gv, X) =
{

0 if X = (0, 0, · · · , 0);
+∞ otherwise, (4)

and

h(Gv, X, Y) =
{

0 if X = Y = (0, 0, · · · , 0);
+∞ otherwise. (5)

By Eq. (4) one can compute f(Gv, X) in time O(uq) for each leaf v of T and
all q-tuples X = (x1, x2, · · · , xq), where u is the maximum upper bound on
component size, that is, u = max{ui | 1 ≤ i ≤ q}. Similarly, by Eq. (5) one
can compute h(Gv, X, Y) in time O(u2q) for each leaf v and all pairs of q-tuples
X = (x1, x2, · · · , xq) and Y = (y1, y2, · · · , yq). Since G is a simple series-parallel
graph, the number of edges in G is at most 2n − 3 and hence the number of
leaves in T is at most 2n − 3. Thus one can compute f(Gv, X) and h(Gv, X, Y)
for all leaves v of T in time O(u2qn).

We next compute f(Gv, X) and h(Gv, X, Y) for each internal node v of T from
the counterparts of the two children of v in T .

We first consider a parallel connection.
[Parallel connection]

Let Gv = G′ ‖ G′′, and let s = s(Gv) and t = t(Gv). (See Figs. 2(c) and 5.)
We first explain how to compute h(Gv, X, Y) from h(G′, X′, Y′) and

h(G′′, X′′, Y′′). The definitions of a separated partition and h(G, X, Y) imply
that if ωi(Ps) = xi + ωi(s) > ui or ωi(Pt) = yi + ωi(t) > ui for some index
i, then h(Gv, X, Y) = +∞. One may thus assume that xi + ωi(s) ≤ ui and
yi + ωi(t) ≤ ui for each index i, 1 ≤ i ≤ q. Then every separated partition P of
Gv can be obtained by combining a separated partition P ′ of G′ with a separated
partition P ′′ of G′′, as illustrated in Fig. 5(a). We thus have

h(Gv, X, Y) = min{h(G′, X′, Y′) + h(G′′, X − X
′, Y − Y

′) |
X

′ = (x′
1, x

′
2, · · · , x′

q) and Y
′ = (y′

1, y
′
2, · · · , y′

q)
such that 0 ≤ x′

i, y
′
i ≤ ui for each i}, (6)

where X − X
′ = (x1 − x′

1, x2 − x′
2, · · · , xq − x′

q) and Y − Y
′ = (y1 − y′

1, y2 −
y′
2, · · · , yq − y′

q).



Partitioning a Multi-weighted Graph to Connected Subgraphs 69

(a) (c)

G'

G''

Ps Pt

Ps Pt

s t

' '

'' ''

G
Ps Pt

G

s t

Pst

''

''

' '
'

(b)

G

G

s t

Pst

Pst''

''

'
'

Fig. 5. The combinations of a partition P ′ of G′ and a partition P ′′ of G′′ for a partition
P of Gv = G′ ‖ G′′

We next explain how to compute f(Gv, X) from f(G′, X′), f(G′′, X′′),
h(G′, X′, Y′) and h(G′′, X′′, Y′′). If ωi(Pst) = xi + ωst(Gv, i) > ui for some index
i, then f(Gv, X) = +∞. One may thus assume that xi +ωst(Gv, i) ≤ ui for each
index i, 1 ≤ i ≤ q. Then every connected partition P of Gv can be obtained
by combining a partition P ′ of G′ with a partition P ′′ of G′′, as illustrated in
Figs. 5(b) and (c). There are the following two Cases (a) and (b), and we define
two functions fa and f b for the two cases, respectively.
Case (a): both P ′ and P ′′ are connected partitions. (See Fig. 5(b).)

Let

fa(Gv, X) = min{f(G′, X′) + f(G′′, X − X
′) | X

′ = (x′
1, x

′
2, · · · , x′

q)
such that 0 ≤ x′

i ≤ ui for each i}. (7)

Case (b): one of P ′ and P ′′ is a separated partition and the other is a connected
partition.

One may assume without loss of generality that P ′ is a separated partition
and P ′′ is a connected partition. (See Fig. 5(c).) Let

f b(Gv, X) = min{h(G′, X′, Y′) + f(G′′, X − X
′ − Y

′) |
X

′ = (x′
1, x

′
2, · · · , x′

q) and Y
′ = (y′

1, y
′
2, · · · , y′

q)
such that 0 ≤ x′

i, y
′
i ≤ ui for each i}. (8)

From fa and f b above, one can compute f(Gv, X) as follows:

f(Gv, X) = min{fa(Gv, X), f b(Gv, X)}. (9)

By Eq. (6) one can compute h(Gv, X, Y) in time O(u4q) for all pairs of q-tuples
X = (x1, x2, · · · , xq) and Y = (y1, y2, · · · , yq) with 0 ≤ xi, yi ≤ ui, 1 ≤ i ≤ q.
By Eqs. (7)–(9) one can compute f(Gv, X) in time O(u3q) for all q-tuples X =
(x1, x2, · · · , xq) with 0 ≤ xi ≤ ui, 1 ≤ i ≤ q. Thus one can compute f(Gv, X)
and h(Gv, X, Y) for each p-node v of T in time O(u4q).

We next consider a series connection.
[Series connection]

Let Gv = G′ • G′′, and let w be the vertex of G identified by the series
connection, that is, w = t(G′) = s(G′′). (See Figs. 2(b) and 6.)
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Fig. 6. The combinations of a partition P ′ of G′ and a partition P ′′ of G′′ for a partition
P of Gv = G′ • G′′

We first explain how to compute f(Gv, X). If xi + ωst(Gv, i) > ui for some
index i, then f(Gv, X) = +∞. One may thus assume that xi +ωst(Gv, i) ≤ ui for
each index i, 1 ≤ i ≤ q. Then every connected partition P of Gv can be obtained
by combining a connected partition P ′ of G′ with a connected partition P ′′ of
G′′, as illustrated in Fig. 6(a). We thus have

f(Gv, X) = min{f(G′, X′) + f(G′′, X′′) | X
′ = (x′

1, x
′
2, · · · , x′

q) and
X

′′ = (x′′
1 , x′′

2 , · · · , x′′
q ) such that 0 ≤ x′

i, x
′′
i ≤ ui and

x′
i + x′′

i + ωi(w) = xi for each i}. (10)

We next explain how to compute h(Gv, X, Y). If xi + ωi(s) > ui or yi +
ωi(t) > ui for some index i, then h(Gv, X, Y) = +∞. One may thus assume that
xi + ωi(s) ≤ ui and yi + ωi(t) ≤ ui for each index i, 1 ≤ i ≤ q. Then every
separated partition P of Gv can be obtained by combining a partition P ′ of G′

with a partition P ′′ of G′′, as illustrated in Figs. 6(b) and (c). There are the
following two Cases (a) and (b), and we define two functions ha and hb for the
two cases, respectively.
Case (a): one of P ′ and P ′′ is a connected partition and the other is a separated
partition.

One may assume without loss of generality that P ′ is a connected partition
and P ′′ is a separated partition. (See Fig. 6(b).) Let

ha(Gv, X, Y) = min{f(G′, X′) + h(G′′, X′′, Y) | X
′ = (x′

1, x
′
2, · · · , x′

q) and
X

′′=(x′′
1 , x′′

2 , · · · , x′′
q ) such that 0 ≤ x′

i, x
′′
i ≤ ui and

x′
i + x′′

i + ωi(w) = xi for each i}. (11)

Case (b): both P ′ and P ′′ are separated partitions. (See Fig. 6(c).)
Let

hb(Gv, X, Y) = min{h(G′, X, Y′) + h(G′′, X′′, Y) + 1 |
Y

′ = (y′
1, y

′
2, · · · , y′

q) and X
′′ = (x′′

1 , x′′
2 , · · · , x′′

q )
such that 0 ≤ y′

i, x
′′
i ≤ ui and

li ≤ y′
i + x′′

i + ωi(w) ≤ ui for each i}. (12)
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From ha and hb above one can compute h(Gv, X, Y) as follows:

h(Gv, X, Y) = min{ha(Gv, X, Y), hb(Gv, X, Y)}. (13)

By Eq. (10) one can compute f(Gv, X) in time O(u2q) for all q-tuples X =
(x1, x2, · · · , xq) with 0 ≤ xi ≤ ui, 1 ≤ i ≤ q. By Eqs. (11)–(13) one can compute
h(Gv, X, Y) in time O(u4q) for all pairs of q-tuples X = (x1, x2, · · · , xq) and
Y = (y1, y2, · · · , yq) with 0 ≤ xi, yi ≤ ui, 1 ≤ i ≤ q. Thus one can compute
f(Gv, X) and h(Gv, X, Y) for each s-node v of T in time O(u4q).

In this way one can compute f(Gv, X) and h(Gv, X, Y) for each internal node
v of T in time O(u4q) regardless of whether v is a p-node or an s-node. Since T is
a binary tree and has at most 2n−3 leaves, T has at most 2n−4 internal nodes.
Since G = Gr for the root r of T , one can compute f(G, X) and h(G, X, Y) in
time O(u4qn). By Eq. (3) one can compute the minimum number pmin(G) of
components in a uniform partition of G from f(G, X) and h(G, X, Y) in time
O(u2q). Thus the minimum partition problem can be solved in time O(u4qn).
This completes our proof of Theorem 1.

4 p-Partition Problem

In this section we have the following theorem.

Theorem 2. The p-partition problem can be solved for any series-parallel graph
G in time O(p2u4qn), where n is the number of vertices in G, q is a fixed constant
number of weights, u is the maximum upper bound on component size, and p is
a given number of components.

The algorithm for the p-partition problem is similar to the algorithm for the
minimum partition problem in the previous section. So we present only an out-
line.

For a series-parallel graph G and an integer p∗, 0 ≤ p∗ ≤ p − 1, we define a
set F (G, p∗) of q-tuples X = (x1, x2, · · · , xq) as follows:

F (G, p∗) = {X | G has a connected partition P such that
xi = ωi(Pst) − ωst(G, i) for each i, and p∗ = |P| − 1}.

For a series-parallel graph G and an integer p∗, 0 ≤ p∗ ≤ p − 2, we define a
set H(G, p∗) of pairs of q-tuples X = (x1, x2, · · · , xq) and Y = (y1, y2, · · · , yq) as
follows:

H(G, p∗) = {(X, Y) | G has a separated partition P such that
xi = ωi(Ps) − ωi(s) and yi = ωi(Ps) − ωi(t) for each i,

and p∗ = |P| − 2}.

Clearly |F (G, p∗)| ≤ (u + 1)q and |H(G, p∗)| ≤ (u + 1)2q.
We compute F (Gv, p∗) and H(Gv, p∗) for each node v of a binary decompo-

sition tree T of a given series-parallel graph G from leaves to the root r of T
by means of dynamic programming. Since G = Gr, the following lemma clearly
holds.
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Lemma 1. A series-parallel graph G has a uniform partition with p components
if and only if the following condition (a) or (b) holds:

(a) F (G, p − 1) contains at least one q-tuple X = (x1, x2, · · · , xq) such that li ≤
xi + ωst(G, i) ≤ ui for each index i, 1 ≤ i ≤ q; and

(b) H(G, p − 2) contains at least one pair of q-tuples X = (x1, x2, · · · , xq) and
Y = (y1, y2, · · · , yq) such that li ≤ xi + ωi(s) ≤ ui and li ≤ yi + ωi(t) ≤ ui

for each index i, 1 ≤ i ≤ q.

One can compute in time O(p) the sets F (Gv, p∗) and H(Gv, p∗) for each leaf v of
T and all integers p∗ (≤ p−1), and compute in time O(p2u4q) the sets F (Gv, p∗)
and H(Gv, p∗) for each internal node v of T and all integers p∗ (≤ p − 1) from
the counterparts of the two children of v in T . Since G = Gr for the root r of
T , one can compute the sets F (G, p− 1) and H(G, p− 2) in time O(p2u4qn). By
Lemma 1 one can know from the sets in time O(u2q) whether G has a uniform
partition with p components. Thus the p-partition problem can be solved in time
O(p2u4qn).

5 Conclusions

In this paper we obtained pseudo-polynomial-time algorithms to solve the three
uniform partition problems for series-parallel graphs. Both the minimum parti-
tion problem and the maximum partition problem can be solved in time O(u4qn).
On the other hand, the p-partition problem can be solved in time O(p2u4qn).

One can observe that the algorithms for series-parallel graphs can be extended
for partial k-trees, that is, graphs with bounded tree-width [1,2].
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