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Abstract. In a convex drawing of a plane graph, all edges are drawn as
straight-line segments without any edge-intersection and all facial cycles
are drawn as convex polygons. In a convex grid drawing, all vertices are
put on grid points. A plane graph G has a convex drawing if and only if
G is internally triconnected, and an internally triconnected plane graph
G has a convex grid drawing on an n × n grid if G is triconnected or the
triconnected component decomposition tree T (G) of G has two or three
leaves, where n is the number of vertices in G. In this paper, we show
that an internally triconnected plane graph G has a convex grid drawing
on a 2n × n2 grid if T (G) has exactly four leaves. We also present an
algorithm to find such a drawing in linear time. Our convex grid drawing
has a rectangular contour, while most of the known algorithms produce
grid drawings having triangular contours.

1 Introduction

Recently automatic aesthetic drawing of graphs has created intense interest due
to their broad applications, and as a consequence, a number of drawing methods
have come out [11]. The most typical drawing of a plane graph is a straight
line drawing in which all edges are drawn as straight line segments without any
edge-intersection. A straight line drawing is called a convex drawing if every
facial cycle is drawn as a convex polygon. One can find a convex drawing of a
plane graph G in linear time if G has one [3,4,11].

A straight line drawing of a plane graph is called a grid drawing if all vertices
are put on grid points of integer coordinates. This paper deals with a convex grid
drawing of a plane graph. Throughout the paper we assume for simplicity that
every vertex of a plane graph G has degree three or more, because the two edges
incident to a vertex of degree two are often drawn on a straight line. Then G has
a convex drawing if and only if G is “internally triconnected” [9]. One may thus
assume without loss of generality that G is internally triconnected. If either G is
triconnected [2] or the “triconnected component decomposition tree” T (G) of G
has two or three leaves [8], then G has a convex grid drawing on an (n−1)×(n−1)
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grid and such a drawing can be found in linear time, where n is the number of
vertices of G. However, it has not been known whether G has a convex grid
drawing of polynomial size if T (G) has four or more leaves. Figure 1(a) depicts
an internally triconnected plane graph G, Fig. 2(b) the triconnected components
of G, and Fig. 2(c) the triconnected component decomposition tree T (G) of G,
which has four leaves l1, l2, l3 and l4.
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Fig. 1. (a) A plane graph G, (b) subgraphs Gu and Gd, (c) a drawing Du of Gu, (d) a
drawing Dd of Gd, and (e) a convex grid drawing D of G

In this paper, we show that an internally triconnected plane graph G has
a convex grid drawing on a 2n × n2 grid if T (G) has exactly four leaves, and
present an algorithm to find such a drawing in linear time. The algorithm is
outlined as follows: we first divide a plane graph G into an upper subgraph Gu
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Fig. 2. (a) Split components of the graph G in Fig. 1(a), (b) triconnected components
of G, and (c) a decomposition tree T (G)

and a lower subgraph Gd as illustrated in Fig. 1(b) for the graph in Fig. 1(a);
we then construct “inner” convex grid drawings of Gu and Gd by a so-called
shift method as illustrated in Figs. 1(c) and (d); we finally extend these two
drawings to a convex grid drawing of G as illustrated in Fig. 1(e). This is the
first algorithm that finds a convex grid drawing of such a plane graph G in
a grid of polynomial size. Our convex grid drawing has a rectangular contour,
while most of the previously known algorithms produce a grid drawing having a
triangular contour [1,2,5,6,8,13].

2 Preliminaries

We denote by W (D) the width of a minimum integer grid enclosing a grid
drawing D of a graph, and by H(D) the height of D. A plane graph G divides
the plane into connected regions, called faces. The infinite face is called an outer
face, and the others are called inner faces. The boundary of a face is called a
facial cycle. We denote by Fo(G) the outer facial cycle of G. A vertex on Fo(G)
is called an outer vertex, while a vertex not on Fo(G) is called an inner vertex. In
a convex drawing of a plane graph G, all facial cycles must be drawn as convex
polygons. The convex polygonal drawing of Fo(G) is called an outer polygon. We
call a vertex of a polygon an apex in order to avoid the confusion with a vertex
of a graph.

We call a pair {u, v} of vertices in a biconnected graph G a separation pair
if its removal from G results in a disconnected graph, that is, G − {u, v} is not
connected. A biconnected graph G is triconnected if G has no separation pair. A
biconnected plane graph G is internally triconnected if, for any separation pair
{u, v} of G, both u and v are outer vertices and each connected component of
G− {u, v} contains an outer vertex. In other words, G is internally triconnected
if and only if it can be extended to a triconnected graph by adding a vertex in
the outer face and joining it to all outer vertices.

Let G = (V, E) be a biconnected graph, and let {u, v} be a separation pair of
G. Then, G has two subgraphs G′

1 = (V1, E
′
1) and G′

2 = (V2, E
′
2) satisfying the

following two conditions.
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(a) V = V1
⋃

V2, V1
⋂

V2 = {u, v}; and
(b) E = E′

1
⋃

E′
2, E′

1
⋂

E′
2 = ∅, |E′

1| ≥ 2, |E′
2| ≥ 2.

For a separation pair {u, v} of G, G1 = (V1, E
′
1+(u, v)) and G2 = (V2, E

′
2+(u, v))

are called the split graphs of G with respect to {u, v}. The new edges (u, v) added
to G1 and G2 are called the virtual edges. Even if G has no multiple edges, G1
and G2 may have. Dividing a graph G into two split graphs G1 and G2 is called
splitting. Reassembling the two split graphs G1 and G2 into G is called merging.
Merging is the inverse of splitting. Suppose that a graph G is split, the split
graphs are split, and so on, until no more splits are possible, as illustrated in
Fig. 2(a) for the graph in Fig. 1(a) where virtual edges are drawn by dotted
lines. The graphs constructed in this way are called the split components of G.
The split components are of three types: triconnected graphs; triple bonds (i.e.
a set of three multiple edges); and triangles (i.e. a cycle of length three). The
triconnected components of G are obtained from the split components of G by
merging triple bonds into a bond and triangles into a ring, as far as possible,
where a bond is a set of multiple edges and a ring is a cycle. Thus the tricon-
nected components of G are of three types: (a) triconnected graphs; (b) bonds;
and (c) rings. Two triangles in Fig. 2(a) are merged into a single ring, and
hence the graph in Fig. 1(a) has ten triconnected components as illustrated in
Fig. 2(b).

Let T (G) be a tree such that each node corresponds to a triconnected com-
ponent Hi of G and there is an edge (Hi, Hj), i �= j, in T (G) if and only if Hi

and Hj are triconnected components with respect to the same separation pair,
as illustrated in Fig. 2(c). We call T (G) a triconnected component decomposition
tree or simply a decomposition tree of G [7]. We denote by �(G) the number of
leaves of T (G). Then �(G) = 4 for the graph G in Fig. 1(a). (See Fig. 2(c).) If G
is triconnected, then T (G) consists of a single isolated node and hence �(G) = 1.

The following two lemmas are known.

Lemma 1. [9] Let G be a biconnected plane graph in which every vertex has
degree three or more. Then the following three statements are equivalent to each
other:

(a) G has a convex drawing;
(b) G is internally triconnected; and
(c) both vertices of every separation pair are outer vertices, and a node of the

decomposition tree T (G) of G has degree two if it is a bond.

Lemma 2. [9] If a plane graph G has a convex drawing D, then the number of
apices of the outer polygon of D is no less than max{3, �(G)}, and there is a
convex drawing of G whose outer polygon has exactly max{3, �(G)} apices.

Since G is an internally triconnected simple graph and every vertex of G has
degree three or more, by Lemma 1 every leaf of T (G) is a triconnected graph.
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Lemmas 1 and 2 imply that if T (G) has exactly four leaves then the outer
polygon must have four or more apices. Our algorithm obtains a convex grid
drawing of G whose outer polygon has exactly four apices and is a rectangle in
particular, as illustrated in Fig. 1(e).

In Section 3, we will present an algorithm to draw the upper subgraph Gu
and the lower subgraph Gd. The algorithm uses the following “canonical de-
composition.” Let G = (V, E) be an internally triconnected plane graph, and
let V = {v1, v2, · · · , vn}. Let v1, v2 and vn be three arbitrary outer vertices ap-
pearing counterclockwise on Fo(G) in this order. We may assume that v1 and
v2 are consecutive on Fo(G); otherwise, add a virtual edge (v1, v2) to the orig-
inal graph, and let G be the resulting graph. Let Π = (U1, U2, · · · , Um) be an
ordered partition of V into nonempty subsets U1, U2, · · · , Um. We denote by Gk,
1 ≤ k ≤ m, the subgraph of G induced by U1

⋃
U2

⋃
· · ·

⋃
Uk, and denote by

Gk, 0 ≤ k ≤ m − 1, the subgraph of G induced by Uk+1
⋃

Uk+2
⋃

· · ·
⋃

Um. We
say that Π is a canonical decomposition of G (with respect to vertices v1, v2 and
vn) if the following three conditions (cd1)–(cd3) hold:

(cd1) Um = {vn}, and U1 consists of all the vertices on the inner facial cycle
containing edge (v1, v2).

(cd2) For each index k, 1 ≤ k ≤ m, Gk is internally triconnected.
(cd3) For each index k, 2 ≤ k ≤ m, all the vertices in Uk are outer vertices of

Gk, and
(a) if |Uk| = 1, then the vertex in Uk has two or more neighbors in Gk−1

and has one or more neighbors in Gk when k < m; and
(b) if |Uk| ≥ 2, then each vertex in Uk has exactly two neighbors in Gk,

and has one or more neighbors in Gk.

A canonical decomposition Π = (U1, U2, · · · , U11) with respect to vertices
v1, v2 and vn of the graph in Fig. 3(a) is illustrated in Fig. 3(b).

3 Pentagonal Drawing

Let G be a plane graph having a canonical decomposition Π = (U1, U2, · · · , Um)
with respect to vertices v1, v2 and vn, as illustrated in Figs. 3(a) and (b). In
this section, we present a linear-time algorithm, called the pentagonal drawing
algorithm, to find a convex grid drawing of G with a pentagonal outer polygon,
as illustrated in Fig. 3(d). The algorithm is based on the so-called shift methods
given by Chrobak and Kant [2] and de Fraysseix et al. [5], and will be used by
our convex grid drawing algorithm in Section 4 to draw Gu and Gd.

Let vl be an arbitrary vertex on the path going from v1 to vn clockwise on
Fo(G), and let vr(�= vl) be an arbitrary vertex on the path going from v2 to vn

counterclockwise on Fo(G), as illustrated in Fig. 3(a). Let Vl be the set of all
vertices on the path going from v1 to vl clockwise on Fo(G), and let Vr be the
set of all vertices on the path going from v2 to vr counterclockwise on Fo(G). Our
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Fig. 3. (a) An internally triconnected plane graph G(= G′
d), (b) a canonical decom-

position Π of G, (c) a drawing Dm−1 of Gm−1, and (d) a pentagonal drawing Dm

of G

pentagonal drawing algorithm obtains a convex grid drawing of G whose outer
polygon is a pentagon with apices v1, v2, vr, vn and vl, as illustrated in Fig. 3(d).

We first obtain a drawing D1 of the subgraph G1 of G induced by all vertices
of U1. Let Fo(G1) = w1, w2, · · · , wt, w1 = v1, and wt = v2. We draw G1 as
illustrated in Fig. 4, depending on whether (v1, v2) is a real edge or not, w2 ∈ Vl

or not, and wt−1 ∈ Vr or not.
We then extend a drawing Dk−1 of Gk−1 to a drawing Dk of Gk for each

index k, 2 ≤ k ≤ m. Let Fo(Gk−1) = w1, w2, · · · , wt, w1 = v1, wt = v2, and
Uk = {u1, u2, · · · , ur}. Let wf be the vertex with the maximum index f among
all the vertices wi, 1 ≤ i ≤ t, on Fo(Gk−1) that are contained in Vl. Let wg

be the vertex with the minimum index g among all the vertices wi that are
contained in Vr. Of course, 1 ≤ f < g ≤ t. We denote by ∠wi the interior
angle of apex wi of the outer polygon of Dk−1. We call wi a convex apex of the

(b) (e)(a) (c) (d)
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Fig. 4. Drawings D1 of G1
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polygon if ∠wi < π. Assume that a drawing Dk−1 of Gk−1 satisfies the following
six conditions (sh1)–(sh6). Indeed D1 satisfies them.

(sh1) w1 is on the grid point (0, 0), and wt is on the grid point (2|V (Gk−1)| −
2, 0).

(sh2) x(w1) = x(w2) = · · · = x(wf ), x(wf ) < x(wf+1) < · · · < x(wg), x(wg) =
x(wg+1) = · · · = x(wt), where x(wi) is the x-coordinate of wi.

(sh3) Every edge (wi, wi+1), f ≤ i ≤ g − 1, has slope −1, 0, or 1.
(sh4) The Manhattan distance between any two grid points wi and wj , f ≤ i <

j ≤ g, is an even number.
(sh5) Every inner face of Gk−1 is drawn as a convex polygon.
(sh6) Vertex wi, f + 1 ≤ i ≤ g − 1, has one or more neighbors in Gk−1 if wi is

a convex apex.

We extend Dk−1 to Dk, 2 ≤ k ≤ m, so that Dk satisfies conditions (sh1)–
(sh6). Let wp be the leftmost neighbor of u1, that is, wp is the neighbor of u1
in Gk having the smallest index p, and let wq be the rightmost neighbor of ur.
Before installing Uk to Dk−1, we first shift w1, w2, · · · , wp of Gk−1 and some
inner vertices of Gk to the left by |Uk|, and then shift wq, wq+1, · · · , wt of Gk−1
and some inner vertices of Gk to the right by |Uk|. After the operation, we shift
all vertices of Gk−1 to the right by |Uk| so that w1 is on the grid point (0, 0).

Clearly W (D1) = 2|V (G1)| − 2 and H(D1) ≤ 4. One can observe that
W (Dk) = 2|V (Gk)|−2 and H(Dk) ≤ H(Dk−1)+W (Dk) for each k, 2 ≤ k ≤ m.
We thus have the following lemma.

Lemma 3. For a plane graph G having a canonical decomposition Π = (U1,
U2, · · · , Um) with respect to v1, v2 and vn, the pentagonal drawing algorithm ob-
tains a convex grid drawing of G on a W × H grid with W = 2n − 2 and
H ≤ n2 −n−2 in linear time. Furthermore, W (Dm−1) = 2(|V (Gm−1)|)−2 and
H(Dm−1) ≤ |V (Gm−1)|2 − |V (Gm−1)| − 2.

4 Convex Grid Drawing Algorithm

In this section we present a linear algorithm to find a convex grid drawing D
of an internally triconnected plane graph G whose decomposition tree T (G) has
exactly four leaves. Such a graph G does not have a canonical decomposition,
and hence none of the algorithms in [1], [2], [6], [8] and Section 3 can find a
convex grid drawing of G.

Division. We first explain how to divide G into Gu and Gd. (See Figs. 1(a)
and (b).) One may assume that the four leaves l1, l2, l3 and l4 of T (G) appear
clockwise in T (G) in this order. Clearly, either exactly one node u4 of T (G) has
degree four and each of the other non-leaf nodes has degree two as illustrated in
Fig. 2(c), or two nodes have degree three and each of the other non-leaf nodes
has degree two. In this extended abstract, we consider only the former case.
Since each vertex of G is assumed to have degree three or more, all the four
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leaves of T (G) are triconnected graphs. Moreover, according to Lemma 1, every
bond has degree two in T (G). Therefore, node u4 is either a triconnected graph
or a ring. We assume in this extended abstract that u4 is a triconnected graph
as in Fig. 2.

As the four apices of the rectangular contour of G, we choose four outer ver-
tices ai, 1 ≤ i ≤ 4, of G; let ai be an arbitrary outer vertex in the component
li that is not a vertex of the separation pair of the component. The four ver-
tices a1, a2, a3 and a4 appear clockwise on Fo(G) in this order as illustrated in
Fig. 1(a).

We then choose eight vertices s1, s2, · · · , s8 from the outer vertices of the com-
ponent u4. Among these outer vertices, let s1 be the vertex that one encounters
first when one traverses Fo(G) counterclockwise from the vertex a1, and let s2
be the vertex that one encounters first when one traverses Fo(G) clockwise from
a1, as illustrated in Fig. 1(a). Similarly, we choose s3 and s4 for a2, s5 and s6
for a3, and s7 and s8 for a4.

We then show how to divide G into Gu and Gd. Split G for separation pairs
{s1, s2} and {s3, s4} as far as possible, and let G′ be the resulting split graph
containing vertices a3 and a4. Then, G′ is internally triconnected, and T (G′) has
exactly two leaves. Consider all the inner faces of G′ that contain one or more
vertices on the path going from s2 to s3 clockwise on Fo(G′). Let G′′ be the
subgraph of G′ induced by the vertices on these faces. Then Fo(G′′) is a simple
cycle. Clearly, Fo(G′′) contains vertices s1 and s4. Let P be the path going from
s1 to s4 counterclockwise on Fo(G′′). (P is drawn by thick lines in Fig. 1(a).)

Let Gd be the subgraph of G induced by all the vertices on or below P , and
let Gu be the subgraph of G obtained by deleting all vertices in Gd as illustrated
in Fig. 1(b). Let nd be the number of vertices of Gd, and let nu be the number
of vertices of Gu. Then nd + nu = n.

Drawing Gd. We now explain how to draw Gd. Let G′
d be a graph obtained

from G by contracting all the vertices of Gu to a single vertex w, as illustrated
in Fig. 3(a) for the graph G in Fig. 1(a)D One can prove that the plane graph
G′

d is internally triconnected.
The decomposition tree T (G′

d) of G′
d has exactly two leaves, and a3 and a4

are contained in the triconnected graphs corresponding to the leaves and are not
vertices of the separation pairs. Every vertex of G′

d other than w has degree three
or more, and w has degree two or more in G′

d. Therefore, G′
d has a canonical

decomposition Π = (U1, U2, · · · , Um) with respect to a4, a3 and w, as illustrated
in Fig. 3(b), where Um = {w}. Let vl be the vertex preceding w clockwise on
the outer face Fo(G′

d), and let vr be the vertex succeeding w, as illustrated
in Fig. 3(a). We obtain a pentagonal drawing Dm of G′

d by the algorithm in
Section 3, as illustrated in Fig. 3(d). The drawing Dm−1 of Gm−1 induced by
U1

⋃
U2

⋃
· · ·

⋃
Um−1 is our drawing Dd of Gd(= Gm−1). (See Figs. 1(d) and

3(c).) By Lemma 3, we have W (Dd) = 2nd − 2 and H(Dd) ≤ n2
d − nd − 2.

Drawing Gu. We now explain how to draw Gu. Let G′
u be a graph obtained

from G by contracting all the vertices of Gd to a single vertex w′. Similarly to
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G′
d, G′

u has a canonical decomposition Π = (U1, U2, · · · , Um) with respect to
a2, a1 and w′. Let v′r be the vertex succeeding w′ clockwise on the outer face
Fo(G′

u), and let v′l be the vertex preceding w′. We then obtain a drawing Dm−1
of Gu(= Gm−1) by the algorithm in Section 3, as illustrated in Fig. 1(c). By
Lemma 3, we have W (Du) = 2nu − 2 and H(Du) ≤ n2

u − nu − 2.

Drawing of G. If W (Dd) �= W (Du), then we widen the narrow one of Dd and Du
by the shift method in Section 3. We may thus assume that W (Dd) = W (Du) =
max{2nd − 2, 2nu − 2}. Since we combine the two drawings Dd and Du of the
same width to a drawing D of G, we have

W (D) = max{2nd − 2, 2nu − 2} < 2n.

We arrange Dd and Du so that y(a3) = y(a4) = 0 and y(a1) = y(a2) =
H(Dd) + H(Du) + W (D) + 1, as illustrated in Fig. 1(e).

Noting that nd + nu = n and nd, nu ≥ 5, we have

H(D) = H(Dd) + H(Du) + W (D) + 1

< (n2
d − nd − 2) + (n2

u − nu − 2) + 2n + 1

< n2.

We finally draw, by straight line segments, all the edges of G that are contained
in neither Gu nor Gd. This completes the grid drawing D of G. (see Fig. 1(e).)

Validity of drawing algorithm. In this section, we show that the drawing D
obtained above is a convex grid drawing of G. Since both Dd and Du satisfy
condition (sh5), every inner facial cycle of Gd and Gu is drawn as a convex
polygon in D. Therefore, it suffices to show that the straight line drawings of
the edges not contained in Gu and Gd do not introduce any edge-intersection
and that all the faces newly created by these edges are convex polygons.

Since Dd satisfies condition (sh3), the absolute value of the slope of every edge
on the path Pd going from vl to vr clockwise on Fo(Gd) is at most 1. The path
Pd is drawn by thick lines in Fig. 1(d). Similarly, the absolute value of the slope
of every edge on the path Pu going from v′r to v′l counterclockwise on Fo(Gu) is
at most 1. Since H(D) = H(Dd)+H(Du)+W (D)+1, the absolute value of the
slope of every straight line segment that connects a vertex in Gu and a vertex
in Gd is larger than 1. Therefore, all the outer vertices of Gd on Pd are visible
from all the outer vertices of Gu on Pu. Furthermore, G is a plane graph. Thus
the addition of all the edges not contained in Gu and Gd does not introduce any
edge-intersection.

Since Dd satisfies condition (sh6), every convex apex of the outer polygon of
Gd on Pd has one or more neighbors in Gu. Similarly, every convex apex of the
outer polygon of Gu on Pu has one or more neighbors in Gd. Therefore, every
interior angle of a newly formed face is smaller than 180◦. Thus all the inner
faces of G not contained in Gu and Gd are convex polygons in D.

Thus, D is a convex grid drawing of G. Clearly the algorithm takes linear
time. We thus have the following main theorem.
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Theorem 1. Assume that G is an internally triconnected plane graph, every
vertex of G has degree three or more, and the triconnected component decompo-
sition tree T (G) has exactly four leaves. Then our algorithm finds a convex grid
drawing of G on a 2n × n2 grid in linear time.

We finally remark that the grid size is improved to 2n × 4n for the case where
either the node u4 of degree four in T (G) is a ring or T (G) has two nodes of
degree three.
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