Tohoku University

Tohoku University

Sendai
360km
Tokyo

Inner Rectangular Drawings of Plane Graphs

 -Application of Graph Drawing to VLSI Layout-

Takao Nishizeki
Tohoku University

Inner Rectangular Drawing

a plane graph G

of G

1: each vertex is drawn as a point
2:each edge is drawn as a horizontal or vertical line segment
3:all inner faces are drawn as rectangles

Inner Rectangular Drawing

a plane graph G

of G

1:each vertex is drawn as a point
2:each edge is drawn as a horizontal or vertical line segment
3:all inner faces are drawn as rectangles

Inner Rectangular Drawing

a plane graph G

of G

1:each vertex is drawn as a point
2:each edge is drawn as a horizontal or vertical line segment
3:all inner faces are drawn as rectangles

Application

VLSI floor planning

The outer boundary of a VLSI chip is often an axis-parallel polygon

Vertex: module
Inner rectangular drawing

Application

VLSI floor planning

The outer boundary of a VLSI chip is often an axis-parallel polygon

G
Vertex: module
Inner rectangular drawing

Application

VLSI floor planning

The outer boundary of a VLSI chip is often an axis-parallel polygon

Vertex: module edge : adjacency among modules

Application

VLSI floor planning

The outer boundary of a VLSI chip is often an axis-parallel polygon

Inner rectangular drawing

Vertex: module edge : adjacency among modules

Application

VLSI floor planning

The outer boundary of a VLSI chip is often an axis-parallel polygon

Vertex: module edge : adjacency among modules

Inner rectangular drawing

Application

VLSI floor planning

The outer boundary of a VLSI chip is often an axis-parallel polygon

Vertex: module edge : adjacency among modules

Inner rectangular drawing

Application

VLSI floor planning

The outer boundary of a VLSI chip is often an axis-parallel polygon

Vertex: module edge : adjacency among modules

Inner rectangular drawing

Known Result

a necessary and sufficient condition for the existence of a rectangular drawing of G with $\Delta \leq 3$ [T84,RNN98] and a linear algorithm for $\Delta \leq$ 3[RNN98,BS88,KH97]

a plane graph G

a rectangular drawing of G

Open Problem

a necessary and sufficient condition for the existence of an inner rectangular drawing of G (with $\Delta \leq 4$)?
efficient algorithm to find an inner rectangular drawing of G (with $\Delta \leq 4$)?

a plane graph G

an inner rectangular drawing of G

Our Results

1: a necessary and sufficient condition for the existence of an inner rectangular drawing of G.

Our Results

2: $O\left(n^{1.5} / \log n\right)$ algorithm to find an inner rectangular drawing of G if a "sketch" of the outer face is given.

a plane graph G

a "sketch" of the outer face

Our Results

2: $O\left(n^{1.5} / \log n\right)$ algorithm to find an inner rectangular drawing of G if a "sketch" of the outer face is given.

a plane graph G
an inner rectangular drawing of G

Our Results

3: a polynomial time algorithm to find an inner rectangular drawing of G in a general case, where a sketch is not always given.

a plane graph G

an inner rectangular drawing of G

1:A necessary and sufficient condition for the existence of an inner rectangular drawing of G.

2: $O\left(n^{1.5} / \log n\right)$ time algorithm to find an inner rectangular drawing of G if a sketch of the outer face is given.

3: a polynomial time algorithm to find an inner rectangular drawing of G in a general case, where a sketch is not always given.

Definition of Labeling

a plane graph G

an inner rectangular drawing of G

Consider a labeling which assigns label 1,2 or 3 to every angle of G
Definition of Labeling

$1 \times \pi / 2$	$2 \times \pi / 2$	$3 \times \pi / 2$
1	2	3

a plane graph G

an inner rectangular drawing of G

Consider a labeling which assigns label 1,2 or 3 to every angle of G

Regular labeling

A regular labeling satisfies the following three conditions (a)-(c)
(a) the labels of all the angles of each vertex v total to 4;

a plane graph G

an inner rectangular drawing of G

Regular labeling

(b) the labels of any inner angles is 1 or 2, and any inner face has exactly four angles of label 1 ;

a plane graph G

an inner rectangular drawing of G

Regular labeling

(c) $n_{\mathrm{cv}}-n_{\mathrm{cc}}=4$.
n_{cv} : the number of outer angles having label 3
n_{cc} : the number of outer angles having label 1

rectilinear polygon

Regular labeling

$$
\text { (c) } n_{\mathrm{cv}}-n_{\mathrm{cc}}=4 \text {. }
$$

$n_{c v}$: the number of outer angles having label 3
$n_{c \mathrm{c}}$: the number of outer angles having label 1

Regular labeling

(c) $n_{\mathrm{cv}}-n_{\mathrm{cc}}=4$.
n_{cv} : the number of outer angles having label 3
n_{cc} : the number of outer angles having label 1

A necessary and sufficient condition for the existence of an inner rectangular drawing of G
A plane graph G has an inner rectangular drawing

an inner rectangular drawing of G

a plane graph G

A necessary and sufficient condition for the existence of an inner rectangular drawing of G
A plane graph G has an inner rectangular drawing

an inner rectangular drawing of G

a plane graph G

A necessary and sufficient condition for the existence of an inner rectangular drawing of G
A plane graph G has an inner rectangular drawing

an inner rectangular drawing of G

1:A necessary and sufficient condition for the existence of an inner rectangular drawing of G.

2: $O\left(n^{1.5} / \log n\right)$ time algorithm to find an inner rectangular drawing of G if a sketch of the outer face is given.

3: a polynomial time algorithm to find an inner rectangular drawing of G in a general case, where a sketch is not always given.

1:A necessary and sufficient condition for the existence of an inner rectangular drawing of G.

2: $O\left(n^{1.5} / \log n\right)$ time algorithm to find an inner rectangular drawing of G if a sketch of the outer face is given.

3: a polynomial time algorithm to find an inner rectangular drawing of G in a general case, where a sketch is not always given.

Inner rectangular drawing with sketched outer face

a plane graph G

a sketch of the outer face of G

Suppose that a sketch of the outer face of G is prescribed, that is, all the outer angles of G are labeled with 1,2 or 3

Inner rectangular drawing with sketched outer face

a plane graph G

a sketch of the outer face of G

Suppose that a sketch of the outer face of G is prescribed, that is, all the outer angles of G are labeled with 1,2 or 3

Inner rectangular drawing with sketched outer face

a plane graph G

a sketch of the outer face of G

Suppose that a sketch of the outer face of G is prescribed, that is, all the outer angles of G are labeled with 1,2 or 3

Inner rectangular drawing with sketched outer face

a plane graph G

a sketch of the outer face of G

Suppose that a sketch of the outer face of G is prescribed, that is, all the outer angles of G are labeled with 1,2 or 3

Inner rectangular drawing with sketched outer face

a plane graph G

a sketch of the outer face of G

Suppose that a sketch of the outer face of G is prescribed, that is, all the outer angles of G are labeled with 1,2 or 3

Find an inner rectangular drawing with a prescribed sketch of the outer face

Inner rectangular drawing with sketched outer face

a plane graph G

a sketch of the outer face of G

Suppose that a sketch of the outer face of G is prescribed, that is, all the outer angles of G are labeled with 1,2 or 3

Find an inner rectangular drawing with a prescribed sketch of the outer face

a plane graph G

a decision graph G_{d} of G

Construct a decision graph G_{d}

Construct a decision graph G_{d}

degree 2

a plane graph G

Construct a decision graph G_{d}

degree 2

a plane graph G

Construct a decision graph G_{d}

degree 4

a plane graph G

Construct a decision graph G_{d}

degree 4

a plane graph G

Construct a decision graph G_{d}

degree 4

a plane graph G

Construct a decision graph G_{d}

degree 4

a plane graph G

Construct a decision graph G_{d}

Construct a decision graph G_{d}

Construct a decision graph G_{d}

Construct a decision graph G_{d}

Construct a decision graph G_{d}

Construct a decision graph G_{d}

Construct a decision graph G_{d}

Construct a decision graph G_{d}

Construct a decision graph G_{d}

Construct a decision graph G_{d}

Construct a decision graph G_{d}

Construct a decision graph G_{d}

Construct a decision graph G_{d}

Construct a decision graph G_{d}

degree 3

a plane graph G

Construct a decision graph G_{d}

degree 3

a plane graph G

Construct a decision graph G_{d}

degree 3

a plane graph G

Construct a decision graph G_{d}

degree 3

a plane graph G

Construct a decision graph G_{d}

degree 3

a plane graph G

Construct a decision graph G_{d}

degree 3

a plane graph G

Construct a decision graph G_{d}

degree 3

a plane graph G

Construct a decision graph G_{d}

degree 3

a plane graph G

Construct a decision graph G_{d}

degree 3

a plane graph G

Construct a decision graph G_{d}

a plane graph G

a decision graph G_{d} of G

Construct a decision graph G_{d}

a plane graph G

a decision graph G_{d} of G

Construct a decision graph G_{d}

a plane graph G

a decision graph G_{d} of G

Construct a decision graph G_{d}

2 of x 's must be 1's.

a plane graph G

a decision graph G_{d} of G

Construct a decision graph G_{d}

a plane graph G

a decision graph G_{d} of G

Construct a decision graph G_{d}

a plane graph G

a decision graph G_{d} of G

A necessary and sufficient condition for the existence of a regular labeling

G has a regular labeling
G_{d} has a perfect matching

a plane graph G

a decision graph G_{d} of G

A necessary and sufficient condition for the existence of a regular labeling

G has a regular labeling

G_{d} has a perfect matching

a plane graph G

a decision graph G_{d} of G

A necessary and sufficient condition for the existence of a regular labeling

G has a regular labeling

G_{d} has a perfect matching

a plane graph G

a decision graph G_{d} of G

A necessary and sufficient condition for the existence of a regular labeling

G has a regular labeling

G_{d} has a perfect matching

a plane graph G

a decision graph G_{d} of G

A necessary and sufficient condition for the existence of a regular labeling

G has a regular labeling

G_{d} has a perfect matching

a plane graph G

a decision graph G_{d} of G

A necessary and sufficient condition for the existence of a regular labeling

G has a regular labeling

G_{d} has a perfect matching

a plane graph G

a decision graph G_{d} of G

A necessary and sufficient condition for the existence of a regular labeling

G has a regular labeling

G_{d} has a perfect matching

a plane graph G

a decision graph G_{d} of G

A necessary and sufficient condition for the existence of a regular labeling

G has a regular labeling

G_{d} has a perfect matching

a plane graph G

a decision graph G_{d} of G

A necessary and sufficient condition for the existence of a regular labeling

G has a regular labeling

G_{d} has a perfect matching

a plane graph G

a decision graph G_{d} of G

A necessary and sufficient condition for the existence of a regular labeling

G has a regular labeling

G_{d} has a perfect matching

a plane graph G

a decision graph G_{d} of G

A necessary and sufficient condition for the existence of a regular labeling

G has a regular labeling

G_{d} has a perfect matching

a plane graph G

a decision graph G_{d} of G

A necessary and sufficient condition for the existence of a regular labeling

G has a regular labeling

G_{d} has a perfect matching

a plane graph G

a decision graph G_{d} of G

A necessary and sufficient condition for the existence of a regular labeling

G has a regular labeling

G_{d} has a perfect matching

a plane graph G

a decision graph G_{d} of G

A necessary and sufficient condition for the existence of a regular labeling

G has a regular labeling

G_{d} has a perfect matching

a plane graph G

a decision graph G_{d} of G

A necessary and sufficient condition for the existence of an inner rectangular drawing
G has an inner rectangular drawing with sketched outer face

an inner rectangular drawing of G
G_{d} has a perfect matching

a decision graph G_{d} of G

Running time

$$
\begin{aligned}
& n_{\mathrm{d}}=O(n) \\
& m_{\mathrm{d}}=O(n)
\end{aligned}
$$

A perfect matching of G_{d} can be found in time $O\left(\sqrt{n_{d}} m_{d}\right)$
[HK73,MV80]
or in time $O\left(\sqrt{n_{d}} m_{d} / \log n_{d}\right)$
[FM91,Hoc04,HC04]

A perfect matching of G_{d} can be a regular labeling of G

Running time

$$
\begin{aligned}
& n_{\mathrm{d}}=O(n) \\
& m_{\mathrm{d}}=O(n)
\end{aligned}
$$

A perfect matching of G_{d} can be found inntime
$O(\quad)$
$\left[\mathrm{HK} 73, \mathrm{MV} 80 \sqrt{n_{d}} m_{d} / \log n_{d}\right.$
or in time $O($
[FM91,Hoc04,HC04]

a regular labeling of G

Running time

$$
\begin{aligned}
& n_{\mathrm{d}}=O(n) \\
& m_{\mathrm{d}}=O(n)
\end{aligned}
$$

A perfect matching of G_{d} can be found in time $O\left(\sqrt{n_{d}} m_{d}\right)$
[HK73,MV80]
or in time $O\left(\sqrt{n_{d}} m_{d} / \log n_{d}\right)$
[FM91,Hoc04,HC04]

An inner rectangular drawing of G can be found
an inner rectangular drawing of G in time $O\left(n^{1.5} / \log n\right)$

1:A necessary and sufficient condition for the existence of an inner rectangular drawing of G.

2: $O\left(n^{1.5} / \log n\right)$ time algorithm to find an inner rectangular drawing of G if a sketch of the outer face is given.

3: a polynomial time algorithm to find an inner rectangular drawing of G in a general case, where a sketch is not always given.

Case 1: the numbers of convex and concave outer vertices are given.

Case 1: the numbers of convex and concave outer vertices are given.

Case 1: the numbers of convex and concave outer vertices are given.

Case 1: the numbers of convex and concave outer vertices are given.

Running time

$$
\begin{aligned}
& n_{d}=O(n) \\
& m_{d}=O(N), N=n+n_{\text {cv }} n_{o} \quad\left(n_{o}\right. \text { : the number of outer vertices). } \\
& \text { An inner rectangular drawing of } G \text { can be found in time } \\
& O(\sqrt{n} N / \log n) .
\end{aligned}
$$

Case 2: neither the outer sketch nor the numbers of corners are given.

Case 2: neither the outer sketch nor the numbers of corners are given.

Case 2: neither the outer sketch nor the numbers of corners are given.

an inner rectangular drawing of G a decision graph G_{d} of G

Case 2: neither the outer sketch nor the numbers of corners are given.

Running time

$$
\begin{aligned}
& n_{d}=O(n) \\
& m_{d}=O\left(N^{\prime}\right), N^{\prime}=n+\left(n_{02}-n_{04}-4\right) n_{0} \\
& \left(n_{o}\right. \text { : the number of outer vertices, } \\
& \left.n_{02} \text { and } n_{04}: \text { the numbers of outer vertices of degrees } 2 \text { and } 4\right) \\
& \text { An inner rectangular drawing of } G \text { can be found in time } \\
& O\left(\sqrt{n} N^{\prime} / \log n\right) .
\end{aligned}
$$

Conclusion

G has an
inner rectangular drawing

(2) An inner rectangular drawing can be found in time

- $O\left(n^{1.5} / \log n\right)$ if the outer face is sketched.
- $O(\sqrt{n} N / \log n)$ if $\left(n_{\mathrm{cv}}, n_{\mathrm{cc}}\right)$ is prescribed.

$$
N=n+n_{\mathrm{cv}} n_{\mathrm{o}} \quad n_{\mathrm{o}} \text { : the number of outer vertices }
$$

- $O\left(\sqrt{n} N^{\prime} / \log n\right)$ for a general case.

$$
\begin{aligned}
& N^{\prime}=n+\left(n_{02}-n_{04}-4\right) n_{\mathrm{o}} \\
& n_{02} \text { and } n_{\mathrm{o} 4}: \text { the numbers of outer vertices of degrees } 2 \text { and } 4
\end{aligned}
$$

(3) Linear algorithm ?

Network Flow

Network N

Network Flow

Network N

Network Flow

Network N

Network Flow

G

An inner rectangular drawing of G

Case 1: the numbers of convex and concave outer vertices are given.

$$
n_{\mathrm{cv}}=6, n_{\mathrm{cc}}=2
$$

Case 2: general case

Inner rectangular drawing with prescribed numbers n_{cv} and n_{cc}

$$
n_{\mathrm{cv}}=6, n_{\mathrm{cc}}=2
$$

a plane graph G

Inner rectangular drawing with prescribed numbers n_{cv} and n_{cc}

a plane graph G

a decision graph G_{d} * of G

Inner rectangular drawing with prescribed numbers n_{cv} and n_{cc}

Inner rectangular drawing with prescribed numbers n_{cv} and n_{cc}

$$
n_{\mathrm{cv}}=6, n_{\mathrm{cc}}=2
$$

a plane graph G

Inner rectangular drawing with prescribed numbers n_{cv} and n_{cc}

$$
n_{\mathrm{cv}}=6, n_{\mathrm{cc}}=2
$$

a plane graph G

an inner rectangular drawing of G

Running time

$G_{d}{ }^{*}$ has an $O(n)$ number of vertices and $O(N)\left(N=n+n_{\mathrm{cv}} n_{o}\right.$ n_{o} : the number of outer vertices) number of edges.

An inner rectangular drawing D of G can be found in time
$O(\sqrt{n} N / \log n)$.

Case 1: the numbers of convex and concave outer vertices are given.

Case 2: in general case

Inner rectangular drawing

a plane graph G

a decision graph G_{d}^{\star} of G

Inner rectangular drawing

a plane graph G

Inner rectangular drawing

a plane graph G

an inner rectangular drawing of G

Running time

G_{d}^{\star} has an $O(n)$ number of vertices and $O\left(N^{\prime}\right)$
$\left(N^{\prime}=n+\left(n_{02}-n_{04}-4\right) n_{0} n_{o}\right.$: the number of outer vertices
n_{02} and n_{04} : the numbers of outer vertices of degrees 2 and 4) number of edges.

An inner rectangular drawing D of G can be found in time
$O\left(\sqrt{n} N^{\prime} / \log n\right)$.

Related result

a plane graph G
If a sketch of several faces of G including the outer face is prescribed, then one can examine whether G has a drawing such that each of the other face is a rectangle.

Related result

a plane graph G
If faces $F_{0}, F_{1}, \ldots F_{i}$ of G are vertex-disjoint and the numbers of convex and concave vertices are prescribed, then one can examine whether G has a drawing such that each of $F_{0}, F_{1}, \ldots F_{i}$ has prescribed numbers of convex and concave vertices and each of the other faces is a rectangle.

Regular labeling

We call f a regular labeling of G if f satisfies the following three conditions (a)-(c)
(a) the labels of any vertex in G total to 4;
(b) the labels of any inner angles is 1 or 2 , and any inner
face has exactly four angles of label 1 ;
(c) $n_{\mathrm{cv}}-n_{\mathrm{cc}}=4$.
n_{cv} : the number of outer angles having label 3
n_{cc} : the number of outer angles having label 1

A necessary and sufficient condition for the existence of an inner rectangular drawing of G
A plane graph G has an inner rectangular drawing
if and only if G has a regular labeling

a plane graph G

an inner rectangular drawing of G

Construct a decision graph G_{d}

Construct a decision graph G_{d}

Some of the inner angles of G can be immediately determined

an inner rectangular drawing of G

