Tohoku University

Tohoku University

Inner Rectangular Drawings of Plane Graphs —Application of Graph Drawing to VLSI Layout—

Takao Nishizeki

Tohoku University

Inner Rectangular Drawing

1:each vertex is drawn as a point

2:each edge is drawn as a horizontal or vertical line segment

3:all inner faces are drawn as rectangles

Inner Rectangular Drawing

1:each vertex is drawn as a point

2:each edge is drawn as a horizontal or vertical line segment

3:all inner faces are drawn as rectangles

1:each vertex is drawn as a point

2:each edge is drawn as a horizontal or vertical line segment

3:all inner faces are drawn as rectangles

VLSI floor planning

The outer boundary of a VLSI chip is often an axis-parallel polygon

Vertex: module edge : adjacency among modules

VLSI floor planning

The outer boundary of a VLSI chip is often an axis-parallel polygon

Vertex: module edge : adjacency among modules

VLSI floor planning

The outer boundary of a VLSI chip is often an axis-parallel polygon

Vertex: module edge : adjacency among modules

VLSI floor planning

The outer boundary of a VLSI chip is often an axis-parallel polygon

Vertex: module edge : adjacency among modules

VLSI floor planning

The outer boundary of a VLSI chip is often an axis-parallel polygon

Vertex: module edge : adjacency among modules

Inner rectangular drawing

VLSI floor planning

The outer boundary of a VLSI chip is often an axis-parallel polygon

Vertex: module edge : adjacency among modules

Inner rectangular drawing

VLSI floor planning

The outer boundary of a VLSI chip is often an axis-parallel polygon

Vertex: module edge : adjacency among modules

Known Result

a necessary and sufficient condition for the existence of a rectangular drawing of G with $\Delta \leq 3$ [T84,RNN98] and a linear algorithm for $\Delta \leq 3$ [RNN98,BS88,KH97]

a plane graph G

a rectangular drawing of G

Open Problem

a necessary and sufficient condition for the existence of an inner rectangular drawing of *G* (with $\Delta \leq 4$)?

efficient algorithm to find an inner rectangular drawing of G (with $\Delta \leq 4$)?

1: a necessary and sufficient condition for the existence of an inner rectangular drawing of *G*.

2: $O(n^{1.5}/\log n)$ algorithm to find an inner rectangular drawing of *G* if a "sketch" of the outer face is given.

a plane graph G

a "sketch" of the outer face

2: $O(n^{1.5}/\log n)$ algorithm to find an inner rectangular drawing of *G* if a "sketch" of the outer face is given.

a plane graph G an inner rectangular drawing of G

3: a polynomial time algorithm to find an inner rectangular drawing of *G* in a general case, where a sketch is not always given.

an inner rectangular drawing of G

a plane graph G

1:A necessary and sufficient condition for the existence of an inner rectangular drawing of G.

2: $O(n^{1.5}/\log n)$ time algorithm to find an inner rectangular drawing of *G* if a sketch of the outer face is given.

3: a polynomial time algorithm to find an inner rectangular drawing of *G* in a general case, where a sketch is not always given.

Definition of Labeling

 $2 \times \pi / 2$ $3 \times \pi/2$ $3 \times \pi/2$ $2 \times \pi/2 \pi/2$ $\pi/2$ $\frac{2 \times \pi/2}{\pi/2} \frac{\pi/2}{\pi/2} \frac{\pi/2}{\pi/2} \frac{\pi/2}{\pi/2} \frac{\pi/2}{\pi/2}$ $3 \times \pi/2$ $2 \times \pi / 2$ $\pi/2$ $\begin{array}{ccc} \pi/2 & \pi/2 & 2 \times \pi/2 \\ \pi/2 & \pi/2 & 2 \times \pi/2 \end{array}$ $2 \times \pi / 2$ $2 \times \pi / 2$ $\pi/2 \pi/2$ $\pi/2 \pi/2 \pi/2 \pi/2$ $3 \times \pi / 2$ $2 \times \pi/2$

 $1 \times \pi/2$ $2 \times \pi/2$ $3 \times \pi/2$

 $2 \times \pi/2$

a plane graph G

an inner rectangular drawing of G

 $\pi/2\pi/2$

Consider a labeling which assigns label 1,2 or 3 to every angle of G

Definition of Labeling

a plane graph G

an inner rectangular drawing of *G*

Consider a labeling which assigns label 1,2 or 3 to every angle of G

A regular labeling satisfies the following three conditions (a)-(c)

(a) the labels of all the angles of each vertex *v* total to 4;

(b) the labels of any inner angles is 1 or 2, and any inner face has exactly four angles of label 1;

an inner rectangular drawing of G

(c)
$$n_{cv} - n_{cc} = 4$$
.
 n_{cv} : the number of outer angles having label 3
 n_{cc} : the number of outer angles having label 1

(c)
$$n_{cv} - n_{cc} = 4$$
.
 n_{cv} : the number of outer angles having label 3
 n_{cc} : the number of outer angles having label 1

1:A necessary and sufficient condition for the existence of an inner rectangular drawing of G.

2: $O(n^{1.5}/\log n)$ time algorithm to find an inner rectangular drawing of *G* if a sketch of the outer face is given.

3: a polynomial time algorithm to find an inner rectangular drawing of *G* in a general case, where a sketch is not always given.

1:A necessary and sufficient condition for the existence of an inner rectangular drawing of G.

2: $O(n^{1.5}/\log n)$ time algorithm to find an inner rectangular drawing of *G* if a sketch of the outer face is given.

3: a polynomial time algorithm to find an inner rectangular drawing of *G* in a general case, where a sketch is not always given.

Inner rectangular drawing with sketched outer face

a plane graph G

a decision graph G_d of G

a plane graph ${\cal G}$

a plane graph ${\cal G}$

a plane graph ${\cal G}$

a plane graph ${\cal G}$

a plane graph ${\cal G}$

a decision graph G_d of G

a decision graph G_d of G

a plane graph G

a decision graph G_d of G

2 of x's must be 1's.

a plane graph G

a decision graph G_d of G

Construct a decision graph G_d

a decision graph G_d of G

Construct a decision graph G_d

a decision graph G_d of G

a plane graph G

a decision graph G_d of G

G has a regular labeling

a decision graph G_d of G

G has a regular labeling

a decision graph G_d of G

G has a regular labeling

a decision graph G_d of G

a plane graph G

G has a regular labeling

a decision graph G_d of G

G has a regular labeling

a decision graph G_d of G

G has a regular labeling

a decision graph G_d of G

G has a regular labeling

a decision graph G_d of G

G has a regular labeling

a decision graph G_d of G

G has a regular labeling

a decision graph G_d of G

G has a regular labeling

a decision graph G_d of G

a plane graph G

a decision graph G_d of G

G has a regular labeling

a decision graph G_d of G

G has a regular labeling

 $G_{\rm d}$ has a perfect matching

a decision graph G_d of G

A necessary and sufficient condition for the existence of an inner rectangular drawing

G has an inner rectangular drawing with sketched outer face

a decision graph G_d of G

$$n_{\rm d} = O(n)$$
$$m_{\rm d} = O(n)$$

A perfect matching of G_d can be found in time $O(\sqrt{n_d m_d})$ [HK73,MV80] or in time $O(\sqrt{n_d m_d}/\log n_d)$

[FM91,Hoc04,HC04]

A perfect matching of G_d can be found in time $O(n^{1.5}/\log n)$

a regular labeling of G

Running time

$$n_d = O(n)$$

 $m_d = O(n)$
A perfect matching of
can be found in time
 $O($

 $G_{\rm d}$

[HK73,MV80]— $\sqrt{n_d m_d/\log n_d}$ or in time *O*(

[FM91,Hoc04,HC04]

a regular labeling of G

$$n_{\rm d} = O(n)$$
$$m_{\rm d} = O(n)$$

A perfect matching of G_d can be found in time $O(\sqrt{n_d m_d})$

[HK73,MV80]

or in time $O(\sqrt{n_d} m_d / \log n_d)$

[FM91,Hoc04,HC04]

An inner rectangular drawing of *G* can be found in time $O(n^{1.5}/\log n)$

an inner rectangular drawing of G

1:A necessary and sufficient condition for the existence of an inner rectangular drawing of G.

2: $O(n^{1.5}/\log n)$ time algorithm to find an inner rectangular drawing of *G* if a sketch of the outer face is given.

3: a polynomial time algorithm to find an inner rectangular drawing of *G* in a general case, where a sketch is not always given.

Case 1: the numbers of convex and concave outer vertices are given.

a plane graph G

a decision graph G_d of G

Case 1: the numbers of convex and concave outer vertices are given.

a decision graph G_d of G

an inner rectangular drawing of G

Case 1: the numbers of convex and concave outer vertices are given.

Running time

 $n_{d} = O(n)$ $m_{d} = O(N), N = n + n_{cv}n_{o} \quad (n_{o}: \text{ the number of outer vertices}).$ An inner rectangular drawing of *G* can be found in time $O(\sqrt{nN} / \log n).$

Case 2: neither the outer sketch nor the numbers of corners are given.

Case 2: neither the outer sketch nor the numbers of corners are given.

an inner rectangular drawing of G

a decision graph G_d of G

Case 2: neither the outer sketch nor the numbers of corners are given.

Running time

 $n_{d} = O(n)$ $m_{d} = O(N'), N' = n + (n_{o2} - n_{o4} - 4)n_{o}$ $(n_{o}: \text{ the number of outer vertices,}$ $n_{o2} \text{ and } n_{o4}: \text{ the numbers of outer vertices of degrees 2 and 4 }$ An inner rectangular drawing of *G* can be found in time $O(\sqrt{nN'} / \log n).$

Conclusion

- (2) An inner rectangular drawing can be found in time
 - $O(n^{1.5} / \log n)$ if the outer face is sketched.
 - $O(\sqrt{nN}/\log n)$ if (n_{cv}, n_{cc}) is prescribed.

 $N=n+n_{cv}n_o$ n_o : the number of outer vertices

- $O(\sqrt{nN'} / \log n)$ for a general case. $N' = n + (n_{o2} - n_{o4} - 4)n_o$ n_{o2} and n_{o4} : the numbers of outer vertices of degrees 2 and 4
- (3) Linear algorithm ?

Network N

Network N

Network N

Case 1: the numbers of convex and concave outer vertices are given.

Case 2: general case

$$n_{\rm cv} = 6, \ n_{\rm cc} = 2$$

a plane graph G

a decision graph G_d^* of G

a decision graph G_d^* of G

a decision graph G_d^* of G

Running time

 G_d^* has an O(n) number of vertices and O(N) ($N=n+n_{cv}n_o$

 n_o : the number of outer vertices) number of edges.

An inner rectangular drawing D of G can be found in time

 $O(\sqrt{nN}/\log n).$

Case 1: the numbers of convex and concave outer vertices are given.

Inner rectangular drawing

Inner rectangular drawing

Inner rectangular drawing

Running time

 G_d^{\star} has an O(n) number of vertices and O(N') $(N'=n + (n_{o2} - n_{o4} - 4)n_o n_o$: the number of outer vertices n_{o2} and n_{o4} : the numbers of outer vertices of degrees 2 and 4) number of edges. An inner rectangular drawing *D* of *G* can be found in time $O(\sqrt{nN'}/\log n)$.

Related result

a plane graph G

If a sketch of several faces of G including the outer face is prescribed, then one can examine whether G has a drawing such that each of the other face is a rectangle.

a plane graph G

If faces F_0, F_1, \ldots, F_i of G are vertex-disjoint and the numbers of convex and concave vertices are prescribed, then one can examine whether G has a drawing such that each of F_0, F_1, \ldots, F_i has prescribed numbers of convex and concave vertices and each of the other faces is a rectangle.

Regular labeling

We call f a regular labeling of G if f satisfies the following three conditions (a)-(c)

(a) the labels of any vertex in *G* total to 4;

(b) the labels of any inner angles is 1 or 2, and any inner

face has exactly four angles of label 1;

(c) $n_{\rm cv} - n_{\rm cc} = 4$.

 $n_{\rm cv}$: the number of outer angles having label 3

 n_{cc} : the number of outer angles having label 1

A necessary and sufficient condition for the existence of an inner rectangular drawing of *G*

A plane graph G has an inner rectangular drawing

if and only if G has a regular labeling

Construct a decision graph G_d

Some of the inner angles of *G* can be immediately determined

a plane graph G

Construct a decision graph G_d

Some of the inner angles of *G* can be immediately determined

