Drawing Plane Graphs

Takao Nishizeki

US President

California Governor

US President

California Governor

What is the common feature?

Graphs and Graph Drawings

A diagram of a computer network

Objectives of Graph Drawings

structure of the graph is
difficult to understand

structure of the graph is
easy to understand

- To obtain a nice representation of a graph so that the structure of the graph is easily understandable.

Objectives of Graph Drawings

Ancient beauty

Modern beauty

Objectives of Graph Drawings

Diagram of an electronic circuit

not suitable for single layered PCB
suitable for single layered PCB

- The drawing should satisfy some criterion arising from the application point of view.

Drawings of Plane Graphs

© Straight line drawing

© Convex drawing

Drawings of Plane Graphs

© Rectangular drawing
© Box-rectangular drawing

© Orthogonal drawing

Book

Planar Graph Drawing

by

Takao Nishizeki
Md. Saidur Rahman

http://www.nishizeki.ecei.tohoku.ac.jp/nszk/saidur/gdbook.html

Straight Line Drawing

Plane graph

Straight Line Drawing

Straight line drawing

Straight Line Drawing

Straight line drawing

Each vertex is drawn as a point.

Straight Line Drawing

Straight line drawing

Each vertex is drawn as a point.
Each edge is drawn as a single straight line segment.

Each vertex is drawn as a point.
Each edge is drawn as a single straight line segment.

Straight Line Drawing

Straight line drawing

Straight Line Grid Drawing

Straight line grid drawing.
Plane graph
In a straight line grid drawing each vertex is drawn on a grid point.

Straight line grid drawing.
Plane graph

Straight Line Grid Drawing

Plane graph
de Fraysseix et al. '90

Straight line grid drawing.
$W \times H \leq 2 n^{2}$

Straight line grid drawing.
Plane graph
de Fraysseix et al. '90

$$
W \times H \leq 2 n^{2}
$$

Schnyder '90

$W \times H \leq n^{2}$
Upper bound

What is the minimum size of a grid required for a straight line drawing?

Lower Bound

A restricted class of plane graphs may have more compact grid drawing.

Triangulated plane graph

3-connected graph

4-connected?

not 4-connected

disconnected

How much area is required for 4-connected plane graphs?

Straight line grid drawing

Miura et al. '01
Input: 4-connected plane graph G
Output: a straight line grid drawing
Grid Size :

$$
W, H \leq \frac{n}{2}
$$

Area:

$$
W \times H \leq \frac{n^{2}}{4}
$$

Schnyder '90
plane graph G

Miura et al. '01
4-connected plane graph G

Area $\equiv n^{2}$
Area $\leqq n^{2} / 4$

The algorithm of Miura et al. is best possible

Triangulate all inner faces
Step1: find a 4-canonical ordering

Main idea

Step2: Divide G into two halves G^{\prime} and $G "$

Step3 and 4 : Draw G^{\prime} and G " in isosceles right-angled

Step5: Combine the drawings of G^{\prime} and $G^{\prime \prime}$

Draw a graph G on the plane "nicely"

Straight line drawing

Convex drawing
A convex drawing is a straight line drawing where each face is drawn as a convex polygon.

Convex Drawing

Tutte 1963
Every 3-connected planar graph has a convex drawing.
A necessary and sufficient condition for a plane graph to have a convex drawing. Thomassen ' 80

Every 3-connected planar graph has a convex drawing A necessary and sufficient condition for a plane graph to have a convex drawing. Thomassen ' 80

Convex Grid Drawing

Chrobak and Kant '97
Input: 3-connected graph
Output: convex grid drawing

Grid Size Area $\quad W \times H \leq n^{2}$

Convex Grid Drawing

Miura et al. 2000

Input : 4-connected plane graph
Output: Convex grid drawing

Grid Size

Half-perimeter

$$
W+H \leq n-1
$$

Area

$$
W \times H \leq \frac{n^{2}}{4}
$$

Chrobak and Kant '97
3-connected graph

The algorithm of Miura et al. is best possible

$$
W \times H \geq \frac{n^{2}}{4}
$$

Main idea

1: 4-canonical decomposition O(n)[NRN97]

2: Find paths

4: Decide y-coordinates
Time complexity: $O(n)$

VLSI Floorplanning

Interconnection graph

VLSI Floorplanning

Interconnection graph

VLSI floorplan

Dual-like graph

VLSI Floorplanning

Interconnection graph

Dual-like graph

VLSI floorplan

Add four corners

VLSI Floorplanning

Interconnection graph

Dual-like graph

Rectangular drawing

VLSI floorplan

Add four corners

Rectangular Drawings

Plane graph G of $\Delta \leq 3$
Input

Rectangular Drawings

Plane graph G of $\Delta \leq 3$ Input

Rectangular drawing of G
Output

Rectangular Drawings

Plane graph G of $\Delta \leq 3$ Input

Rectangular drawing of G
Output

- Each vertex is drawn as a point.

Rectangular Drawings

Plane graph G of $\Delta \leq 3$ Input

Rectangular drawing of G
Output

- Each vertex is drawn as a point.
- Each edge is drawn as a horizontal or a vertical line segment.

Rectangular Drawings

Plane graph G of $\Delta \leq 3$ Input

Rectangular drawing of G Output

- Each vertex is drawn as a point.
- Each edge is drawn as a horizontal or a vertical line segment.
- Each face is drawn as a rectangle.

Not every plane graph has a rectangular drawing.

Thomassen '84,
Necessary and sufficient condition
Rahman, Nakano and Nishizeki '98
Linear-time algorithms

Rahman, Nakano and Nishizeki '02
Linear algorithm for the case where corners are not designated in advance

A Necessary and Sufficient Condition by Thomassen ' 84
G \circ plane graph

- four vertices of degree 2 are designated as corners
G has a rectangular drawing if and only if
- every 2-legged cycle in G contains at least two designated vertices; and
- every 3-legged cycle in G contains at least one designated vertex.

A Necessary and Sufficient Condition by Thomassen ' 84
G \circ plane graph

- four vertices of degree 2 are designated as corners
G has a rectangular drawing if and only if
- every 2-legged cycle in G contains at least two designated vertices; and
- every 3-legged cycle in G contains at least one designated vertex.

2-legged cycles

A Necessary and Sufficient Condition by Thomassen ' 84
G \circ plane graph

- four vertices of degree 2 are designated as corners
G has a rectangular drawing if and only if
- every 2-legged cycle in G contains at least two designated vertices; and
- every 3-legged cycle in G contains at least one designated vertex.

2-legged cycles

3-legged cycles

A Necessary and Sufficient Condition by Thomassen ' 84
G \circ plane graph

- four vertices of degree 2 are designated as corners
G has a rectangular drawing if and only if
- every 2-legged cycle in G contains at least two designated vertices; and
- every 3-legged cycle in G contains at least one designated vertex.

Bad cycles

2-legged cycles

3-legged cycles

Outline of the Algorithm of Rahman et al.

Outline of the Algorithm of Rahman et al.

Outline of the Algorithm of Rahman et al.

Outline of the Algorithm of Rahman et al.

Outline of the Algorithm of Rahman et al.

Outline of the Algorithm of Rahman et al.

国

Bad cycle

Bad cycle

Partition-pair

Partition-pair

Splitting

Partition-pair

Partition-pair

Partition-pair

Rectangular drawing

Miura, Haga, N. '03, Working paper
Rectangular drawing of plane graph
G with $\Delta \leq 4$

\exists perfect matching in G_{d}

VLSI Floorplanning

Interconnection graph

Rectangular drawing

VLSI floorplan

VLSI Floorplanning

Interconnection graph

Rectangular drawing

VLSI floorplan

Unwanted adjacency

Not desirable for MCM floorplanning and for some architectural floorplanning.

Interconnection graph

MCM Floorplanning
Sherwani
Architectural Floorplanning
Munemoto, Katoh, Imamura

Interconnection graph

MCM Floorplanning
Architectural Floorplanning

Interconnection graph

MCM Floorplanning
Architectural Floorplanning

Dual-like graph

Interconnection graph

MCM Floorplanning
Architectural Floorplanning

Dual-like graph

Interconnection graph

MCM Floorplanning
Architectural Floorplanning

Box-Rectangular drawing

Interconnection graph

dead space

MCM Floorplanning
Architectural Floorplanning

Box-Rectangular Drawing

Box-Rectangular Drawing

Box-Rectangular Drawing

- Each vertex is drawn as a rectangle.

Box-Rectangular Drawing

Box-rectangular drawing
Output

- Each vertex is drawn as a rectangle.
- Each edge is drawn as a horizontal or a vertical line segment.

Box-Rectangular Drawing

Box-rectangular drawing
Output

- Each vertex is drawn as a rectangle.
- Each edge is drawn as a horizontal or a vertical line segment.
- Each face is drawn as a rectangle.

Rahman et al. 2000

- A necessary and sufficient condition for a plane multigraph to have a box-rectangular drawing.
- A linear-time algorithm.
- $W+H \leq m+2$, where m is the number of edges in G.

Algorithm of Rahman et al.

Main Idea: Reduction to a rectangular drawing problem

Outline

Outline Replace each vertex of degree four or more by a cycle

Outline

Outline

Outline

Box-rectangular drawing

$$
5=
$$

Orthogonal Drawings

plane graph G
Input

Orthogonal Drawings

plane graph G
Input

Output

- Each edge is drawn as an alternating sequence of horizontal and vertical line segments.

${ }^{\circ}$ Each edge is drawn as an alternating sequence of horizontal and vertical line segments.
${ }^{\circ}$ Each vertex is drawn as a point.

Applications

Applications

Circuit schematics
Minimization of bends reduces the number of "vias" or "throughholes," and hence reduces VLSI fabrication costs.

Objective

plane graph G

To minimize the number of bends in an orthogonal drawing.

minimum number of bends.

Bend-Minimum Orthogonal Drawing

Garg and Tamassia '96

Idea reduction to a minimum cost flow problem
Rahman, Nakano and Nishizeki '99
Linear for 3-connected cubic plane graph
Idea reduction to a rectangular drawing problem.
Rahman and Nishizeki '02
Linear for plane graph of $\Delta \leq 3$

Outline of the algorithm of [RNN99]

Open Problems and Future Research Direction

O More area-efficient straight-line or convex drawing algorithms.

$$
W \times H \leq\left(\frac{2}{3} n\right)^{2} \text { for every planar graph? }
$$

O Linear algorithm for rectangular drawings of plane graphs of $\Delta \leq 4$.

O Linear algorithm for bend-minimal orthogonal drawings of plane graphs of $\Delta \leq 4$.
O Drawing of plane graphs with constraints like Prescribed face areas
Practical

Book

Planar Graph Drawing

by

Takao Nishizeki
Md. Saidur Rahman

http://www.nishizeki.ecei.tohoku.ac.jp/nszk/saidur/gdbook.html

Book

http://www.nishizeki.ecei.tohoku.ac.jp/nszk/saidur/gdbook.html

ISAAC in Sendai, Tohoku

Probably 2007

Properties of a drawing of $G(C)$

Main idea

Main idea

Add a group of vertices one by one.

Main idea

Add a group of vertices one by one.

Main idea

2: Find paths
3: Decide x-coordinates

4: Decide y-coordinates
Time complexity: $O(n)$

4-canonical decomposition[NRN97]
 (a generalization of $s t$-numbering)

4-canonical decomposition[NRN97]
 (a generalization of st-numbering)

 horizontal and vertical line segments.Each vertex is drawn as a point.

Applications

Circuit schematics, Data-flow diagrams, Entityrelationship diagrams [T87, BK97].
Objective
To minimize the number of bends in an orthogonal drawing.

an orthogonal drawing with the minimum number of bends.

Known Result

Garg and Tamassia [GT96]
$O\left(n^{7 / 4} \log \mathrm{~g}^{1 / 2} n\right)$ time algorithm for finding an orthogonal drawing of a plane graph of $\Delta \leq 4$ with the minimum number of bends.

Idea reduction to a minimum cost flow problem

Rahman, Nakano and Nishizeki [RNN99]

A linear time algorithm to find an orthogonal drawing of a 3-connected cubic plane graph with the minimum number of bends.

Idea reduction to a rectangular drawing problem.

Rahman and Nishizeki [RN02]

A linear time algorithm to find an orthogonal drawing of a plane graph of $\Delta \leq 3$ with the minimum number of bends.

Idea reduction to a no-bend drawing problem.

Outline of the algorithm of [RNN99]

Properties of a drawing of $G(C)$

orthogonal drawing of $G(C)$
minimum number of bends
the six oben halflines are free

Rectangular Drawings

Plane graph G of Input

Rectangular drawing of

Output

- Each vertex is drawn as a point.
- Each edge is drawn as a horizontal or a vertical line
- segment.

Each face is drawn as a rectangle.
Not every plane graph has a rectangular drawing.
Thomassen [84],
Rahman, Nakano and Nishizeki [02]
A ne'cessary and sufficient condition.
Rahman, Nakano and Nishizeki [98, 02]
A linear time algorithm

Input

Partition-pair

Splitting

rectangular drawing of each subgraph

Modification of drawings
patching

Box-Rectangular Drawing

Plane multigraph Input

Output

- Each vertex is drawn as a (possibly degenerated) rectangle on an integer grid.
- Each edge is drawn as a horizontal or a vertical line segment along grid line without bend.
- Each face is drawn as arectangle
- A necessary and sufficient condition.
- A linear-time algorithm.

Reduce the problem to a rectangular drawing problem.

Conclusions

We surveyed the recent algorithmic results on various drawings of plane graphs.

Open Problems

Rectangular drawings of plane graphs of $\Delta \leq 4$.

- Efficient algorithm for bend-minimal orthogonal drawings of plane graphs of $\Delta \leq 4$

Parallel algorithms for drawing of plane graphs.

Application

VLSI floorplanning

Interconnection Graph

Floor plan

st-numbering[E79](2-connected graph)

(1) $(1, n)$ is an edge of G
(2) Each vertex $k, 2 \leqq k \leqq n-1$,
has at least one neighbor and at least one upper neighbor

Step 1: 4-canonical ordering [KH97] (4-connected graph)

(a generalization of st-numbering)

Step 2: Divide G into G'and G"

Step 3: Draw G^{\prime} in an isosceles right-angled triangle

Step 3：Draw G^{\prime} in an isosceles right－angled triangle

\mid 外周上の辺の傾き $\mid \leqq 1$ X－単調

\mid 外周上の辺の傾き $\mid>1$ x －単調ではない

1 ：外周上の辺の傾きは高々 1
2：外周上で点 1 から 2 へ時計回りに進む道の描画は x－単調

各点の座標の決め方

Initialization：

各点 $\quad k, 4 \leqq \mathrm{k} \leqq\lceil n / 2 \mid$

1 ：外周上の辺の傾きは高々 1
2：外周上で点 1 から 2 へ時計回りに進む道の描画はx－単調

The drawing of the path passing through all k 's neighbors is "weakly convex"

"weakly convex"

The rightmost neighbor of k is higher than the leftmost neighbor
Case $1: k$ has exactly one highest neighbor

The rightmost neighbor of k is higher than the leftmost neighbor
Case 2 : k has exactly two or more highest neighbor

Drawing of G^{\prime}

Drawing of G^{\prime}

shift

Drawing of G^{\prime}

Shift one time for each vertex

Step 5: Combine the drawing of G^{\prime} and $G^{\prime \prime}$

Step 5：Combine the drawing of G^{\prime} and $G^{\prime \prime}$

\mid 外周上の辺の傾き $\mid \leqq 1$

Step 5：Combine the drawing of G^{\prime} and $G^{\prime \prime}$

\mid 外周上の辺の傾き $\mid \leqq 1$

Step 5: Combine the drawing of G^{\prime} and $G^{\prime \prime}$

x-単調

Step 5: Combine the drawing of G^{\prime} and $G^{\prime \prime}$

G

Miura et al. '01

Input: 4-connected plane graph G
Output: a straight line grid drawing
Grid Size : $(W+H \leqq n-1)$

$$
W \leqq\lceil\bar{n} / 2 \overline{2}-1, H \leqq \mid n / 2\rceil
$$

Area: $\quad W \times H \leqq\left(\frac{n-1}{2}\right)^{2}$

The algorithm is best possible

Objective

an orthogonal drawing with the minimum number of bends.

To minimize the number of bends in an orthogonal drawing.

