Octagonal Drawings of Plane Graphs with Prescribed Face Areas

指定面積的平面図的八角形描画

Takao Nishizeki（Tohoku Univ．）

西関 隆夫（東北大学）

```
ツディン メンジディピンメントウディ バージョシン ミョーワオ
```


Hsinchu city and Sendai city

新竹仙台

Tohoku University（東北大学）

Tohoku University was established in 1907.

Lu Xian and Prof．Fujino $1^{\text {st }}$ page

 Book Cover
鲁迅与藤野先生

鲁边与漛此先性

《鲁迅与藤野先生》出版委员会 编
解泽春 译

中国华侨出版社

GSIS，Tohoku University

Graduate School of Information Sciences（GSIS），Tohoku University，was established in 1993．情報科学研究科

$\triangleright 150$ Faculties
－ 450 students
\triangleright Math．
\triangleright Computer Science
\triangleright Robotics
\triangleright Transportation
\triangleright Economics
－Human Social Sciences

Interdisciplinary School

Book

Octagonal Drawings of Plane Graphs with Prescribed Face Areas

指定面積的平面図的八角形描画

Takao Nishizeki（Tohoku Univ．）

西関 隆夫（東北大学）

```
ツディン メンジディピンメントウディ バージョシン ミョーワオ
```


Prescribed-Area Octagonal Drawing

Plane graph

Prescribed-Area Octagonal Drawing

Plane graph
A real number for each inner face

Prescribed-Area Octagonal Drawing

Plane graph
A real number for each inner face

Output

Prescribed-area
octagonal drawing

Prescribed-Area Octagonal Drawing

Input

Output

Each inner face is drawn as a rectilinear polygon of at most eight corners.
The outer face is drawn as a rectangle.
Each face has its prescribed area.

Prescribed-Area Octagonal Drawing

Input

Output

Each inner face is drawn as a rectilinear polygon of at most eight corners.
The outer face is drawn as a rectangle.
Each face has its prescribed area.

Applications

VLSI Floorplanning

Obtained by subdividing a given rectangle into smaller rectangles.

Each smaller rectangle corresponds to a module.
Each module has area requirements.

Applications

VLSI Floorplanning

Area requirements cannot be satisfied if each module is allowed to be only a rectangle.

Area requirements can be satisfied if each module is allowed to be a simple rectilinear polygon.

It is desirable to keep the shape of each rectilinear polygon as simple as possible.

Our Results

G: a good slicing graph
$O(n)$ time algorithm.

Slicing Floorplan

Slicing Floorplan
A slicing floorplan can be obtained by repeatedly subdividing rectangles horizontally or vertically.

Slicing Floorplan and Slicing Graph

Slicing Floorplan

Not a Slicing Floorplan

Slicing Graph

Not a Slicing Graph

Slicing Tree

Slicing Tree

Right subgraph becomes right subtree
Left subgraph becomes left subtree

Upper subgraph becomes right subtree
Lower subgraph becomes left subtree

Good Slicing Graph

A slicing tree is good if each horizontal slice is a face path.

Three face paths

On a boundary of a single face

Not a face path

Good Slicing Graph

Good Slicing Graph

A slicing tree is good if each horizontal slice is a face path.

We call a graph a good slicing graph if it has a good slicing tree.

Good Slicing Graph

Cannot be vertically sliced

Can be vertically sliced

For a horizontal slice, at least one of the upper subgraph and the lower subgraph cannot be vertically sliced.

Not every slicing graph is a good slicing graph.

Output

Prescribed-area
Octagonal drawing

Each inner face is drawn as a rectilinear polygon with at most eight corners.

Particularly, each inner face is drawn as a rectilinear polygon of the following nine shapes.

8 corners

Octagons

6 corners

Do not appear

Feasible Octagons

Octagons of nine shapes must satisfy some conditions on size

Depth-first search
First traverse root

Then traverse the right subtree
Finally, traverse the left subtree

Algorithm

Algorithm

Algorithm

Initialization at root

Algorithm

Initialization at root

Draw the outer cycle as an arbitrary rectangle of area A(G).
$A(G)$: sum of the prescribed areas of all inner faces in G.

Initialization at root
Draw the outer cycle as an arbitrary rectangle of area A(G).
$A(G)$: sum of the prescribed areas of all inner faces in G.

Algorithm

Initialization at root

> Draw the outer cycle as an arbitrary rectangle of area $A(G)$.

$A(G)$: sum of the prescribed areas of all inner faces in G.

$$
A(G)=5+9+15+\cdots+8=460
$$

Algorithm

Initialization at root
Draw the outer cycle as an arbitrary rectangle of area A(G).
$A(G)$: sum of the prescribed areas of all inner faces in G.

$$
A(G)=5+9+15+\cdots+8=460=23 \times 20
$$

Draw the outer cycle as an arbitrary rectangle of area A(G).
$A(G)$: sum of the prescribed areas of all inner faces in G.

Fix arbitrarily the position of vertices on the right side of the rectangle preserving their relative positions.

Operation at root
Root : vertical slice

Algorithm

Operation at root
Root : vertical slice

Algorithm

Operation at root
Root : vertical slice

Algorithm

Operation at root
Root : vertical slice

Algorithm

Operation at root
Root : vertical slice

Algorithm

Operation at root
Root : vertical slice

Algorithm

Operation at root
Root : horizontal slice

Algorithm

Operation at root
Root : horizontal slice

Case 1: $\quad A\left(G_{v}\right)=A(R)$

Algorithm

Operation at root

Root : horizontal slice

Case 2: $A\left(G_{v}\right)>A(R)$

Algorithm

Case 3: $\quad A\left(G_{v}\right)<A(R)$

Operation at root
Root : horizontal slice

Case 2: $A\left(G_{v}\right)>A(R)$

Algorithm

Case 3: $\quad A\left(G_{v}\right)<A(R)$

Operation at root
Root : horizontal slice

Case 2: $A\left(G_{v}\right)>A(R)$

General computation at an internal node

General computation at an internal node

Horizontal slice

Computation at a leaf node

Time Complexity

Overall time complexity is linear.

Conclusion

We have presented a linear algorithm for prescribed area octagonal drawings of good slicing graphs.

We also give a sufficient condition for a graph of maximum degree 3 to be a good slicing graph and give a linear-time algorithm to find a good slicing tree of such graphs.

Obtaining such an algorithm for larger classes of graphs is our future work.

A sufficient condition for a good slicing graph

A good slicing tree can be found in linear time for a cyclically 5-edge connected plane cubic graph.

Cyclically 5-edge Connected Cubic Plane Graphs

Removal of any set of less than 5 -edges leaves a graph such that exactly one of the connected components has a cycle.

Not cyclically 5-edge connected

Two connected components
having cycles.

No connected component has a cycle.

A sufficient condition for a good slicing graph

Any graph G obtained from a cyclically 5edge connected plane cubic graph by inserting four vertices of degree 2 on outer face is a good slicing graph.

Augmentation

Augmentation

Initialization at root

If a large number of inner faces have edges on P_{E} then foot-lengh should be large enough.

Dimensions of R_{u} play crucial roles.

Dimensions of a Feasible Octagon?

$$
l_{t}+f_{E} \delta \leq l_{b}<f \delta
$$

f number of inner faces in G f_{E} The number of inner faces each of which has an edge on the east side.
δ a positive constant.

$$
0<\delta \leq \frac{A_{\min }}{f H}
$$

H height of initial rectangle R_{r}

Input at root R_{r}

This situation does not occur.

$l_{b} \geq f_{E} \delta$

$l_{b u} \geq \delta$
for a facial octagon whose $x_{S 1}$ is convex.

General computation at an internal node

Time Complexity

O Using a bottom-up computation on slicing tree, area of subgraphs for all internal nodes can be computed in linear time.

With an $O(n)$ time preprocessing, embedding of the slicing path at each internal node takes constant time.

O Computation time at a leaf node is proportional to the number of non-corner vertices on the west side of the face.

Overall time complexity is linear.

Conclusion

We have presented a linear algorithm for prescribed area octagonal drawings of good slicing graphs.

Obtaining such an algorithm for larger classes of graphs is our future works.

$$
l<f \delta
$$

If the octagon is a rectangle

Feasible Octagon

R_{u} is a feasible octagon if R_{u} satisfies the following eight conditions
(i) $A\left(R_{u}\right)=A\left(G_{u}\right)$
(ii) $l_{u}<f \delta$
(iii) if $x_{N 2}$ is a convex corner then $\quad l_{t u} \geq f_{E}^{u} \delta$
(iv) if $x_{S 1}$ is a convex corner then $\quad l_{b u} \geq f_{E}^{u} \delta$
(v) if both $x_{N 2}$ and x_{S} then $l_{b u}-l_{t u} \geq f_{E}^{u} \delta$
(vi) if both $x_{N 1}$ and $x_{S 1}$ are concave corners then $l_{t u}-l_{b u} \geq f_{E}^{u} \delta$
(vii) if $x_{N 2}$ is a concave corner then $\quad l_{t u}<\left(f-f_{E}^{u}\right) \delta$
(viii) if $x_{S 1}$ is a concave corner then $\quad l_{b u}<\left(f-f_{E}^{u}\right) \delta$

(iii) if $x_{N 2}$ is a convex corner then

$$
l_{t u} \geq f_{E}^{u} \delta
$$

$$
I_{t u} \geq \delta
$$

for a facial octagon whose $x_{N 2}$ is convex.

(vi) if $x_{S 1}$ is a convex corner then $\quad l_{b u} \geq f_{E}^{u} \delta$

$l_{b u} \geq \delta$
for a facial octagon whose $x_{S 1}$ is convex.
(v) if both $x_{N 2}$ and $x_{S 2}$ are concave corners then $l_{b u}-l_{t u} \geq f_{E}^{u} \delta$

(v) if both $x_{N 2}$ and $x_{S 2}$ are concave corners then $l_{b u}-l_{t u} \geq f_{E}^{u} \delta$

$$
l_{b u}-l_{t u} \geq \delta
$$

for a facial octagon whose $x_{N 2}$ and $x_{\mathrm{S} 2}$ are concave
(vi) if both $x_{N 1}$ and $x_{S 1}$ are concave corners then $l_{t u}-l_{b u} \geq f_{E}^{u} \delta$

for a facial octagon whose $x_{N 1}$ and $x_{S 1}$ are concave

General computation at an internal node

Embedding of a vertical slicing path

(ii) $l_{u}<f \delta$

Red area $<l_{u} H<f \delta H<A_{\text {min }}$

The vertical slicing path is always embedded as a vertical line segment.

$$
l_{u}=\max \left\{l_{t u}, l_{b u}\right\}^{\overrightarrow{l_{b u}}}
$$

Embedding of a vertical slicing path

R_{v} is a feasible octagon since R_{u} is a feasible octagon.
R_{w} is a rectange which is a feasible octagon.

Embedding of a horizontal slicing path

(v) if both $x_{N 2}$ and $x_{S 2}$ are concave corners then $l_{b u}-l_{t u} \geq f_{E}^{u} \delta$

Both R_{v} and R_{w} are feasible octagons.
We can prove for other cases.

Computation at a leaf node x

Algorithm Octagonal-Draw

Intuitively

We call R_{u} a feasible octagon if P_{u} can embedded successfully irrespective of size of $A\left(G_{v}\right)$.
very small
P_{u} can be embedded
successfully although
$A\left(G_{v}\right)$ is very large.

Dimensions of R_{u} play crucial roles.

Computation at a V-node x

Let y be the right child of x and z be left child of x.

(a)

(b)

(c)

(e)

Foot Length l_{x} of an Octagon R_{x}
P_{N}

f_{E}^{f} The number of inner faces in G_{u} each of which has an edge on the east side.

If the footlength of R_{x} is resonably small then R_{z} will always be drawn as a rectngle.

Maximum foot length

Neck Length d of a Facial Octagon

Estimating d
We fix d such that $\quad f d H \leq A_{\min }$ holds.

$$
l_{x} H^{\prime}<f d H^{\prime}<f d H<A_{\min }
$$

R_{z} is always a rectangle.

Computation at a H-node x

Let y be the right child of x and z be left child of x.

Invariants

f_{X}^{E} number of faces in G_{x} having an edge on P_{E}^{X}

Invariants

$$
t_{x} \geq f_{x}^{E} d
$$

$b_{x} \geq f_{x}^{E} d$
$t_{x} \geq f_{x}^{E} d$

$$
b_{x} \geq f_{x}^{E} d^{D_{x}}
$$

Computation at a leaf node x

Time Complexity

Using a bottom-up computation on slicing tree, area of subgraphs for all internal nodes can be computed in linear time.

Time Complexity

- Using a bottom-up computation on slicing tree, area of subgraphs for all internal nodes can be computed in linear time.

With an $\mathrm{O}(\mathrm{n})$ time preprocessing, embedding of the slicing path at each internal node takes constant time.

f_{x}^{E} number of faces in G_{x} having an edge on P_{E}^{x}

Time Complexity

- Using a bottom-up computation on slicing tree, area of subgraphs for all internal nodes can be computed in linear time.
- With an $\mathrm{O}(\mathrm{n})$ time preprocessing, embedding of the slicing path at each internal node takes constant time.

O Computation time at a leaf node is proportional to the number of non-corner vertices on the west side of the face.

Computation at a leaf node x

Foot Length l_{x} of an Octagon R_{x}

$$
l_{x}=\max \left\{t_{x}, b_{x}\right\}
$$

A Linear Algorithm for Prescribed-Area Octagonal Drawings of Plane Graphs

Md. Saidur Rahman
Kazuyuki Miura
Takao Nishizeki

TOHOKU UNIVERSITY

Previous works on prescribed-area drawing

Thomassen, 1992
G : Obtained from cyclically 5 -edge connected plane cubic graphs by inserting four vertices of degree 2 on outer face.

Cyclically 5-edge Connected Cubic Plane Graphs

Removal of any set of less than 5 -edges leaves a graph such that exactly one of the connected components has a cycle.

Not cyclically 5-edge connected

Two connected components
having cycles.

No connected component has a cycle.

Previous works on prescribed area drawing

Thomassen, 1992
G: Obtained from cyclically 5-edge connected plane cubic graphs by inserting four face.

Outer face is a rectangle
G has a prescribed area straight-line drawing. Inner faces are arbitrary polygons
An inner face is not always drawn as a rectilinear polygon. $O\left(n^{3}\right)$ time algorithm.

Theorem

Let G be a 2-3 plane graph obtained from a cyclically 5-edge connected plane cubic graph by inserting four vertices of degree 2 on four distinct edges. Then G is a good slicing graph.

That is, Thomassen's graph is a good slicing graph.

Slicing Graph

G is a slicing graph if either it has exactly one inner face or it has an NS-path or a WE-path P such that both the subgraphs corresponding to P are slicing graphs.
P is called a slicing path.

