Fig. 1 (a), Fig. 1 (b)のような閉ループ制御系がある。ここで、K_1, K_2, K_3は正の定数とする。偏差 $E(s) = X(s) - Y(s)$ として、以下の問いに答えよ。

(1) Fig. 1 (a), Fig. 1 (b)の各の制御系について、目標値 $X(s)$ から偏差 $E(s)$ までの伝達関数 $\frac{E(s)}{X(s)}$ を求めよ。

(2) Fig. 1 (a)の制御系において、定常位置偏差（$X(s) = 1/s$ に対する定常偏差）が 0 で、かつ単位ステップ応答にぎっくみが生じない K_1 の最大値を求めよ。また、K_1 の最大値を用いて定常速度偏差（$X(s) = 1/s^2$ に対する定常偏差）を求めよ。

(3) Fig. 1 (a)の制御系において、定常速度偏差が 1 になるように K_1 の値を求めよ。また、ここで求めた K_1 の値を用いて単位ステップ応答の概形を描け。

(4) Fig. 1 (b)の制御系において、定常位置偏差が 0 で、かつ定常速度偏差が 1 になるように K_2, K_3 の値を求めよ。

(5) 問(2)で求めた K_1 の最大値と問(4)で求めた K_2, K_3 の値を用いるとき、Fig. 1 (a), Fig. 1 (b) の制御系の単位ステップ応答の違いについて説明せよ。

Consider the closed-loop control systems shown in Fig. 1 (a) and Fig. 1 (b), where the constants K_1, K_2 and K_3 are positive. The error is defined by $E(s) = X(s) - Y(s)$. Answer the following questions.

(1) Find the transfer function $\frac{E(s)}{X(s)}$ from the reference $X(s)$ to the error $E(s)$ for the control systems shown in Fig. 1 (a) and Fig. 1 (b), respectively.

(2) For the control system shown in Fig. 1 (a), find the maximum value of K_1 so that the steady-state position error (steady-state error for $X(s) = 1/s$) is equal to 0 and the waveform of the unit step response has no overshoot. Find the steady-state velocity error (steady-state error for $X(s) = 1/s^2$) for the maximum value of K_1.
(3) For the control system shown in Fig. 1 (a), find the value of K_1 so that the steady-state velocity error is equal to 1. Sketch the waveform of the unit step response for the value of K_1 found here.

(4) For the control system shown in Fig. 1 (b), find the values of K_2 and K_3 so that the steady-state position error is equal to 0 and the steady-state velocity error is equal to 1.

(5) Explain the differences in the unit step response between the control systems shown in Fig. 1 (a) and Fig. 1 (b), when the maximum value of K_1 found in question (2) and the values of K_2 and K_3 found in question (4) are used.

Fig. 1 (a)

Fig. 1 (b)
Fig. 2 (a)に示すような、振幅変調（AM）方式の伝送系がある。伝送路は理想的で、損失はないものとする。ここで \(s(t) = \sin(2\pi f_m t) \) で表される、周波数 \(f_m \) の低周波入力信号である。また \(g_{\text{AM}}(t) \) と \(n(t) \) はそれぞれ AM 信号と両側電力スペクトル密度 \(kT/2 \) の白色雑音を表す。ここで、\(k \) はボルツマン定数、\(T \) は絶対温度で表した周囲温度である。また変調度および搬送波の振幅と周波数をそれぞれ \(m, A_c, f_c \) とする。受信機において増幅器の利得は \(G \), 雑音指数は \(F \) である。またバンドパスフィルタ（BPF）は中心周波数を \(f_c \) とする、通過帯域幅 \(2f_r \) の下式で表される理想的な通過特性を持つものとする。

\[
H(f) = \begin{cases}
1, & ||f|-f_c|<f_r \\
0, & \text{その他}
\end{cases}
\]

なお \(f_m, f_c \) および \(f_r \) は \(0 < f_m < f_r < f_c \) の関係を満足する。このとき、以下の問いに答えよ。

(1) Fig. 2 (b) に示す構成要素を用いて、送信機（Fig. 2 (a)の破線で囲んだ部分）のブロック図を描け。ただしそれぞれの構成要素は何度用いてもよい。

(2) AM 信号 \(g_{\text{AM}}(t) \) の式を求めよ。

(3) \(g_{\text{AM}}(t) \) の電力効率 \(\eta_{\text{AM}} \) の式を求めよ。

(4) 検波器出力信号の信号対雑音電力比 \((S/N) \) を \(\text{dB} \) を単位として求めよ。ただし \(g_{\text{AM}}(t) \) の電力は \(-110\ \text{dBW} \) で \(\text{dB} \) を単位として\(m = 1, f_m = 2\ \text{kHz}, F = 6\ \text{dB}, k = 1.38 \times 10^{-23} \text{J/K}, T = 300\ \text{K} \) とする。

必要な値は、\(\log_{10} 1.38 \approx 0.14, \log_{10} 2 \approx 0.30, \log_{10} 3 \approx 0.48 \) を用いてよい。
Consider a transmission system using amplitude modulation (AM) as shown in Fig. 2(a). The transmission channel is assumed to be ideal and lossless. Here, \(s(t) \) denotes a low frequency input signal with a signal frequency of \(f_m \) expressed as \(s(t) = \sin(2\pi f_m t) \). \(g_{AM}(t) \) and \(n(t) \) are the AM signal and a white noise whose double-sided power spectral density is \(kT/2 \), respectively. Here, \(k \) and \(T \) are the Boltzmann constant and the ambient temperature represented by the absolute temperature, respectively. The modulation index, amplitude and frequency of the carrier wave are \(m, A_c \) and \(f_c \), respectively. In the receiver, the gain and the noise figures of the amplifier are \(G \) and \(F \), respectively. The band pass filter (BPF) is assumed to have ideal transmission characteristics expressed by the following equation, with a center frequency \(f_c \) and a bandwidth of \(2f_T \).

\[
H(f) = \begin{cases}
1, & |f| - f_c | < f_T \\
0, & \text{otherwise.}
\end{cases}
\]

Here, \(f_m, f_c \) and \(f_T \) satisfy the relation of \(0 < f_m < f_T << f_c \). Answer the following questions.

1. Draw a block diagram of the transmitter (surrounded by a broken line in Fig. 2(a)) using the constituent elements given in Fig. 2(b). Each element may be used multiple times.

2. Derive an expression for the AM signal, \(g_{AM}(t) \).

3. Derive the power efficiency \(\eta_{AM} \) of \(g_{AM}(t) \).

4. Derive the signal power to the noise power ratio \((S/N) \) of the output from the detector in units of dB. Here, the power of \(g_{AM}(t) \) is assumed to be \(-110 \text{ dBW} \) (with 0 dBW = 1W), \(m = 1 \), \(f_m = 2 \text{ kHz} \), \(F = 6 \text{ dB} \), \(k = 1.38 \times 10^{-23} \text{ J/K} \), and \(T = 300 \text{ K} \), respectively.

Use \(\log_{10} 1.38 \cong 0.14 \), \(\log_{10} 2 \cong 0.30 \), \(\log_{10} 3 \cong 0.48 \), if necessary.
問題 2 通信工学

Fig. 2 (a)

Fig. 2 (b)
エミッタE，ベースB，コレクタCの端子を持つnnp バイポーラトランジスタの微小信号等価回路モデルに関連して，以下の問いに答えよ．

(1) エミッタ接地回路において，Fig. 3 (a) に示す微小信号等価回路のT形モデルを考える．ここで a はベース接地電流利得を表す．

(a) トランジスタ構造から導出されるT形モデルに対して，Fig. 3 (b) に示す h パラメータ（入力インピーダンス h_{ie}，電圧増幅率 h_{re}，電流利得 h_{fe}，出力アドミッタンス h_{oc}）を考える．v_{be} よりおよび i_e を，h パラメータと v_{ce}, i_b を用いて表すとともに，h_{fe} を実験的に求める測定方法を簡潔に述べよ．

(b) 一般に電子回路の設計では，h パラメータのうち h_{ie} と h_{fe} だけが使用される．h_{re} よりおよび h_{oc} をT形モデルの回路定数で表すことにより，h_{re} と h_{oc} をゼロと近似できる条件を導出せよ．

(c) 入力インピーダンスと出力インピーダンスの大小関係を，トランジスタの動作原理に基づき説明せよ．

(2) 2 個のトランジスタ Tr_1, Tr_2 を用いた Fig. 3 (c) のカスコード増幅器を考える．ここで入力電圧 v_{in} より出力電圧 v_{out} は，交流の微小信号電圧である．

(a) h_{re}, h_{oc} を除いて簡易化したh パラメータモデルを用いて，増幅器の微小信号等価回路を示すとともに，微小信号等価回路から増幅器の電圧利得 K_v (= v_{out} / v_{in}) を求めよ．ここで，2 個のトランジスタは同じh パラメータ h_{ic}, h_{fe} を持つこととする．

(b) カスコード増幅器の電圧利得を，Tr_2 のないエミッタ接地増幅器の電圧利得と比較するとともに，高周波動作においてカスコード増幅器が利点を有する理由を述べよ．

Answer the following questions on small-signal equivalent circuit models for an nnp bipolar transistor with emitter E, base B and collector C terminals.

(1) Consider the T model of a small-signal equivalent circuit shown in Fig. 3 (a), for a common-emitter circuit. Here a is the common-base current gain.

(a) For the T model derived from a transistor structure, suppose the h parameters (input impedance h_{ie}, voltage feedback ratio h_{re}, current gain h_{fe} and output admittance h_{oc}) are as shown in Fig. 3 (b). Express v_{be} and i_e in terms of the h parameters, v_{ce} and i_b, and briefly explain the measurement method for evaluating h_{fe} experimentally.
(b) In general, only h_{ie} and h_{fe} in the h parameters are used for electronic circuit design. Derive the condition for approximating h_{re} and h_{oe} as zero, by expressing h_{re} and h_{oe} in terms of the circuit constants of the T model.

(c) Explain the magnitude relation between the input impedance and the output impedance, based on the operation principle of the transistor.

(2) Consider the cascode amplifier using the two transistors Tr_1 and Tr_2 in Fig. 3 (c). Here, the input voltage v_{in} and the output voltage v_{out} are alternating small-signal voltages.

(a) Show the small-signal equivalent circuit of the amplifier by using the simplified h parameter model without h_{re} and h_{oe}, and derive the voltage gain $K_v (= v_{out}/v_{in})$ of the amplifier based on the small-signal equivalent circuit. Here, the two transistors have the same h parameters h_{ie} and h_{fe}.

(b) Compare the voltage gain of the cascode amplifier with that of a common-emitter amplifier without Tr_2, and describe the reason why the cascode amplifier has an advantage in high-frequency operation.
Consider a sequential circuit which receives two 1-bit signals $x_t, y_t \in \{0, 1\}$ and outputs two 1-bit signals $z_t, b_t \in \{0, 1\}$ at each time $t = 1, 2, \ldots$ in synchronization with a clock. Suppose that

$$ (x_t x_{t-1} \ldots x_2 x_1)_2 - (y_t y_{t-1} \ldots y_2 y_1)_2 = (z_t z_{t-1} \ldots z_2 z_1)_2 - b_t \cdot 2^t $$

holds at each time t. Here $(_)_2$ denotes the value of a binary number.

1. Find each of the values of z_3, z_2, z_1 and b_3 when $(x_3 x_2 x_1)_2 = 3$ and $(y_3 y_2 y_1)_2 = 5$.

2. Prove that $x_t - y_t = z_t - 2b_t + b_{t-1}$ at each time t.

3. Give the truth table of z_t and b_t on x_t, y_t and b_{t-1}.

4. Show z_t and b_t as logical expressions in minimum sum-of-products forms in terms of x_t, y_t and b_{t-1}.
2014年3月実施
問題5計算機2
(1頁目／1頁中)

(1) BNF記法による次の文法Gを考える。ただし、a,bは終端記号、eは空系列を表す。

\[\langle S \rangle ::= \langle S \rangle a \langle S \rangle b \mid \langle S \rangle b \mid e \]

(a) Gで文字列abbを生成する構文木を全て示せ。
(b) Gで文字列abbを生成する最終導出を全て示せ。

(2) 加算＋、乗算*、括弧(,)、および、変数wxyzで構成される算術式の集合Fを考える。ただし、*は＋より高い優先順をもつものとし、全ての演算子は左結合とする。

(a) Fの算術式を生成する文法をBNF記法で与えよ。
(b) 問(2)(a)で与えた文法を用いて次の算術式を生成する構文木を示せ。

\[w + x * y + (w + x * y) * z \]

(c) w=2, x=3, y=4, z=5のとき、問(2)(b)の算術式の値がスタックを用いて計算されるとする。計算に必要なスタック領域の大きさを示せ。その根拠をスタックの状態遷移を示し説明せよ。

(1) Consider the following grammar G in BNF. Here, a and b denote terminal symbols and e denotes the empty sequence.

\[\langle S \rangle ::= \langle S \rangle a \langle S \rangle b \mid \langle S \rangle b \mid e \]

(a) Give all the syntactic trees for a string abb generated from G.
(b) Give all the left-most derivations for a string abb generated from G.

(2) Consider a set F of arithmetic formulas consisting of addition +, multiplication *, parentheses (,), and variables w, x, y, z. Here, * has a higher precedence than + and all operators are left-associative.

(a) Give an unambiguous grammar in BNF that generates arithmetic formulas in F.
(b) Give the syntactic tree for the following arithmetic formula generated from the grammar given in question 2 (a).

\[w + x * y + (w + x * y) * z \]

(c) Let w=2, x=3, y=4, z=5 and suppose that the value of the arithmetic formula in question 2 (b) is computed using a stack. Show the size of the stack space required for the computation. Justify your answer describing the stack state transition.
関数 $f(x)$ および $g(x)$ の内積を $<f|g> = \int f(x)^* \cdot g(x)dx$ と定義する。また $<f|g> = 0$ のとき、関数 $f(x)$ と $g(x)$ は直交すると呼ばれる。以下の問いに答えよ。

(1) $<g|f> = <f|g>^*$ を示せ。
(2) 演算子 \hat{A} に対し、$<\hat{A}f|g> = <f|\hat{A}^*g>$ を満たすような演算子 \hat{A}^* を、\hat{A} のエルミート共役演算子という。 $(i\hat{A})^* = -i\hat{A}^*$ を示せ。ここで i は虚数単位である。
(3) 与えられた任意の演算子 \hat{A} および \hat{B} に対し、それらの積の演算子 $\hat{A}\hat{B}$ のエルミート共役演算子は $\hat{B}^*\hat{A}^*$ となることを示せ。
(4) $\hat{A}^* = \hat{A}$ となる演算子 \hat{A} をエルミート演算子という。エルミート演算子の固有値は実数となることを示せ。
(5) 任意の演算子 \hat{A} に対し、$\hat{A} + \hat{A}^*$ および $i(\hat{A} - \hat{A}^*)$ がエルミート演算子となることを示せ。
(6) エルミート演算子 \hat{A} に対する二つの固有値 λ_1, λ_2 ($\lambda_1 \neq \lambda_2$) と、それぞれに対する固有関数を ψ_1, ψ_2 とする。 ψ_1 と ψ_2 が直交することを示せ。

Let the inner product of the functions $f(x)$ and $g(x)$ be defined as $<f|g> = \int f(x)^* \cdot g(x)dx$.

Also, let us call the functions $f(x)$ and $g(x)$ orthogonal when $<f|g> = 0$. Answer the following questions.

(1) Show that $<g|f> = <f|g>^*$.
(2) An operator \hat{A}^* is called an Hermitian adjoint operator of \hat{A} when it satisfies $<\hat{A}f|g> = <f|\hat{A}^*g>$. Show that $(i\hat{A})^* = -i\hat{A}^*$. Here i denotes the imaginary unit.
(3) Show, for any given pair of operators \hat{A} and \hat{B}, that the Hermitian adjoint operator of the product $\hat{A}\hat{B}$ of these operators is given by $\hat{B}^*\hat{A}^*$.
(4) An operator \hat{A} is called an Hermitian operator when $\hat{A}^* = \hat{A}$. Show that the eigenvalue of an Hermitian operator is real.
(5) Show, for any operator \hat{A}, that $\hat{A} + \hat{A}^*$ and $i(\hat{A} - \hat{A}^*)$ are Hermitian operators.
(6) Let the eigenfunctions that correspond to eigenvalues of λ_1 and λ_2 ($\lambda_1 \neq \lambda_2$) be ψ_1 and ψ_2, respectively. Show that ψ_1 and ψ_2 are orthogonal.
複素変数 z の関数

$$f(z) = \exp(iz^2)$$

を考える。i は虚数単位である。また、C_1, C_2, C_3 は、以下のように定義された積分路である（Fig. 7）。

$$C_1: z = t \quad (0 \leq t \leq R),$$

$$C_2: z = Re^{it} \quad (0 \leq t \leq \frac{\pi}{4}),$$

$$C_3: z = e^{it} (R-t) \quad (0 \leq t \leq R).$$

以下の間に答えよ。

(1) 複素積分 $\int_{C_1+C_2+C_3} f(z) \, dz$ を求めよ。

(2) 任意の実数 x に対して $\int_0^{\infty} \exp(-x^2) \, dx = \frac{\sqrt{\pi}}{2}$ であることを利用して、

複素積分 $\lim_{R \to \infty} \int_{C_1} f(z) \, dz$ を求めよ。

(3) 複素変数 z の関数 $g(z)$ が滑らかな曲線 C 上で定義された連続関数であるとき、

$$\int_C g(z) \, dz \leq \int_C |g(z)| \, dz$$

が成り立つ。この不等式を利用して、複素積分 $\lim_{R \to \infty} \int_{C_2} f(z) \, dz$ を

求めよ。ただし、$0 \leq \theta \leq \frac{\pi}{2}$ を満たす実数 θ に対して成り立つ不等式 $\frac{2\theta}{\pi} \leq \sin \theta \leq \theta$ を用いてよい。

(4) 実定積分 $\int_0^{\infty} \sin(x^2) \, dx$ および $\int_0^{\infty} \cos(x^2) \, dx$ を求めよ。
Consider a function
\[f(z) = \exp(iz^2) \]
of a complex variable \(z \). Let \(i \) denote the imaginary unit. \(C_1, C_2, \) and \(C_3 \) are integral paths defined as follows (Fig. 7),

\[
C_1 : z = t \quad (0 \leq t \leq R),
\]
\[
C_2 : z = \text{Re}^it \quad (0 \leq t \leq \frac{\pi}{4}),
\]
\[
C_3 : z = e^{\frac{\pi}{4}i(R-t)} \quad (0 \leq t \leq R).
\]

Answer the following questions.

(1) Find the value of the complex integral \(\int_{C_1+C_2+C_3} f(z) \, dz \).

(2) Using \(\int_{-\infty}^{\infty} \exp(-x^2) \, dx = \frac{\sqrt{\pi}}{2} \) for any real \(x \), find the value of the complex integral \(\lim_{R \to \infty} \int_{C_3} f(z) \, dz \).

(3) When a function \(g(z) \) of a complex variable \(z \) is a continuous function defined on a smooth curve \(C \), \(\int_C g(z) \, dz \leq \int_C |g(z)| \, |dz| \) holds. Using this inequality, find the value of the complex integral \(\lim_{R \to \infty} \int_{C_3} f(z) \, dz \). You may use the inequality equation \(\frac{2\theta}{\pi} \leq \sin \theta \leq \theta \), which holds for real number \(\theta \) satisfying \(0 \leq \theta \leq \frac{\pi}{2} \).

(4) Find the value of the real definite integral \(\int_{-\infty}^{\infty} \sin(x^2) \, dx \) and \(\int_{0}^{\infty} \cos(x^2) \, dx \).
2014年3月実施
問題7 物理専門2
（3頁目／3頁中）

Fig. 7