Question No. 1: Electromagnetics (1,/2)
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As shown in Fig. 1, two infinitely long cylindrical conductors 1 and 2 of radius a are located in

parallel, separated by a distance d (>>a) in vacuum. The central axis of conductor 1 is set along the z

axis, and the origin O is set at a point on the z axis. Answer the following questions. The permeability

and permittivity of both the conductor and the vacuum are zo and &, respectively.

(1) A direct current / flows in conductor 1 towards the positive z direction. It is assumed that the

current flows uniformly through the cross section of the conductor.
(a) Find the vector of the magnetic flux density B at the position (x, 0, 0) on the x axis in the
range x> 0.

(b) Derive the magnetic energy per unit length I/ inside conductor 1.
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(2) A direct current J flows in conductor 1 towards the positive z direction and a direct current / flows
in conductor 2 towards the negative z direction. It is assumed that the current flows uniformly
through the cross section of both conductors.

(a) Derive the vector of the magnetic flux density B at the position (x, 0, 0) on the x axis in the
rangea<x<d-—a.

(b) Derive the self-inductance per unit length of the line composed of conductors 1 and 2. The
magnetic flux inside both conductors is ignored.

(3) Derive the capacitance per unit length between conductors 1 and 2. The electric charge

distribution on each conductor is symmetrical with respect to the central axis.

(4) There is a potential difference J between conductors 1 and 2.

(a) Find the electrostatic energy per unit length stored between conductors [ and 2.

{b) Derive the force per unit length applied to the conductor.
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(1) For the circuit shown in Fig. 2(a), give the impedance between the terminals at angular frequency
o (@*= 1/(LOY).

(2) Answer the following questions about transmission lines.

(2)

(&)

©

Fig. 2(b) is the equivalent circuit of a distributed constant line of infinitesimal length Ax.
Show an equivalent circuit of infinitesimal length, the characteristic impedance Z; and the
phase constant 5, of the line assuming that the line is Jossless. R, G, L and C correspond to
the resistance, conductance, inductance, and capacitance per unit length of the line,
respectively.

As shown in Fig. 2(c), a load Z, is connected to the terminal pair (2-2°) of a lossless
transmission line with a length of 31/2. Give the impedance Z; viewed from the terminal pair
(1-1°). The wavelength on the line, the characteristic impedance and the phase constant of
the line are A, Z and f3, respectively.

As shown in Fig. 2(d), a load Z, is connected to the terminal pair (2-2°) of the transmission
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line X. Another transmission line Y is connected at the terminal pair (1-1°) and
short-circuited at the terminal pair (3-3°). Give the length £ of the line Y in terms of 4, when
the impedance viewed from the terminal pair (1-1") is not affected by the line Y. The

wavelength on the lines, the characteristic impedance and the phase constant of the lines are

2, Z and B, respectively. In addition, both lines are lossless.
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(1) F(x)-g(x) =0BKILT B EE, f(x)+9(x) = f(x) @ g(x) THBT LZTE.
(2) a=10a THEZT LZTE.

(3) EMHEEET 2 3 ;E- lf".t’(x) = F(X|z;20) ® fF(X|pm1) EEHET B EZE,f(X) = f(xXlo;=0) D %@
ZE.

(4) LIFOB&ZESTT ¢, c1,00,c3 € {0, 1} ZiRbX.

T1+ T =P - T1Dca-z2Pec3z-T1-T2

For an n-variable logic vector x € {0,1}™ and a € {0, 1}, x|g;=, is defined as
xlz,—a (xls"')wi—laa: $i+11---a$n)-

Consider f(x) and g(x) as n-variable logic functions, and let -, +, &, and ~ denote AND, OR,
Exclusive OR, and NOT operators, respectively. Answer the following questions.

(1) When f(x) - g(x) = 0 is satisfied, show that f(x) + g(x) = f(x)} ® g(x)-
(2} Show thatz=1@a.

(3) When a logic operator ;92—1_ is defined as % = f(%|z;=0) ® f(X|z;=1), show that f(x) =
F(xg,m0) @ ;- ZE.

(4) Determine ¢, €1,¢2,c3 € {0, 1} satisfying the following relation.

1t axe=cPcr-T1B 2 -ToBcg T 22
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(1) Suppose a one-way street grid starts at the origin (0,0) and extends up and to the right
with a width of 1, as shown in Fig.4(a). Directions of one-way streets are shown in
Fig.4(a). Answer the following questions.

(a) Compute the number of paths from the origin to the point (8, 6}. In addition, explain
the rationale of the number.
(b) Given integers z and y satisfying 0 < z and 0 < y, we denote the number of paths

from the origin to the position (z,y) as ¢zy. Fill the blank in the following
equation to present the recurrence relation of ¢z y.

{1 (x =0o0r y =0}
Coy =

(otherwise)

(2) Suppose a one-way street grid where the block between (3, 3)-(4, 3) is closed, as shown in
Fig.4 (b). Dircctions of one-way streets are shown in Fig.4 (b). We denote the number of
paths from the origin to the position {(m,n) as ¢myn. Here, the integers m and n satify
4 < m, 3 < n, respectively. Answer the following questions.

(a) The program shown in Fig.4 (c) computes the value of ¢yn by using recursion. For
example, a function call crec(8,6) yields the number of paths from the origin to
the point (8,6). Fill appropriate expressions in the blanks| B I, C| and| D jto

complete the program in C langunage.

(b) The program shown in Fig.4 (d) computes the value of ¢y by using dynamic pro-
gramming. For example, a function call cdp(8,6) yields the number of paths from
the origin to the point (8,6). Fill appropriate expressions in the blanks , ,
and to complete the program in C language. Here, int c[m+1] [n+1] defines a
two-dimensional array ¢ whose size is (m + 1) x (n+ 1).

(c) Give the time complexities, in big O notation, for computing ¢ by using the pro-
grams of Fig.4 (¢) and Fig.4 (d), respectively.
(d} An approach for reducing the time complexity of the program of Fig.4(c) is memo-
ization. Give a description of memoization, mentioning the following points.
¢ The reason why the program of Fig.4 (c) is inefficient
e Changes necessary for introducing memoization to the program of Fig.4(c)
e The reason why memoization reduces the time complexity
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int cdp(int m, int n)
{
int i, j;
int c¢[m+1][n+1];
int crec(int m, int =n) . . ,
for (i = 0; i <= m; ++i)
if (m==0 || o == 0) { clilfol = 1;
for (j = 0; j <= n; ++j)
return 1; . _ .
. c[01[j] = 1;
else if ( ) 1
return [ C J; for (i = 1; i <= m; ++i)
else { for (j = 1; j <= n; ++j)
return [ D |; if ( )
IE
else

Fig. 4{(c)

IHE

return c[m][nl;

Fig. 4(d)
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As shown in Fig. 5(a), a thin wheel with radius R rests in an X—-Y —Z inertia coordinate
system (there is no gravitational field). The center of the wheel is located at the coordinate origin,
and its rotation axis is the Z axis. A particle with mass m, is connected to the wheel by a long
massless string.  This string is completely wrapped clockwise around the wheel, and the particle is
glued onto the wheel. Then the wheel is made to rotate around the Z axis at constant angular
frequency @_. Atsome point in time, the glue on the particle breaks. Let the time and the location
of the particle at the break be r=0 and (X.,¥,Z)=(R,0,0), respectively. Answer the following
questions concerning the motion of the particle attached to the string, which gradually unwinds owing
to the rotation of the wheel., It is not necessary to consider any influence caused by the thickness of
the wheel. If necessary, you can use the formulae of centrifugal force —m@ X (@ xr) and Coriolis
force —2m@mxv. Here m is mass, @ is an angular velocity, # is a position vector, and v is a
velocity. The symbol x is a sign of outer product.

(1) Let us first consider the case where the direction of the rotation of the wheel is clockwise. See

Fig. 5(b).

(a) Show that the velocity of the particle at =0 is given by (0,—~Rw,,0) inthe X~V -Z
coordinate system.

(b) Show that the location of the particle for >0 isgivenby (R,—Rw t,0) inthe X-Y-Z
coordinate system. (Hint; the length of string unwinding per unit time is Re_.)

(c) Show that the tension T in the string is zero.

(2) Next let us consider the case where the direction of the rotation of the wheel is counterclockwise.

In this case, tension 7 # 0 in the string acts on the particle. Hence the motion of the particle is

not so simple as that for question (1).

(a) Let us consider a convenient method for treating this question. See Fig. 5(¢). The
x—y—z coordinate system whose z axis is on the Z axis rotates counterclockwise
around the Z axis at angular frequency 2w, and is coincident with the X—Y —-Z one at
t=0. Inthis coordinate system, the wheel rotates clockwise around the z axis at angular
frequency @, like question (1), suggesting that the location of the particle is given by
(x,y,z)=(R,—Rw t,0). Letus confirm this suggestion.

(i) Calculate the centrifugal and the Coriolis forces acting on the particle located at
(R,—Rw_t,0) inthe x—y—z coordinate system, and show that the x components of
these forces cancel.

(ii) Calculate T, and show that the string remains taut even for £> 0.

(iii) Show that the suggestion (x,y,z)=(R,—Rw,t,0) is correct.

(b) Obtain the location and velocity of the particle in the X—Y —Z coordinate system as a
function of £.
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Fig. 5 Each thick circle shows the top view of the wheel with radius R. The string is
wrapped clockwise (see the arrow in (a) for the direction) around the wheel. The
particle is glued onto the wheel as shown in (a). The locations of the glued particle
and freed particle at time ¢t are shown by dotted and filled circles, respectively, in (b)
and (c).
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(1) axnTAI— MFFlA4, nRTEEFINZ brx, BIUZRER f(x)=xdx 25X
3. ZIT, X ikx DERXEER FEHTID 2R3, B2 MATRVETOXIZ
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(a) HAEFTHURFELTA=UU L ERED L&, ABLERMITIITHEI L%
b e

(b) ADEHFERTRTERTHSZ L E2FYE.

() AORRZEAMICHAETIEAF~Y "MITHERTHZ L 2T,

(d) ADBEHERTRCHFATHDLE, AXPEEETIITHD I LEFRE. LHEIT
LT, == MTFlka=F ) TR Lo THALTRETHD L3 HEE
AwvwTdn,

(e) ORI Z M4 3Ix3EMFITIIB ZRD L.

X
2 2 2 _
Xp X FX XX, — XXy = (x1 X, x3)B X,

X3

¥7c, BOBAMETATRD, BREEEMETHINE 5 MHELE L.

(2) BEREHz OB g(2)= EZ5.

zZ
(22 -6z +1)°
Cillz=e" (<A< IVRENIARLEZEOMECEIBELRTHD. (TR
Hirchsd. ROMIzEx L.
(a) B g(z) DI _RTOMMFRRA L FOFHERD L.

(M@ﬁﬁ%Lga&%ﬁwx

(o) ERBS j:(l——de— ERDL.

. 2
+sin® 9)
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(1) Consider an nx#n Hermitian matrix A4, an »n—dimensional complex column vector

(2)

x, and a quadratic form f(x)=x"Ax. Here x denotes the complex conjugate

transpose (adjoint matrix) of x.The matrix 4 is said to be semi—positive definite if

f(x)20 for every non—zero vector x.Answer the following questions.

(a) Show that the matrix A4 is semi-positive definite if there exists a square matrix
U suchthatA=UU.

(b) Show that all eigenvalues of 4 are real.

(c) Show that the eigenvectors corresponding to distinct eigenvalues of 4 are
orthogonal.

(d) Show that the matrix A is semi-positive definite if all its eigenvalues are
non—negative. If necessary, you may use the fact that every Hermitian matrix
can be diagonalized by a unitary matrix.

(e) Find a 3x3 real symmetric matrix B which satisfies the following equation

Xy
x2+xi+xr—xx, —x,x —(x X x)B x
1 2 3 172 2°%3 T 1 2 3 2 |*

X3

Then, find the all eigenvalues of B, and determine whether B is semi—positive
definite or not.

Consider a function g(z) = of a complex value z.

z
(z* - 6z+1)*
Here C is a positively oriented contour z=e*? (0<8<7x). Let i denote the
imaginary unit. Answer the following questions.

(a) Find all the isolated singular points and corresponding residues of the function
g(2).

(b} Find the value of the complex integral ch g(z)dz.

do

(c) Find the value of the real definite integral j —_—-
o (1 +sin’ )



