Question No. 1: Electromagnetics (1/3)

2018 年 8 月実施 問題 1 電磁気学 (1 頁目/3 頁中)

Fig. 1(a)に示すように、真空中において、透磁率 μ 、断面積 S、空隙 S、平均磁路長 I-S を有する環状鉄心に、一次コイル (巻き数 N_1) および二次コイル (巻き数 N_2) が一様に巻かれている。一次コイルには電流源が接続されている。真空の透磁率を μ 0 とする。以下の間に答えよ。ただし、鉄心の半径方向壁面からの磁束の漏れは無く、鉄心断面内の磁界は一様であり、空隙部の磁束が通過する領域の断面積は S であるとする。

- (1) 二次コイルの出力端子を開放し、一次コイルに電流 i を流した状態を考える.
 - (a) 鉄心内部の磁束密度と空隙部の磁束密度の関係, および鉄心内部の磁界と空隙部の磁界の関係をそれぞれ示せ.
 - (b) 鉄心内部の磁界の大きさ、磁束密度の大きさ、磁束を、アンペールの法則を用いて求めよ.
 - (c) 起磁力, 鉄心部の磁気抵抗, 空隙部の磁気抵抗をそれぞれ求め, 磁気回路に対する等 価回路図を示せ.
 - (d) 一次コイルの自己インダクタンス,二次コイルの自己インダクタンス,一次コイルと 二次コイルの相互インダクタンスをそれぞれ求めよ.
 - (e) $i_1 = I_1 \sin \omega t$ で表される電流を一次コイルに流した際の、二次コイルの出力電圧 e_2 を求めよ、ただし、 I_1 は電流の振幅である.
- (2) Fig. 1(b)は、Fig. 1(a)の二次コイルの出力端子に負荷を接続した状態を示している.一次コイルに準定常電流 i_1 を流した際に出力電流 i_2 が負荷に流れたとする.
 - (a) 鉄心内部の磁東密度の大きさをBとする. 鉄心部及び空隙部の磁気エネルギーの総和 U_m を求めよ.
 - (b) 問(2)(a)で求めた U_m が、次式で与えられる U_c に等しいことを証明せよ.

$$U_{\rm c} = \frac{1}{2}L_1i_1^2 + Mi_1i_2 + \frac{1}{2}L_2i_2^2$$

ただし、 L_1 、 L_2 、M はそれぞれ、一次コイルの自己インダクタンス、二次コイルの自己インダクタンス、一次コイルと二次コイルの相互インダクタンスである.

Question No. 1: Electromagnetics (2/3)

2018 年 8 月実施 問題 1 電磁気学 (2 頁目/3 頁中)

As shown in Fig. 1(a), a primary coil of N_1 turns and a secondary coil of N_2 turns are uniformly wound in vacuum around a toroidal iron core with a permeability μ , a cross section S, a gap δ , and a mean magnetic path length $l-\delta$. The primary coil is connected to a current source. The vacuum permeability is defined as μ_0 . Answer the following questions assuming a negligible leakage of the magnetic flux from the radial wall of the iron core, and a uniform magnetic field in the cross section of the iron core. Furthermore, assume the cross section of the magnetic flux tube in the gap to be S.

- (1) Consider the situation that the output terminal of the secondary coil is opened and the current i_1 is supplied to the primary coil.
 - (a) Find the relation between the magnetic flux densities in the iron core and the gap, and the relation between the magnetic fields in the iron core and the gap.
 - (b) Find the magnitude of the magnetic field, the magnitude of the magnetic flux density, and the magnetic flux inside the iron core by using Ampere's law.
 - (c) Find the magnetomotive force, the magnetic resistance of the iron core, and the magnetic resistance of the gap. Furthermore, draw an equivalent electric circuit to the magnetic circuit.
 - (d) Find the self-inductance of the primary coil, the self-inductance of the secondary coil, and the mutual inductance between these two coils.
 - (e) Find the output voltage e_2 from the secondary coil when supplying a current of $i_1 = I_1 \sin \omega t$ to the primary coil, where I_1 is the amplitude of the current.
- (2) Fig. 1(b) shows the situation that a load is connected to the output terminal of the secondary coil in Fig. 1(a). When a quasi-steady-state current i_1 is supplied to the primary coil, an output current i_2 flows to the load.
 - (a) When the magnitude of the magnetic flux density in the iron core is B, find the total magnetic energy $U_{\rm m}$ inside the iron core and the gap.
 - (b) Prove that the energy $U_{\rm m}$ obtained in the question (2)(a) is equal to $U_{\rm c}$ given by

$$U_{\rm c} = \frac{1}{2}L_1i_1^2 + Mi_1i_2 + \frac{1}{2}L_2i_2^2,$$

where L_1 , L_2 , and M are the self-inductance of the primary coil, the self-inductance of the secondary coil, and the mutual inductance between these two coils, respectively.

2018 年 8 月実施 問題 1 電磁気学 (3 頁目/3 頁中)

Fig. 1(a)

Fig. 1(b)

Question No. 2: Electrical circuits (1/2)

2018 年 8 月実施 問題 2 電気回路 (1 頁目/2 頁中)

- (1) Fig. 2(a), Fig. 2(b)に示す回路について以下の間に答えよ. 電圧源の角周波数は ω である. また,分布定数線路は無損失で,長さ,特性インピーダンス,位相定数をそれぞれL, R0, β とする.
 - (a) Fig. 2(a)に示すフェーザ電圧 E_{oc}を求めよ.
 - (b) Fig. 2(a)の E_{oc}を用いて Fig. 2(b)に示すフェーザ電圧 V_Rを表せ.
 - (c) Fig. 2(a)の E_{oc} を用いて Fig. 2(b)に示す抵抗 R で消費される電力を表せ.
 - (d) Fig. 2(a)の E_{oc} を用いて、問(1)(b)で求めたフェーザ電圧 V_R に対応する瞬時電圧 $v_R(t) = \text{Re}(\sqrt{2}V_Re^{j\omega t})$ を表せ、ここで、 E_{oc} は実数とする.
- (2) Fig. 2(c)に示す回路において、 $e_1(t) = \{\sqrt{2}E_1\cos(\omega_1 t)\}u_{-1}(t)$ とする.ここで、 $u_{-1}(t)$ は単位ステップ関数である.時刻 t=0 におけるキャパシタ C_1 の電荷をゼロとする.t>0 における $v_{R1}(t)$ を求めよ.
- (1) Answer the following questions about the circuits shown in Fig. 2(a) and Fig. 2(b). The angular frequency of the voltage source is ω . Assume that the transmission line is lossless, and the length, the characteristic impedance, and the phase constant are L, R_0 , and β , respectively.
 - (a) Find the phasor voltage E_{oc} shown in Fig. 2(a).
 - (b) Express the phasor voltage V_R shown in Fig. 2(b) using E_{oc} shown in Fig. 2(a).
 - (c) Express the electric power dissipated in the resistor R shown in Fig. 2(b) using E_{oc} shown in Fig. 2(a).
 - (d) Express the instantaneous voltage $v_R(t) = \text{Re}(\sqrt{2}V_R e^{j\omega t})$ corresponding to the phasor voltage V_R derived in the question (1)(b), using E_{oc} shown in Fig. 2(a). Assume E_{oc} to be a real number.
- (2) Assume $e_1(t) = \{\sqrt{2}E_1\cos(\omega_1 t)\}u_{-1}(t)$ in the circuits shown in Fig. 2(c). Here, $u_{-1}(t)$ is the unit step function. Assume the charge in the capacitor C_1 to be zero at time t = 0. Find $v_{R1}(t)$ for t > 0. $v_{Ri}(t)$

2018 年 8 月実施 問題 2 電気回路 (2 頁目/2 頁中)

Fig. 2(a)

Fig. 2(b)

Fig. 2(c)

2018年8月実施問題3情報基礎1 (1頁目/2頁中)

ブール関数 $f:\{0,1\}^n \to \{0,1\}$ を,選言標準形 (DNF) 論理式と決定性有限状態機械 (DFA) で表現することを考える.以下では,論理式中の論理積,論理和,論理否定は,それぞれ, \land , \lor , \urcorner で表すものとする.また,DNF 論理式のサイズとは式中のリテラルの出現数を指す.ブール関数 f を表現する DFA とは,言語

$$L_f = \{ x_1 \dots x_n \in \{0,1\}^n \mid f(x_1,\dots,x_n) = 1 \}$$

を受理する DFA である. なお、DFA の遷移関数は全域関数であるものとする. 次の問に答えよ. なお、解答にあたっては証明は要さない.

(1) パリティ関数 P_n とは, n 個の引数 $x_1,\ldots,x_n\in\{0,1\}$ のうち, $x_i=1$ となる引数 x_i の個数 が奇数のとき,かつそのときに限り,返り値が 1 となるブール関数である.たとえば, P_3 は,次の DNF 論理式

$$(x_1 \wedge \overline{x_2} \wedge \overline{x_3}) \vee (\overline{x_1} \wedge x_2 \wedge \overline{x_3}) \vee (\overline{x_1} \wedge \overline{x_2} \wedge x_3) \vee (x_1 \wedge x_2 \wedge x_3)$$

および下図の DFA で表現される.ここで,二重矢印で開始状態を示し,二重丸で受理状態を示し ている.

- (a) P_4 を表現する最小サイズの DNF 論理式を書け.
- (b) P4 を表現する状態数最小の DFA を図示せよ.
- (c) 自然数 $n \ge 1$ に対して P_n を表現する DNF 論理式の最小サイズを求めよ.
- (d) 自然数 $n \ge 1$ に対して P_n を表現する DFA の最小状態数を求めよ.
- (2) 多数決関数 M_n とは、n 個の引数 $x_1, \ldots, x_n \in \{0,1\}$ のうち、n/2 個以上が 1 のとき、かつそのときに限り、返り値が 1 となるブール関数である.
 - (a) M_5 を表現する最小サイズの DNF 論理式を書け.
 - (b) M_5 を表現する状態数最小の DFA を図示せよ.
 - (c) 自然数 $m \ge 1$ に対して M_{2m+1} を表現する DNF 論理式の最小サイズを求めよ.
 - (d) 自然数 $m \ge 1$ に対して M_{2m+1} を表現する DFA の最小状態数を求めよ.

2018年8月実施問題3情報基礎1 (2頁目/2頁中)

We consider representing a Boolean function $f: \{0,1\}^n \to \{0,1\}$ with a logical formula in disjunctive normal form (DNF) and with a deterministic finite state automaton (DFA). We represent the logical conjunction, disjunction and negation by \land , \lor and $\overline{}$, respectively. The size of a logical formula refers to the number of occurrences of literals in it. A DFA is said to represent a Boolean function f if and only if it accepts the language

$$L_f = \{ x_1 \dots x_n \in \{0,1\}^n \mid f(x_1,\dots,x_n) = 1 \}.$$

Assume that the transition function of a DFA is total. Answer the following questions. Proofs are not necessary.

(1) The parity function P_n is a Boolean function that returns 1 if and only if an odd number of arguments are assigned 1 among n arguments $x_1, \ldots, x_n \in \{0, 1\}$. For example, P_3 is represented by the DNF formula

$$(x_1 \wedge \overline{x_2} \wedge \overline{x_3}) \vee (\overline{x_1} \wedge x_2 \wedge \overline{x_3}) \vee (\overline{x_1} \wedge \overline{x_2} \wedge x_3) \vee (x_1 \wedge x_2 \wedge x_3)$$

and by the DFA shown below, where the initial state is pointed at by the double arrow and the accepting state is represented by the double circle.

- (a) Give a DNF formula of minimum size for P₄.
- (b) Draw a DFA with the minimum number of states for representing P₄.
- (c) Give the minimum size of a DNF formula for P_n for a natural number $n \ge 1$.
- (d) Give the minimum number of states of a DFA representing P_n for a natural number $n \ge 1$.
- (2) The majority function M_n is a Boolean function which returns 1 if and only if n/2 or more arguments are assigned 1 among n arguments $x_1, \ldots, x_n \in \{0, 1\}$.
 - (a) Give a DNF formula of minimum size for M₅.
 - (b) Draw a DFA with the minimum number of states for representing M₅.
 - (c) Give the minimum size of a DNF formula for M_{2m+1} for a natural number $m \geq 1$.
- (d) Give the minimum number of states of a DFA representing M_{2m+1} for a natural number $m \ge 1$.

2018年8月実施問題4情報基礎2 (1頁目/3頁中)

長さmの文字列Xから,長さnの文字列Yへの変換を考える $(m,n \ge 0)$.変換には,以下に示す挿入/削除操作を用いる.

- Insertion: X のどこかに任意の一文字を挿入(一回の挿入の操作コストを C_I と表記)
- Deletion: X 中の一文字を削除(一回の削除の操作コストを C_D と表記)

X を Y に変換する操作手順は無数に考えられるが、コストの合計が最小となる操作手順のみを考える。 X を Y に変換する操作手順の最小コストを、X から Y への編集距離と呼ぶ。以下の問に答えよ。

- (1) $C_{\rm I}=C_{\rm D}=1$, X=acba および Y=abacc の場合の編集距離を考える. 編集距離を求める問題は、Fig. 4(a) に示すような $(m+1)\times(n+1)$ の格子状グラフを考えることで、辺重み付グラフ上の最短経路問題に帰着できる。Fig. 4(a) 中の右向きの辺は Insertion、下向きの辺は Deletion に対応する。また、右下向きの破線の辺は文字が一致するので Insertion および Deletion が不要であることを表す。
 - (a) X_i と Y_j を、それぞれ、X の先頭から i 番目の文字までの部分文字列と、Y の先頭から j 番目の文字までの部分文字列とする、全ての (i,j) ペアに対して、 X_i から Y_j への編集距離を求め、その結果を Fig. 4(b) にある表の空欄を埋める形式で示せ、
 - (b) Fig. 4(a) のグラフ中の各頂点を対応する (i,j) で表記する. (0,0) から (m,n) への最短経路を頂点 (i,j) の系列で一つ示せ. 系列の表記の例:(0,0),(0,1),(0,2),(1,3),(2,4),(3,4),(3,5),(4,5)
- (2) 新たな操作として以下が追加されたとする.
 - Substitution: X中の一文字を別の一文字に置換(一回の置換の操作コストを C_S と表記)
 - $C_{\rm I}=C_{\rm D}=1$, $C_{\rm S}=1.5$, X=ccbac および Y=acdb の場合の編集距離を考える.
 - (a) Fig. 4(a) と同じ形式で,X から Y への編集距離を求める問題に対応する最短経路問題 のグラフを示せ.Substitution は二重矢印を用いて表せ. 二重矢印の表記の例: \Rightarrow
 - (b) 問 (1)(b) で示した表記の例に従って、(0,0) から (m,n) への全ての最短経路をそれぞれ頂点 (i,j) の系列で示せ.

2018年8月実施 問題4情報基礎2 (2頁目/3頁中)

Consider transforming a string X of length m, to a string Y of length n, where $m, n \ge 0$. For the transformation, the following insertion and deletion operations are permitted.

- Insertion: insert an arbitrary character at some position in X ($C_{\rm I}$ denotes the cost of an Insertion operation)
- Deletion: delete a single character in X (C_D denotes the cost of a Deletion operation)

Although there are an infinite number of possible operating procedures for transforming X to Y, we only consider the operating procedures with the minimum total cost. We refer to the minimum cost of operating procedures that transform X to Y as the edit-distance from X to Y. Answer the following questions.

- (1) Consider the edit-distance where $C_{\rm I}=C_{\rm D}=1,~X=acba,$ and Y=abacc. The question of calculating the edit-distance can be converted to a shortest path problem on an edge-weighted graph by considering an $(m+1)\times (n+1)$ lattice-shaped graph as shown in Fig. 4(a). The right arrows in Fig. 4(a) represent Insertion, and down arrows represent Deletion. Moreover, down-right dotted arrows indicate the case when Insertion and Deletion are unnecessary since the characters are matched.
 - (a) Suppose X_i and Y_j are respectively the sub-string from the first character to the *i*-th character in X, and the sub-string from the first character to the *j*-th character in Y. Calculate the edit-distance from X_i to Y_j for every (i,j) pair, and give the results in a format filling the empty tabs in the table shown in Fig. 4(b).
 - (b) Suppose we represent each vertex of the graph in Fig. 4(a) by the corresponding (i, j). Give a sequence of vertices (i, j) on the shortest path from (0, 0) to (m, n). Example of notation of sequence: (0, 0), (0, 1), (0, 2), (1, 3), (2, 4), (3, 4), (3, 5), (4, 5)
- (2) Suppose the following operation is added.
 - Substitution: replace a single character in X with another character (C_S denotes the cost of a Substitution operation)

Consider the edit-distance where $C_{\rm I} = C_{\rm D} = 1$, $C_{\rm S} = 1.5$, X = ccbac, and Y = acdb.

(a) Give a graph of the shortest path problem that corresponds to the question of calculating the edit-distance from X to Y in the same manner as Fig. 4(a). Use double arrows to represent Substitution

Example of notation of double arrow: \Rightarrow

(b) Give each sequence of vertices (i, j) on every shortest path from (0, 0) to (m, n) in accordance with the example of notation as shown in the question (1)(b).

2018年8月実施 問題4情報基礎2 (3頁目/3頁中)

Fig. 4 (a)

i ackslash j	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1					
2	2					
3	3					
$\overline{4}$	4					

Fig. 4(b)

2018 年 8 月実施 問題5 物理基礎 (1頁目/3頁中)

ガスを放出し、質量を失いながら x-y 面内を動く、ある物体の運動を考察する. 時刻 t における物体の質量 m は次のように書ける.

$$m = m_0 - \int_0^t \alpha(t') dt'$$

ここで m_0 は m の初期値, 即ち t=0 における m であり, $\alpha=-dm/dt$ である. 物体の速度を \boldsymbol{v} , 放出されたガスの物体に対する相対速度を \boldsymbol{u} で表す. いま, \boldsymbol{u} は \boldsymbol{v} に垂直であり, また $|\boldsymbol{u}|$ は時間的に不変で初期値 u_0 に等しいとする. 具体的には, \boldsymbol{v} を $\boldsymbol{v}=(v\cos\phi,v\sin\phi)$ と表したとき, \boldsymbol{u} は $\boldsymbol{u}=(u_0\sin\phi,-u_0\cos\phi)$ と書けるとする. ここで $v=|\boldsymbol{v}|$ であり, ϕ は \boldsymbol{v} と x 軸の間の角度である (Fig. 5). α,v,ϕ の初期値としては, α_0,v_0,ϕ_0 を用いよ.

(1) 時刻 t における物体 (質量 m, 速度 v) は、無限小時間 δt の後、二つの部分に分離するとみなせる.一つは質量が減少した物体で、その質量と速度は $m+\delta m$ ($\delta m<0$)、 $v+\delta v$ である.もう一つは放出されたガスで、その質量と速度は $-\delta m$ 、v+u である.即ち、この系の時間 δt における運動量変化は

$$\delta \mathbf{p} = [(m + \delta m)(\mathbf{v} + \delta \mathbf{v}) - \delta m(\mathbf{v} + \mathbf{u})] - m\mathbf{v}$$

と書ける. 運動方程式 $d\mathbf{p}/dt = \mathbf{0}$ から, 以下の式を導出せよ.

$$m\frac{d\boldsymbol{v}}{dt} = -\alpha \boldsymbol{u}$$

(2) vと ϕ が以下の関係に従うことを示せ.

$$v = v_0$$

$$\frac{d\phi}{dt} = \frac{\alpha u_0}{mv_0}$$

- (3) α が時間的に不変であるとする. このとき, ϕ を t の関数として示せ. また, 物体の軌道を説明せよ.
- (4) 物体の軌道が円であるとする. このとき, α を tの関数として示せ.

2018 年 8 月実施 問題5 物理基礎 (2頁目/3頁中)

Consider the dynamics of an object, which moves in the x-y plane by emitting gas and decreasing its mass. The mass of the object m at time t is written as

$$m=m_0-\int_0^t lpha(t')\,dt',$$

where m_0 is the initial value of m, namely, m at t=0, and $\alpha=-dm/dt$. The velocity of the object is denoted by \boldsymbol{v} , and the velocity of the gas relative to the object is denoted by \boldsymbol{u} . Now, we assume that \boldsymbol{u} is normal to \boldsymbol{v} , and also that $|\boldsymbol{u}|$ is time invariant being equal to the initial value u_0 . More specifically, by expressing \boldsymbol{v} as $\boldsymbol{v}=(v\cos\phi,v\sin\phi)$, \boldsymbol{u} is assumed to be written as $\boldsymbol{u}=(u_0\sin\phi,-u_0\cos\phi)$, where $v=|\boldsymbol{v}|$, and ϕ is the angle between \boldsymbol{v} and the x axis (Fig. 5). Use α_0 , v_0 , and ϕ_0 as the initial values of α , v, and ϕ , respectively.

(1) The object at time t (mass m and velocity v) is considered to be separated into two parts after the infinitesimal time interval δt . One is the object with the decreased mass, whose mass and velocity are $m + \delta m$ ($\delta m < 0$) and $v + \delta v$, respectively. The other is the emitted gas, whose mass and velocity are $-\delta m$ and v + u, respectively. Thus, the variation of the momentum of the system in the time interval δt is expressed as

$$\delta \mathbf{p} = \left[(m + \delta m) \left(\mathbf{v} + \delta \mathbf{v} \right) - \delta m \left(\mathbf{v} + \mathbf{u} \right) \right] - m \mathbf{v}.$$

Using the equation of motion $d\mathbf{p}/dt = \mathbf{0}$, derive the following equation:

$$m\frac{d\boldsymbol{v}}{dt} = -\alpha \boldsymbol{u}.$$

(2) Prove that v and ϕ obey the following relations:

$$v=v_0$$

$$\frac{d\phi}{dt} = \frac{\alpha u_0}{mv_0}.$$

- (3) Suppose that α is time invariant. Then, show ϕ as a function of t. Also, describe the trajectory of the object.
- (4) Suppose that the trajectory is circular. Then, show α as a function of t.

2018年8月実施 問題5物理基礎 (3頁目/3頁中)

Fig. 5

Question No. 6: Basic mathematics (1/2)

2018 年 8 月実施 問題 6 数学基礎 (1頁目/2頁中)

(1) 実数 z > 0 に対して定積分を次式で定義する.

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$$

- (a) 自然数 n に対して, $\Gamma(n)$ を求めよ.
- (b) 実数 a,b に対して $\Gamma(a)\Gamma(b)=\Gamma(a+b)B(a,b)$ を示せ. ここで

$$B(a,b) = 2 \int_0^{\pi/2} \sin^{2a-1}\theta \cos^{2b-1}\theta d\theta$$

である.

- (c) $\Gamma(1/2)$ を求めよ.
- (2) 次の実数行列

$$A = \left(\begin{array}{rrr} 2 & 1 & -1 \\ 4 & 6 & -1 \\ -2 & 7 & 1 \end{array}\right)$$

に対して、2つの行列 L と U の積に分解することを考える.以下に定義されるように、行列 L は対角成分が全て 1 をとる下三角行列であり、行列 U は上三角行列である.

$$L = \left(\begin{array}{ccc} 1 & 0 & 0 \\ L_{21} & 1 & 0 \\ L_{31} & L_{32} & 1 \end{array}\right)$$

$$U = \left(\begin{array}{ccc} U_{11} & U_{12} & U_{13} \\ 0 & U_{22} & U_{23} \\ 0 & 0 & U_{33} \end{array}\right)$$

- (a) A = LU を満たす行列 L と行列 U を求めよ.
- (b) 行列 A の行列式を求めよ.
- (c) 以下の連立方程式を満たす x_1, x_2, x_3 を求めよ.

$$A\left(\begin{array}{c} x_1\\ x_2\\ x_3 \end{array}\right) = \left(\begin{array}{c} 1\\ 0\\ 0 \end{array}\right)$$

(d) A^{-1} を求めよ.

Question No. 6: Basic mathematics (2/2)

2018 年 8 月実施 問題6 数学基礎 (2頁目/2頁中)

(1) A definite integral for a real number z > 0 is defined by the following formula:

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt.$$

- (a) Compute $\Gamma(n)$ for a natural number n.
- (b) Show $\Gamma(a)\Gamma(b) = \Gamma(a+b)B(a,b)$ for real numbers a and b. Here

$$B(a,b) = 2 \int_0^{\pi/2} \sin^{2a-1}\theta \cos^{2b-1}\theta d\theta.$$

- (c) Evaluate $\Gamma(1/2)$.
- (2) For the following real-valued matrix

$$A = \left(\begin{array}{ccc} 2 & 1 & -1 \\ 4 & 6 & -1 \\ -2 & 7 & 1 \end{array}\right),$$

find a decomposition with the products of two matrices L and U. As defined below, the matrix L is a lower-triangular matrix and its diagonal elements take unity, and the matrix U is an upper-triangular matrix.

$$L = \left(\begin{array}{ccc} 1 & 0 & 0 \\ L_{21} & 1 & 0 \\ L_{31} & L_{32} & 1 \end{array}\right),$$

$$U = \left(\begin{array}{ccc} U_{11} & U_{12} & U_{13} \\ 0 & U_{22} & U_{23} \\ 0 & 0 & U_{33} \end{array}\right).$$

- (a) Find the matrices L and U, satisfying A = LU.
- (b) Compute the determinant of the matrix A.
- (c) Find x_1, x_2, x_3 satisfying the following simultaneous equations

$$A\left(\begin{array}{c} x_1\\ x_2\\ x_3 \end{array}\right) = \left(\begin{array}{c} 1\\ 0\\ 0 \end{array}\right).$$

(d) Compute A^{-1} .