2021年3月2日9:40-10:40

大学院工学研究科 電気エネルギーシステム専攻

通信工学専攻電子工学専攻

大学院情報科学研究科 情報 · 生命系群

大学院医工学研究科 工学系コース電気・情報系

大学院入学試験問題

専門科目 Specialized Subjects

注意: 6設問中, 2問題を選んで, 答案用紙(問題ごとに1枚)に解答せよ. 答案用紙が不足する場合は裏面を使って良い. 問題は和文と英文を併記してある.

Attention: Choose 2 questions out of the following 6 questions and answer each of them on a separate answer sheet. You may use the backside. Questions are written in both Japanese and English.

Question No. 1: Electrical engineering (1/2)

2021 年 3 月実施 問題 1 電気工学 (1 頁目/2 頁中)

(1) 定格容量 1 kVA, 定格一次/二次電圧 100 V/200 V の単相変圧器において, 無負荷試験 と短絡試験の結果は, 次のとおりである.

無負荷試験:一次電圧 100 V, 一次電流 0.13 A, 入力電力 5.0 W 短絡試験:一次電圧 1.7 V, 一次電流 10 A, 入力電力 8.0 W この変圧器の L 型簡易等価回路を図示するとともに, 回路定数を求めよ.

- (2) Fig. 1 のフィードバック制御系について,次の間に答えよ.ただし,Kおよび K_T は正数とする.
 - (a) この制御系の閉ループ伝達関数を求めよ.
 - (b) この制御系の固有周波数 ω_n および減衰率 ζ を、Kおよび K_T を用いて表せ.
 - (c) この制御系において、減衰率 $\zeta=0.5$ および定常速度偏差 $\varepsilon_v\leq 0.05$ を同時に満足するための K および K_T の範囲を求めよ.

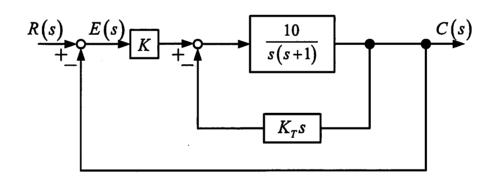


Fig. 1

Question No. 1: Electrical engineering (2/2)

2021 年 3 月実施 問題 1 電気工学 (2 頁目/2 頁中)

(1) In a single-phase transformer with a rated capacity of 1 kVA, and primary / secondary voltages 100 V/200 V, the results of the open circuit test and the short circuit test are as follows:

Open circuit test: Input voltage 100 V, Input current 0.13 A, Input power 5.0 W

Short circuit test: Input voltage 1.7 V, Input current 10 A, Input power 8.0 W

Draw the approximate equivalent circuit of the transformer, and find the circuit parameters.

- (2) Answer the following questions about the feedback control system shown in Fig. 1, where K and K_T are positive.
 - (a) Find the closed-loop transfer function of the control system.
 - (b) Express the natural frequency ω_n and the damping factor ζ of the control system, in terms of K and K_T .
 - (c) In the control system, find the range of values of K and K_T that satisfy both the damping factor $\zeta = 0.5$ and the steady state velocity error $\varepsilon_v \le 0.05$.

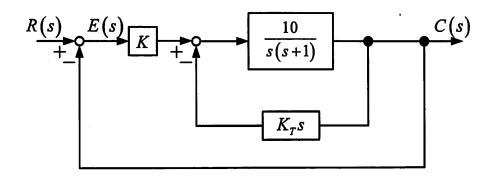


Fig. 1

2021 年 3 月実施 問題 2 通信工学 (1 頁目/1 頁中)

振幅A, 周期Tをもつ正弦波信号s(t)に電力スペクトル密度 $P_n(f)$ が $N_0/2$ である白色雑音n(t)が重畳された信号 $s_n(t)$ を考える. 信号 $s_n(t)$ は伝達関数H(f)をもつ帯域幅Bの理想低域フィルタに入力される. s(t)およびH(f)は次式で与えられる.

$$s(t) = A \sin\left(\frac{2\pi t}{T}\right)$$

$$H(f) = \begin{cases} 1, & |f| \le B/2 \text{のとき} \\ 0, & \text{その他} \end{cases}$$

ただしB/2 > 1/Tである. 以下の問に答えよ.

- (1) 理想低域フィルタのインパルス応答h(t)を求め、その概形を図示せよ.
- (2) 信号s(t)の平均電力 P_s を求めよ.
- (3) フィルタ出力の信号対雑音比 S/N を求めよ.

Consider a signal $s_n(t)$ in which a white noise n(t), whose power spectral density $P_n(f)$ is $N_0/2$, is superimposed onto a sinusoidal signal s(t) having an amplitude A and a period T. The signal $s_n(t)$ is input to an ideal low-pass filter having a transfer function H(f) with a band-width B. s(t) and H(f) are given by

$$s(t) = A \sin\left(\frac{2\pi t}{T}\right),$$

$$H(f) = \begin{cases} 1, & \text{when } |f| \le B/2 \\ 0, & \text{otherwise} \end{cases},$$

where B/2 > 1/T. Answer the following questions.

- (1) Derive the impulse response h(t) of the ideal low-pass filter and sketch its outline.
- (2) Derive the average power P_s of the signal s(t).
- (3) Derive the signal-to-noise ratio S/N of the filter output.

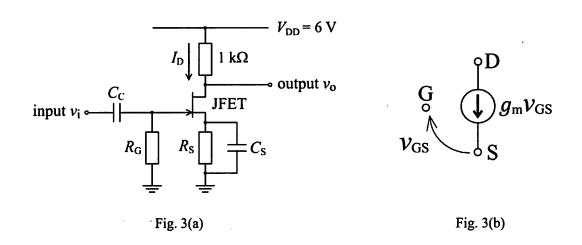
Question No. 3: Electronic engineering (1/2)

2021 年 3 月実施 問題 3 電子工学 (1頁目/2 頁中)

Fig. 3(a) は n チャネル接合型電界効果トランジスタ (JFET) を用いた回路である. 定電流 領域における JFET のドレイン電流 I_D は以下の式で与えられる.

$$I_{\rm D} = I_{\rm D0} \left(1 - \frac{V_{\rm GS}}{V_{\rm p}} \right)^2$$

ここで、 V_{GS} はソースに対するゲートの電圧、 V_p はピンチオフ電圧である. I_{D0} および V_p の値はそれぞれ $8\,\mathrm{mA}$ 、 $-1\,\mathrm{V}$ であり、出力バイアス電圧は $4\,\mathrm{V}$ である.以下の間に答えよ.


- (1) I_D の値を求めよ.
- (2) V_{GS} の値を求めよ.
- (3) R_S の値を求めよ.

次に、微小信号入力電圧 v_i に対する出力電圧 v_0 について考える. JFET の微小信号モデルは Fig. 3(b)で与えられる. ここで、 v_{GS} はソースに対するゲートの電圧の微小信号成分、 g_m は JFET の相互コンダクタンスであり、動作点において

$$g_{\rm m} = \frac{dI_{\rm D}}{dV_{\rm GS}}$$

で与えられる. 交流信号に対して容量 C_{C} , C_{S} は短絡とみなせるものとする.

- (4) gm の値を求めよ.
- (5) 微小信号電圧利得 v_0/v_i の値を求めよ.

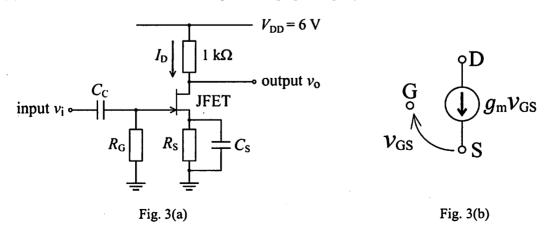
Question No. 3: Electronic engineering (2/2)

2021 年 3 月実施 問題 3 電子工学 (2頁目/2 頁中)

Fig. 3(a) shows a circuit with an n-channel junction field-effect transistor (JFET). The drain current I_D of the JFET in the constant-current region is given by

$$I_{\rm D} = I_{\rm D0} \left(1 - \frac{V_{\rm GS}}{V_{\rm p}} \right)^2,$$

where $V_{\rm GS}$ is the gate voltage with respect to the source and $V_{\rm p}$ is the pinch-off voltage. The values of $I_{\rm D0}$ and $V_{\rm p}$ are 8 mA and -1 V, respectively, and the output bias voltage is 4 V. Answer the following questions.


- (1) Calculate the value of I_D .
- (2) Calculate the value of V_{GS} .
- (3) Calculate the value of R_S .

Next, we consider the output voltage v_0 for a small-signal input voltage v_i . The small-signal model of the JFET is shown in Fig. 3(b). Here, v_{GS} is the small-signal component of the gate voltage with respect to the source and g_m is the transconductance of the JFET given by

$$g_{\rm m} = \frac{dI_{\rm D}}{dV_{\rm GS}}$$

at the operating point. The capacitors C_C and C_S can be considered as shorted for an AC signal.

- (4) Calculate the value of $g_{\rm m}$.
- (5) Calculate the value of the small-signal voltage gain v_0/v_i .

Question No. 4: Computer science 1(1/2)

2021 年 3 月実施 問題 4 計算機 1 (1頁目/2頁中)

クロックに同期して,各時刻t=1,2,3,...に 1 ビット信号 $x_t \in \{0,1\}$ を受け取り,1 ビット信号 $z_t \in \{0,1\}$ を出力する順序回路を考える.本順序回路は,入力系列 $x_1x_2\cdots x_{t-1}x_t$ 中の 4 ビットのパターン $(x_{i-3}x_{i-2}x_{i-1}x_i)=(1100)$ の出現を検出してt=iにおいて $z_i=1$ を出力し,それ以外の時は 0 を出力する.

・, +, を, それぞれ, 論理積 (AND), 論理和 (OR), 論理否定 (NOT)の演算子記号として, 以下の問に答えよ.

- (1) 本順序回路の Mealy 型状態遷移図を描け. ただし、状態は S_0, S_1, S_2, S_3 とし、初期状態を S_0 とせよ.
- (2) 本順序回路の状態遷移表を示せ.
- (3) 問(1)において、状態 S_0 に状態値 00、 S_1 に 01、 S_2 に 10、 S_3 に 11 を割り当てる.現在の状態を表す状態ベクトルを $\mathbf{y} = (y_2, y_1)$ 、次の状態を表す状態ベクトルを $\mathbf{Y} = (Y_2, Y_1)$ とする.ここで、 y_k 、 $Y_k \in \{0,1\}$ (k=1,2)である.xを入力信号、zを出力信号として、 Y_1 および Y_2 を与える状態遷移関数、およびzを与える出力関数を最簡積和形の論理式で示せ.
- (4) 本順序回路を、2個のJK フリップフロップ(FF)(JK-FF-1 とJK-FF-2)を用いて構成することを考える。ここで、JK-FF-1 の入力を J_1 , K_1 , 出力を Q_1 , $\overline{Q_1}$, JK-FF-2 の入力を J_2 , K_2 , 出力を Q_2 , $\overline{Q_2}$ とする。JK-FF-1 により問(3)の Y_1 を実現し、JK-FF-2 により問(3)の Y_2 を実現するとき、 J_1 , K_1 , J_2 , K_2 をそれぞれ与える論理式(JK-FF の励起関数)を最簡積和形の論理式で示せ。

Question No. 4: Computer science 1 (2/2)

2021 年 3 月実施 問題 4 計算機 1 (2頁目/2頁中)

Consider a sequential circuit which receives a 1-bit signal $x_t \in \{0, 1\}$ as an input, and outputs a 1-bit signal $z_t \in \{0, 1\}$ at each time t = 1, 2, 3, ... in synchronization with a clock. This sequential circuit detects occurrences of a 4-bit pattern $(x_{i-3}x_{i-2}x_{i-1}x_i) = (1100)$ in the input sequence $x_1x_2 \cdots x_{t-1}x_t$, and outputs $z_i = 1$ at t = i. Otherwise, a signal 0 is output.

Answer the following questions using \cdot , +, and $\overline{}$ operators for the logical conjunction (AND), disjunction (OR), and negation (NOT), respectively.

- (1) Draw a Mealy type state transition diagram of the sequential circuit using 4 states, S_0 , S_1 , S_2 , and S_3 , where S_0 is the initial state.
- (2) Show the state transition table of the sequential circuit.
- (3) Following question (1), assign a 2-bit state value 00 to S_0 , 01 to S_1 , 10 to S_2 , and 11 to S_3 . Let $y = (y_2, y_1)$ and $Y = (Y_2, Y_1)$ be the state vectors representing the current state and the next state, respectively, where y_k , $Y_k \in \{0, 1\}$ (k = 1, 2). Let x and z be the input signal and the output signal, respectively. Show the state transition functions for Y_1 and Y_2 , and the output function for z, using logical equations in the minimum sum-of-products form.
- (4) Consider how to realize the sequential circuit using two JK Flip-Flops (FFs), JK-FF-1 and JK-FF-2. Let the inputs and outputs for JK-FF-1 be J_1 and K_1 , and Q_1 and $\overline{Q_1}$, respectively. Let the inputs and outputs for JK-FF-2 be J_2 and K_2 , and Q_2 and $\overline{Q_2}$, respectively. Show logical equations (excitation functions for JK-FFs) in the minimum sum-of-products form which give J_1 , K_1 , J_2 , and K_2 , respectively, when Y_1 and Y_2 in question (3) are realized by JK-FF-1 and JK-FF-2, respectively.

2021年3月実施 問題5計算機2 (1頁目/2頁中)

以下の問に答えよ.

(1) BNF 記法による次の文法 G を考える。ただし、a、b は終端記号を表し、非終端記号を含む構文木の例を Fig.~5 に示す。

$$\langle S \rangle ::= a \langle S \rangle \langle S \rangle \mid \langle S \rangle b \mid a \mid b$$

- (a) G から生成される文字列 abab に対する非終端記号を含む構文木を一つ示せ.
- (b) Gから生成される文字列 abb に対する非終端記号を含む最左導出の構文木を全て示せ.
- (2) 加算 +, 乗算 *, および変数 x, y, z で構成される算術式の集合 F を考える. ただし, * は + より優先順位が高いものとし、全ての演算子は左結合的とする.
 - (a) F の算術式を生成する曖昧でない文法を BNF 記法で示せ.
 - (b) 問(2)(a) で与えた文法を用いて,次の算術式を生成する非終端記号を含む構文木を示せ.

$$x + y * z + y$$

(c) 問 (2)(a) で与えた文法を減算 -, 除算 / および括弧 (および)を含むように拡張し, BNF 記法で示せ. ただし, * と / は + と - より優先順位が高いとする. さらに, * と / の優先順位は同じとし, + と - の優先順位は同じとする. 全ての演算子は左結合的とせよ.

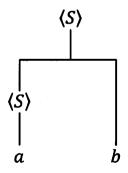


Fig. 5

2021年3月実施 問題5計算機2 (2頁目/2頁中)

Answer the following questions.

(1) Consider the following grammar G in BNF. Here, a and b denote terminal symbols and an example of a syntactic tree with nonterminal symbols is shown in Fig. 5.

$$\langle S \rangle ::= a \langle S \rangle \langle S \rangle \mid \langle S \rangle b \mid a \mid b$$

- (a) Give a syntactic tree with nonterminal symbols for a string abab generated from G.
- (b) Give all the syntactic trees with nonterminal symbols of the left-most derivations for a string abb generated from G.
- (2) Consider a set F of arithmetic formulas consisting of addition +, multiplication *, and variables x, y, z. Here, * has a higher precedence than +, and all operators are left-associative.
 - (a) Give an unambiguous grammar using BNF that generates arithmetic formulas in F.
 - (b) Give the syntactic tree with nonterminal symbols for the following arithmetic formula generated from the grammar given in question (2)(a).

$$x + y * z + y$$

(c) Expand the grammar given in question (2)(a) to include subtraction –, division /, and parentheses (and) and give it using BNF. Here, * and / have a higher precedence than + and –. Moreover, * and / have the same precedence, and + and – have the same precedence. Suppose that all operators are left-associative.

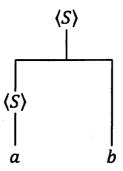


Fig. 5

Question No. 6: Advanced Physics (1/2)

2021 年 3 月実施 問題 6 物理専門 (1頁目/2頁中)

(1) 次式で与えられるx 軸上の1 次元井戸型ポテンシャルV(x) (Fig. 6) の中の質量m, エネルギー ε (> 0) の粒子を考える.

$$V(x) = \begin{cases} 0 & (0 \le x \le \delta) \\ +\infty & (x < 0, \delta < x) \end{cases}$$

 $0 \le x \le \delta$ における粒子の定常状態の波動関数 $\psi(x)$ を

$$\psi(x) = Ae^{ikx} + Be^{-ikx}$$

とする. ここで、A, Bは複素数の定数, $k=\sqrt{2m\varepsilon/\hbar^2}$, $\hbar=h/2\pi$ (hはプランク定数)である.

- (a) x = 0, $x = \delta$ における境界条件を示せ.
- (b) 波動関数とエネルギー固有値を求めよ.
- (c) 問(1)(b)で求めた波動関数に対する粒子の位置の期待値を求めよ.
- (2) 1次元ポテンシャル V(x)=0 の中の質量 m, エネルギー ε (> 0) の粒子の定常状態の 波動関数 $\psi(x)$ が周期的境界条件 $\psi(x)=\psi(x+\delta)$ を満たす場合を考える.
 - (a) 波動関数を求めよ.
 - (b) 波動関数が定数になる場合を除いたエネルギー固有値の最小値を求めよ.

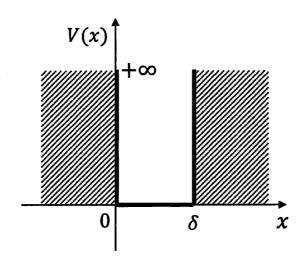


Fig. 6

Question No. 6: Advanced Physics (2/2)

2021 年 3 月実施 問題 6 物理専門 (2 頁目 / 2 頁中)

(1) Consider a particle of mass m and energy ε (>0) in an one-dimensional square-well potential V(x) along the x-axis (Fig. 6) given by the following equation.

$$V(x) = \begin{cases} 0 & (0 \le x \le \delta), \\ +\infty & (x < 0, \delta < x). \end{cases}$$

Let the wave function $\psi(x)$ in a stationary state in the region $0 \le x \le \delta$ be

$$\psi(x) = Ae^{ikx} + Be^{-ikx}.$$

Here, A and B are complex constants, $k=\sqrt{2m\varepsilon/\hbar^2}$ and $\hbar=h/2\pi$ (h:Plank constant).

- (a) Show the boundary conditions at x = 0, $x = \delta$.
- (b) Obtain the wave function and the energy eigenvalue.
- (c) Determine the expectation value of the particle's position for the wave function obtained in question (1)(b).
- (2) Consider the case that the wave function $\psi(x)$ in a stationary state for a particle of mass m and energy ε (> 0) satisfies the periodic boundary conditions $\psi(x) = \psi(x + \delta)$ in an one-dimensional potential V(x) = 0.
 - (a) Obtain the wave functions.
 - (b) Obtain the minimum energy eigenvalues excluding the case that the wave function is a constant.

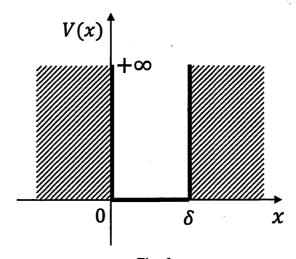


Fig. 6