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Lecture Outline

In networking, it is desirable to devise some techniques to help in the
systematic design of systems

Mathematical optimization provides such tools

Goal: Given a set of variables, and a measure of effectiveness, how to
find the most effective solution – the combination of system variables
that leads to the best possible effectiveness.

Topic

1 Network Flow Problem (Optimal Routing)

2 Bandwidth Sharing in a Network
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Network Flow Problem (Optimal Routing)

Minimize a linear cost subject to linear constraints

Let a network be represented as a directed graph G (N, L), where N is
the set of nodes (routers) and L is the set of directed links;

Any link l ∈ L has a head node h(l) and a tail node t(l), link is
directed from the head to the tail;

There are K demands that are to be routed on this network

Each demand is associated with an ordered pair of nodes (n1, n2);
Note that n1 is the source of demand and n2 is the destination;
Demands are numbered 1, 2, ..., k , ..., K , nodes are numbered
1, 2, ..., i , ..., N, links are numbered 1, 2, ..., l , ..., L.

Danny H.K.Tsang (ECE, HKUST) Short Course at Tohoku Univ. 25/1/2010 3 / 1



Network Flow Problem (Optimal Routing)

Assume that traffic corresponding to a demand can be split arbitrarily
across multiple paths between the source and destination. With
arbitrary splitting allowed, it is possible that every link in L carries
some part of a demand d(k), 1 ≤ k ≤ K .

Define a flow vector x(k) corresponding to the kth demand, with
x(k)l being the amount of the kth demand carried on link l .
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Basic Definition

The topology of a network can be summarized using its node-link
incidence matrix A;
Note that A is a N × L incidence matrix, with a row for each node
and a column for each link;
Let Ai ,l represent the (i,l)th element of A, Ai ,. represent the ith row
of A and A.,l represent the lth column of A ;
Then the column corresponding to link l has the following entries:

Ai ,l =


+1, if i is the head node of link l
−1, if i is the tail node of link l

0, otherwise

Let s(k) and t(k) be the source and destination nodes of demand k ;
Flow conservation equations are as follows:

Ai ,.x(k) =


d(k), if i = s(k)
−d(k), if i = t(k)

0, otherwise
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Basic Definition (Con’t)

If we now consider all the rows of A together, then we have the
following compact equation:

Ax(k) = v(k)

where v(k) is an N × 1 vector with the following entries:

v(k)i =


d(k), if i = s(k)
−d(k), if i = t(k)

0, otherwise

We can see v(k) is a vector specifying the amount of net outgoing
demand k from each node in the network.
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Basic Definition (Con’t)

Now consider the matrix

A =


A 0 0 ... 0
0 A 0 ... 0
: : : :
0 0 ... 0 A


There are K block elements in each row and K block elements in
each column. A is the familiar node-like incidence matrix with
dimension N × L. 0 is also a matrix of dimension N × L. Hence, A is
a matrix of dimension KN ×KL.
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Problem Formulation

With these definitions, consider the equation
A 0 0 ... 0
0 A 0 ... 0
: : : :
0 0 ... 0 A




x(1)
x(2)

:
x(K )

 =


v(1)
v(2)

:
v(K )


The above equation is the compact flow conservation equation we
were looking for. Clearly, it is nothing but K equations of the form
Ax(k) = v(k), with 1 ≤ k ≤ K .
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Capacity Constraints

For a feasible routing, the sum of all flows on a link should stay below
the link capacity. Suppose that C denotes the column vector of link
capacities, with Cl being the capacity of link l. Then, for a feasible
routing, we have

x(1) + x(2) + ... + x(K ) ≤ C
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Capacity Constraints (Con’t)

The vector of spare capacities, denoted by z, is given by

z = C− (x(1) + x(2) + ... + x(K ))

Let z := minl∈Lzl be the smallest spare capacity corresponding to a
given feasible routing. Then the following inequality holds:

x(1) + x(2) + ... + x(K ) ≤ C−z1

where 1 is a column vector of L elements, all of which a 1.

Danny H.K.Tsang (ECE, HKUST) Short Course at Tohoku Univ. 25/1/2010 10 / 1



Capacity Constraints (Con’t)

Let I be the L× L identity matrix and I be defined as

I = [ I I ... I ]

There are K block elements in the matrix I. Thus, the dimension of I

is L×KL. Then we have

[ I I ... I ]


x(1)
x(2)

:
x(K )

+ z1 ≤


C1

C2

:
CL


As expected, the product of the L×KL matrix I and the KL× 1
vector representing the flow vectors of all demands gives the L× 1
vector of link capacities.
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Objective Function

Given a network and a set of demands, there are many feasible
routings.

To choose one routing from this set, the standard approach is to
define an objective function and then choose the routing that
optimizes the objective function.

Define the objective function as the foregoing quantity z – the
objective function is the smallest spare capacity resulting from a
routing. Then optimal routing would be the one that maximizes the
smallest spare capacity.

In other words, we avoid routing that lead to a bottleneck link having
very little spare capacity.

This objective promotes a balanced utilization of capacity and does
not create hot spots.
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Objective Function (Con’t)

Optimization problem:
max z

subject to 
A 0 0 ... 0
0 A 0 ... 0
: : : :
0 0 ... 0 A




x(1)
x(2)

:
x(K )

 =


v(1)
v(2)

:
v(K )



[ I I ... I ]


x(1)
x(2)

:
x(K )

+ z · 1 ≤ C

x(k) ≥ 0, 1 ≤ k ≤ K , z ≥ 0
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Objective Function (Compact Form)

Optimization problem:
max z

subject to [
A 0
I 1

] [
x
z

]
=
≤

[
v
C

]
x ≥ 0, z ≥ 0

On the left side, 0 is an all 0’s vector of size KN × 1, where 1 is an
all-1’s vector of size L× 1.

This final form of the optimization problem that defines the optimal
routing – called primal problem.

Optimal solution can be obtained by considering the dual of this
problem.
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Optimal Solution Procedure

Think of the dual variables as row vectors:

Let u(1)T be a 1×N vector of dual variables corresponding to the
first N equality constraints, u(2)T be another 1×N vector of dual
variables corresponding to the next N equality constraints, .... Then

uT := [u(1)T,u(2)T, ...,u(K )T]

denote the 1×KN vector of dual variables in the first group.

Clearly, each element of u corresponds to a (node, demand) pair.
Similarly, let

yT := [y1, y2, ..., yL]

denote the 1× L vector of dual variables corresponding to the group
of L inequality constraints. Each element of y corresponds to a link.
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Dual Problem

Then the dual problem can be stated as follows:

min (uTv+ yTC)

subject to

[ uT yT ]

[
A 0
I 1

]
≥
[

0T 1
]

yT ≥ 0

Note that 0T is a 1×KL vector of all zeros.

Optimal routing are shortest paths with y ∗i viewed as link cost
(see p.689 in “Communication Networking : An Analytical Approach,
by A. Kumar, D. Manjunath, and J. Kuri, published by Morgan
Kaufman, 2004”).
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Detailed Solution Procedure

Lagrange relaxation of the prior primal problem

L = z + uT (v −Ax) + yT (C − (Ix + z1))

The primal problem is
max

x�0,z�0
L(x , z)

And in the dual domain

θ(uT , yT ) = sup{x � 0, z � 0 :
uT v + yTC − (yT1− 1)z − (yTI + uTA)x}

The optimization problem in the dual domain is then

min
uT ,yT�0

θ(uT , yT )
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Detailed Solution Procedure (Con’t)

Apply the KKT condition and Lagrange relaxation

∂L
∂z∗ = 1− (yT )∗1 = 0

⇒ (yT )∗1 = 1

⇒ ∑L
l=1 y ∗l = 1 (1)

and

∂L

∂x∗
= (yT )∗I + (uT )∗A =0⇒ −(uT )∗A =(yT )∗I (2)

Define y ∗l as the optimal cost of link l and define (uT )∗ as the
payment of unit demand.

Eq.(1) represents that the sum cost over all the links is constant.

Eq.(2) shows that the sum payment of each demand is equal to the
sum of optimal cost along the path (shortest path).
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An Illustrative Example in Optimal Routing

As shown in figure below, given the traffic demands d(1) = 8, d(2) = 10,
d(3) = 6, and link capacity
CT = [ 10 3 10 10 4 7 10 8 10 8 ], model the optimal
routing problem and solve it using Lingo/Matlab. Explain the relationship
between y and (x , C ).
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Solution

According to the topology described in above figure. Routing matrix can
be written as

A =


1 1 1 0 0 0 0 0 0 0
−1 0 0 1 0 1 0 0 0 0
0 −1 0 −1 1 0 −1 1 0 0
0 0 −1 0 −1 0 0 0 1 −1
0 0 0 0 0 −1 1 −1 −1 1

 ,

and the traffic demands are

vT = [ 0 8 0 −8 0 10 0 0 0 −10 6 0 0 −6 0 ].
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Solution (Con’t)

Run with Lingo, xk,l , the data rate of demand k = 1, 2, 3 over each link
(l = 1, .., 10), are

l = 1 2 3 4 5 6 7 8 9 10
x1,· = [0.00 0.00 0.00 8.00 2.75 0.00 0.00 5.25 0.00 5.25]
x2,· = [5.75 1.50 2.75 0.00 0.00 5.75 0.00 1.50 2.75 0.00]
x3,· = [0.00 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00]
zl = [4.25 1.50 1.25 2.00 1.25 1.25 10.00 1.25 7.25 2.75]

z = 1.25 and the corresponding dual price of each link y is

y = [ 0 0 0.25 0 0.25 0.25 0 0.25 0 0 ].
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Note: It can be noted that bottlenecks occur when the link with
non-zero dual price (yl = 0.25), while the links with 0 dual
price are not bottlenecks (here we mean those links with
smallest spare capacity). Also with KKT condition, we can
verify

yl
[
cl −∑3

k=1 xk,l − z∗
]
= 0, ∀l

Figure:
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We can solve the optimal routing problem using Dijkstra algorithm with
link cost y ∗ achieved above. The shortest path for each flow is
K1 → B → C → D, K1 → B → C → E → D; K2 → A→ B → E ,
K2 → A→ C → E , K2 → A→ D → E ; K3 → A→ D.

Figure: Traffic Flow with d(1) = 8
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Solution (Con’t)

Figure: Traffic Flow with d(2) = 10 and d(3) = 6
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Bandwidth Sharing – Motivation

Q: how to share available bandwidth among competing flows of elastic
traffic?

A typical resource allocation problem

In a network, requiring equal rates leads to unutilized bandwidth in
some links.

Many notions of fairness can be defined as being desirable, or
achievable by specific congestion control and bandwidth-sharing
mechanisms.

Address this complex issue and motivate the use of distributed
algorithm for achieving fair bandwidth sharing.
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Bandwidth Sharing Model and Definition

Definition

An allocation of resources in a system is Pareto efficient if there does not
exist another allocation in which some individual is better off and no
individual is worse off.

In the following, we will see a trade-off between fairness and the total
amount of user traffic that the network carries.
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Bandwidth Sharing Scenarios
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Notation

L: The set of links; each link is assumed to be unidirectional – a
full-duplex link between two nodes is viewed as two links.

Cl : The capacity of link l ∈ L (assumed here to be the same in both
directions)

C: The vector of link capacities (C1, C2, ..., C|L|).

S : The set of sessions, and consequently,

Ls : the set of links used by session s ∈ S .
Sl : the set of sessions through link l ∈ L.
nl : the number of sessions through link l ∈ L.
ri : the rate of the ith session, 1 ≤ i ≤ |S |; r = (r1, r1, ..., r|S |)

T

denotes the rate vector.
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Max-Min Fair Bandwidth Sharing

Definition

A feasible rate r is max-min fair (MMF) for (L, C , S) if it is not possible
to increase the rate of a session s, while maintaining feasibility , without
reducing the rate of some session p with rp ≤ rs .

Consider a feasible rate vector and look at the smallest rate in this
vector. The MMF rate vector has the largest value of this minimum
rate.

Among all feasible rate vectors with this value of the minimum rate,
consider the next larger rate. The MMF rate has the largest value of
the next larger rate as well, and so on.
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Important Property of the MMF Allocation

The MMF rate vector is characterized in terms of the notion of
bottleneck links, which is defined:

Definition

Given a rate vector r, a link l is said to be a bottleneck link for session j if
(i) Link l is saturated (i.e. fl (r) = Cl) and
(ii) For all the sessions s ∈ S , rs ≤ rj ; that is, every session in link l has a
rate no more than that of session j .

Example

In the MMF example, both link 1 and link 2 are totally saturated. For the
two-link session (i.e., session 3), link 1 is the bottleneck link of session 3
but link 2 is not.
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Important Property of MMF

Theorem

A feasible rate vector r is MMF if and only if every session s ∈ S has a
bottleneck link.

Note that with max-min fair flow rates, even though every session has
a bottleneck link, not every link is a bottleneck for some session.

If a central entity knew the network topology, the session topology,
and the capacities of all the links, then it could calculate the MMF
rate using the centralized algorithm – iterative calculation and
updating.

However, another important and more general approach is applying
Network Utility Optimization and solve the problem in a distributive
way.
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Basic Network Utility Maximization (NUM)

What is user utility?
Utility as function of QoS parameter: throughput, latency, jittering,
distortion, energy efficiency,...

Each source of data, s, has a utility function, Us(·), such that when
the source receives the rate rs it obtains a utility Us(rs).

If the assigned rate vector is r, then the total utility of all the users in
the network is ∑s∈S Us(rs).

For simplicity, let us assume that all the sources have the same utility
function U(·). With w as a constant weighting factor for a session,
the following utility functions have been proposed:

U(r) := w log(r)

U(r) must be an increasing, strictly concave, twice differentiable
function of r .
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Utility Maximization for Fairness

Family of utility function parameterized by α ≥ 0 :

Uα(r) :=

 w
r1−α

(1− α)
, if α 6= 1

w log(r), otherwise

α = 0 : throughput maximization (may not be fair)

α = 1 : proportional fairness

α = 2 : harmonic-mean fairness

α = ∞ : MMF

Lemma

All these utility functions are nondecreasing and concave functions of r .

For all α ≥ 0, it has
dUα(r)

dr
=

1

r α
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Basic Framework

The optimal bandwidth sharing is provided by the solution of
following utility maximization problem :

max ∑
s∈S

U(rs)

subject to

∑s∈Sl rs ≤ Cl , for every link l ∈ L
rs ≥ 0, for every source s ∈ S

This is a nonlinear maximization problem, with a concave objective
function and linear constraints.
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Solution of NUM

A rate vector r will be optimal for the problem if and only if the KKT
conditions hold at this rate vector. Let us denote the dual variable for
each link capacity constraint by pl ≥ 0, l ∈ L.

Then the KKT conditions yield the following relationships between
the optimal rates rs , s ∈ S , and the dual variables:

For every s ∈ S U̇(rs) = ∑l∈Ls pl

If ∑s∈Sl rs < Cl pl = 0
For every l ∈ L ∑s∈Sl rs ≤ Cl

For notational convenience, we denote dU(rs)/drs as U̇(rs).
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Solution of NUM (Con’t)

To understand above KKT conditions, consider the Lagrangian
decomposition:

L(r , p) = ∑
s

U(rs) + ∑
l∈L

pl (cl − ∑
s∈Sl

rs).

It follows
dL(r , p)

drs
=

dU(rs)

drs
− ∑

l∈Ls
pl = 0,

so that
dU(rs)

drs
= ∑

l∈Ls
pl .

Danny H.K.Tsang (ECE, HKUST) Short Course at Tohoku Univ. 25/1/2010 36 / 1



Interpretation

One can interpret the dual variable associate with link l as a price
charged by the link per unit of flow that it carries for a user.

The KKT conditions tell us that:

1 At the fair rate, the derivative of a source’s utility is equal to the total
price along its path;

2 The price of a link is 0 if the link has spare bandwidth at the fair rate;
3 The rate must be feasible.
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Dual Decomposition

A distributive algorithm for obtaining the fair rate can be obtained
from the dual of the preceding optimization problem. Consider the
Lagrangian decomposition:

L(r,p) := ∑
s

U(rs) + ∑
l∈L

pl (Cl − ∑
s∈Sl

rs)

where pl , l ∈ L, are nonnegative dual variables or Lagrange
multipliers.

Dual Problem
min Θ(p)

subject to
pl ≥ 0 for every l ∈ L

where the dual objective function Θ(p) is defined by

Θ(p) = sup{r ≥ 0: L(r,p)}
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Dual Decomposition

For given r ≥ 0, define, for s ∈ S , p(s) = ∑l∈Ls pl ; that is, p(s) is the
path cost, which is the sum of the dual variables, or the total price
per unit of flow, along the path of session s. Now we can see that

Θ(p) = sup

{
r ≥ 0: ∑

s

U(rs)−∑
l∈L

pl ∑
s∈Sl

rs

}
+ pC

= sup

{
r ≥ 0: ∑

s

(
U(rs)− rsp(s)

)}
+ pC

= ∑
s

sup
{
r ≥ 0:

(
U(rs)− rsp(s)

)}
+ pC

Given p(s), each of the terms in the ∑s∈S can be individually
optimized – dual objective function now involves an optimization for
each source.
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Dual Decomposition (Con’t)

The net profit for each source is the utility minus the price it pays;
naturally, given the prices, each source would want to adjust its flow
to maximize its net profit.

To illustrate, consider the above example

Applying

∑
l∈L

pl ∑
s∈Sl

rs = ∑
s∈S

rsp(s),

we have

p1(r1 + r3) + p2(r2 + r3) = r1(p1) + r2(p2) + r3(p1 + p2).
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Canonical Distributed Algorithm - Source

Source Algorithm: we want to maximize the net profit, i.e.

For any s : rs = arg max
[

U(rs)− rs · p(s)
]

,

which means

dU(rs )
drs
− p(s) = 0⇒ p(s) = U̇(rs) =

1
rα
s

(3)

Thus, for every source s ∈ S ,

rs(k + 1) = rs(k) + β(k)

{
1

[rs(k)]
α − p(s)

}
where β(k) is the stepsize and k is the iteration indicator.

α controls the trade-off between carried traffic and fairness: a small α
puts emphasis on carried traffic, and a large α emphasize fairness.

Danny H.K.Tsang (ECE, HKUST) Short Course at Tohoku Univ. 25/1/2010 41 / 1



Canonical Distributed Algorithm - Link

Link algorithm (gradient or sub-gradient descent algorithm):

pl (k + 1) = pl (k)− θ(k)

[
Cl − ∑

s∈Sl
rs(p(k))

]
.

where p(k) is the vector of prices at the kth iteration.

θ(k): gain factor – determines the speed of convergence and steady
state error

Certain choices of θ(k) of distributive algorithm guarantee
convergence to globally optimal (r ∗, p∗)
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Summary

We have seen two applications in networking design and optimization

Optimal Routing

Bandwidth Sharing

Other Research Applications

1 Rate allocation and TCP congestion control

2 Power control in wireless and DSL

3 Wireless networks and cognitive radio networks

4 Cross layer design and optimization

5 P2P networks and Internet pricing issues
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Summary (Con’t)

Distributed algorithms are preferred because:

It is scalable

It is robust

Centralized server is not feasible or is too costly

Key Issue

1 Local computation vs. global communication;

2 Scope, scale, and physical meaning of communication overhead ;

3 Theoretical issues: Robustness? Synchronization? Complexity? Stability?

4 ...
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