
LP and NLP Optimization

Danny H.K.Tsang

Department of Electronic and Computer Engineering
Hong Kong University of Science and Technology

Email:eetsang@ust.hk

Danny H.K.Tsang (ECE, HKUST) Short Course at Tohoku Univ. 25/1/2010 1 / 45



Linear Programming
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Max Z = 3x1 + 5x2
S .T : x1 ≤ 4,

2x2 ≤ 12,
3x1 + 2x2 ≤ 18,
x1 ≥ 0,
x2 ≥ 0
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Linear Programming

Optimality Test for CPF(corner point feasible) solution

Consider any LP problem that possesses at least one optimal solution.
If a CPF solution has no adjacent CPF solutions that are better, then it
must be an optimal solution.

The simplex method focuses only on CPF solution (start from some
simple CPF solution such as (0, 0)), find a better CPF solution until
the best one is found (i .e moving from CPF solution to CPF solution).

Danny H.K.Tsang (ECE, HKUST) Short Course at Tohoku Univ. 25/1/2010 3 / 45



Simplex Method

Simplex method: Basically solving system of equations with slack
variables

Original Problem
Max Z = 3x1 + 5x2

S .T : x1 ≤ 4,
2x2 ≤ 12,
3x1 + 2x2 ≤ 18,
x1 ≥ 0,
x2 ≥ 0,

Augmented Form
Max
Z = 3x1+ 5x2+ 0x3+ 0x4+ 0x5

S .T : x1 + x3 = 4,
2x2 + x4 = 12,
3x1 + 2x2 + x5 = 18,
xi ≥ 0 for all i
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Simplex Method

Using the simplex method
start from (x1, x2, x3, x4, x5) = (0, 0, 4, 12, 18)

after several iterations,we get
x∗ = (2, 6, 2, 0, 0)
∴ Z ∗ = 3(2) + 5(6) = 36.

The simplex method also produces shadow-prices which are useful for
resource allocation by the manager.
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Simplex Method

In the example, b1 = 4, b2 = 12, b3 = 18 (allocated resource).

Shadow price for resource i (y ∗i ) measures the rate at which Z could
be increased by slightly increasing bi (i.e., dZ

dbi
).

In the example, y ∗1 = 0, y ∗2 = 1.5, y ∗3 = 1
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Simplex Method

If b1 = 4→ b1 = 5, no increase in Z , i .e : y ∗1 = 0, since the 1st

constraint is not binding at x∗.

If b2 = 12→ b2 = 13, Z increases by 1.5 (when b2 finally increases
to b2 = 18, x∗ = (0, 9) and further increase in b2 does not increase
Z ).

If b3 = 18→ b3 = 19,M Z = 1, because y ∗3 = 1.
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Simplex Method

The shadow prices are also produced from the simplex method
Coefficients Coefficients

Z x1 x2 x3 x4 x5
1 −3 −5 0 0 0

→ Z x1 x2 x3 x4 x5
1 −3 0 0 5/2 0

→ Z x1 x2 x3 x4 x5
1 0 0 0 3/2 1

Coefficients of x3, x4, x5 = y ∗1 , y ∗2 , y ∗3 = (0, 3/2, 1).

For the managers, they may increase allocation of b2 and b3 by taking
them from other productions if those y ∗2 (< 1.5) and y ∗3 (< 1).
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Application of Duality Theory

Primal Problem

Max Z =
n

∑
j=1

cjxj

s.t.
n

∑
j=1

aijxj ≤ bi ,

for i = 1, 2 · · ·m
and xj ≥ 0, j = 1, 2 · · · n

Dual Problem

Min y0 =
m

∑
i=1

biyi

s.t.
m

∑
i=1

aijyi ≥ cj ,

for j = 1, 2 · · · n,
and yi ≥ 0, for i = 1, 2 · · ·m
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Application of Duality Theory

In matrix form

Max Z = cx = [· · · c · · · ]


...
x
...


s.t. Ax ≤ b,
and x ≥ 0

Min yo = yb = [· · · y · · · ]


...
b
...


s.t. yA ≥ c
and y ≥ 0
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Weak Duality Property (cx < yb)

If x is a feasible solution for the primal problem and y is a feasible solution
for the dual problem,then cx ≤ yb.

Example

eg .

[
x1
x2

]
=

[
3
3

]
cx = [3, 5]

[
3
3

]
= 24

cx < yb

[y1, y2, y3] = [1, 1, 2]

yb = [1, 1, 2]

 4
12
18

 = 52
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Strong Duality Property (cx∗ = y ∗b)

If x∗ is the optimal solution for the primal problem, y ∗ is also an
optimal solution for the dual problem, then cx∗ = y ∗b.

Thus, the two properties imply that cx < yb for feasible solutions if
one or both of them are not optimal (i.e., cx < yb, cx∗ < yb, or
cx < y ∗b), whereas equality holds when both are optimal.
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Complementary-Solution Property

At each iteration, the simplex method simultaneously produces a CPF
solution x for the primal problem and a complementary solution y for
the dual problem, where cx = yb.

If x is not optimal for the primal, then y is not feasible for the dual
problem.
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Example

Example[
x1
x2

]
=

[
0
6

]
cx = [3, 5]

[
0
6

]
= 30

cx = yb

[y1, y2, y3] = [0, 5/2, 0]

yb = [0, 5/2, 0]

 4
12
18

 = 30

cx = yb

x is not optimal and y is not feasible.
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Complementary Optimal Solution Property

At the final iteration, the simple method simultaneously finds an
optimal solution x∗ for the primal problem and a complementary
optimal solution y ∗ for the dual problem, where cx∗ = y ∗b.

y ∗ is feasible to the dual problem since x∗ is optimal. In fact, y ∗ is
also optimal to the dual.

y ∗i are the shadow-prices for the primal problem.

y ∗i =
dZ

dbi
|x=x∗
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Symmetry Property

For any primal problem and its dual problem, all relationships between
them must be symmetric, because the dual of the dual problem is the
primal problem.

Therefore, all the preceding properties hold regardless of which of the
two problems is labeled as the primal problem.
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Duality Theorem

The following are the only relationships between the primal and dual
problem.

If one problem has feasible solution and a bounded objective function
(i.e it has an optimal solution), then so does the other problem. Both
weak duality (cx < yb) and strong duality (cx∗ = y ∗b) properties are
applicable here.
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Duality Theorem

If one problem has feasible solution and an unbounded objective
function (i.e no optimal solution), then the other problem has no
feasible solution.

If one problem has no feasible solution, then the other problem has
either no feasible solution or an unbounded objective function.
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Application of Duality Theorem

If m > n, then solving the dual may be easier (the constraints become
less than the primal):

If we find x and y (both are feasible) and if cx = yb, then we know
we have found the optimal solution x∗ and y ∗. Even if they are not
equal, cx < yb,if yb− cx is small. We know x is close to x∗, then we
may stop.

Another important application is its use in the economic
interpretation of the dual problem (shadow prices), and the resulting
insight for analyzing the primal problem.

y ∗i =shadow prices. y ∗i =
dZ

dbi
|x=x∗ .
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Economic Interpretation of Duality

xi =number of product j we want to produce.

cj =unit of profit from product j.

Z = total profit.

bi =amount of resource of type i available.

aij =amount of resource of type i needed by each unit of product j.
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Economic Interpretation of Duality

Max Z = cx = [· · · c · · · ]


...
x
...


s.t. Ax ≤ b,
and x ≥ 0

Min yo = yb = [· · · y · · · ]


...
b
...


s.t. yA ≥ c
and y ≥ 0

y0 = b1y1 + · · ·+ bmym =the current contribution to the profit by
having bi units of resource i available for the primal problem.
m

∑
i=1

aijyi ≥ cj that the actual contribution to profit of the above mix

of resources must be at least as much as they need by 1 unit of
product j ; otherwise the use of the resources mix is not good.

Danny H.K.Tsang (ECE, HKUST) Short Course at Tohoku Univ. 25/1/2010 21 / 45



Complementary Slackness Property

yi = 0, if the corresponding slack variable is positive.

dZ

dbi
|x = 0, if the slack variable for bi is positive.

m

∑
i=1

aijyi = cj if xj > 0. When the number of product j produced is

positive, then the marginal profit (
dZ

dbi
|x = yi ) of the resource it

consumes must equal to the unit profit of product j .
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Example

Optimal x∗ = (2, 6, 2, 0, 0), y ∗1 = 0, y ∗2 = 3/2, y ∗3 = 1.

[0, 3/2, 1]

 1 0
0 2
3 2

 =

[
3
5

]
≥
[

3
5

]
Both constraints are equal since x1 > 0, and x2 > 0.
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Transportation Problem

Transportation Problem

S1 D1

S2 D2

Sn Dn

:
:

:
:

11C

12C

1nC

:

1s 1d−

2s 2d−

ns nd−

21C

22C

2nC

:

1nC

2nC

nnC

:
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Transportation Problem

Transportation Problem

Min Z =
m

∑
i=1

n

∑
j=1

cijxij

s.t.
n

∑
j=1

xij = si for i = 1, 2 · · ·m
m

∑
i=1

xij = dj for j = 1, 2 · · · n

xij ≥ 0 ∀i , j
Remarks:
m

∑
i=1

si =
n

∑
j=1

dj is assumed above.

If total supply > total demand, then create dummy demand node D0 with
ci0 = 0, i = 1, ...,m.
If total supply < total demand, then create dummy supply node S0 with
c0j = 0, j = 1, ..., n.
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Assignment Problem

Assignment Problem

A1 T1

A2 T2

An Tn

:
:

:
:

11C

12C

1nC

:

1 1−

21C

22C

2nC

:

1nC

2nC

nnC

:

1 1−

1 1−
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Assignment Problem

Assignment Problem

Min Z = ∑i ∑j cijxij

s.t.
n

∑
j=1

xij = 1 ∀i
m

∑
i=1

xij = 1 ∀j

xij ≥ 0 xij = 1 or 0
Remarks:
m = n is assumed above.
If m > n, then create dummy node T0 with ci0 = 0, i = 1, ...,m.
If m < n, then create dummy node A0 with c0j = 0, j = 1, ..., n.
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Network Analysis (special LP)

Topics

Shortest-path problem.

Minimum spanning tree.

Maximum flow problem.

Minimum cost flow problem.
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Max-Flow Min-Cut Theorem

A cut may be defined as any set of directed arcs containing at least
one arc from every directed path from source node to destination
node.

The cut value is the sum of the arc capacity of the cut.

The theorem says: For any network with a single source node and
destination node, the maximum feasible flow from S to D equals the
minimum cut value for all cuts of the network.
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Maximum Flow Problem (efficient solution method exists)
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Optimal Solution

B

A

S

C

D7

3
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4
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The Minimum Cost Flow Problem (very efficient solution
method exists)

It encompasses
1.TransportationProblem.
2.AssignmentProblem.
3.Shortest-pathProblem.
4.MaxFlowProblem.


Special case of the
minimum cost flow problem
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The Minimum Cost Flow Problem

A network of n nodes, at least one source node (supply node) and one
destination node (demand node).

Find xij =amount of flow through link i → j to minimize the total
cost.

Given

cij = cost per unit flow for link i → j

uij = capacity of link i → j

bi = net flow generated at node i

bi > 0 if i is the source node

bi < 0 if i is the destination node

bi = 0 if i is the transit node
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The Minimum Cost Flow Problem

min Z =
n

∑
i=1

n

∑
j=1

cijxij

s.t.
n

∑
j=1

xij −
n

∑
j=1

xji = bi ∀i

0 ≤ xij ≤ uij ∀i , j
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The Minimum Cost Flow Problem (Solution Properties)

Feasible solution property.

A necessary condition for a minimum cost flow problem to have any

feasible solution is that
n

∑
i=1

bi = 0 (i .e. total supply = total demand).

If not, create dummy source or dummy destination node with cij = 0.

Integer solution property.

For minimum cost flow problem when all bi and uij are integer, all the
feasible solution from simplex method including the optimal x∗ have
the integer value.
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Non-Linear Programming

max f0(x)
s.t. fi (x) ≤ bi i = 1, · · ·m

x1, x2, · · · xn ≥ 0

Example

max Z = 126x1 − 9x21 + 182x2 − 13x22
s.t. x1 ≤ 4

2x2 ≤ 12
3x1 + 2x2 ≤ 18
x1 ≥ 0
x2 ≥ 0

(0,6)

(0,0)

Feasible Region

1x

2x

(4,0)

Z=888

Z=857

Z=902

1823 21 =+ xx
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Non-Linear Programming

Example

max Z = 54x1 − 9x21 + 78x2 − 13x22
s.t. x1 ≤ 4

2x2 ≤ 12
3x1 + 2x2 ≤ 18
x1 ≥ 0
x2 ≥ 0

(0,6)

(0,0)
1x

2x

(4,0)

Z=162

Z=189

Z=117

3*
1 =xOptimal at 

3*
2 =x
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Necessary and Sufficient Conditions for Optimality

Problem Necessary Condition
for Optimality

Also sufficient if

one variable uncon-
strained

df0
dx

= 0 f0(x) is concave

Multi-variables
unconstrained

df0
dxi

= 0 (j =

1, · · · , n)

f0(x) is concave

General constrained
problem

Karush-Kuhn-
Tucker condition

f0(x) is concave and
fi (x)is concave (i =
1, · · · ,m)
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Non-Linear Programming

max fo(x)
s.t. fi (x) ≤ bi

i = 1, · · · ,m
xj ≥ 0
j = 1, · · · , n

max fo(x)
s.t. fi (x)− bi ≤ 0

i = 1, · · · ,m
−xj ≤ 0
j = 1, · · · , n

min f (x) = −fo(x)
s.t. gi (x) ≤ 0

i = 1, · · · ,m+ n
x ∈ R
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KKT Conditions

Given a feasible x∗ ∈ Rn, if there exists λ ∈ Rm,with λ ≥ 0,such that

∇f (x∗) +
m

∑
i=1

λi∇gi (x∗) = 0 (1)

and
m

∑
i=1

λigi (x
∗) = 0 (2)

Then x∗ is a global optimal solutions for the primal problem.

λ′s are the Lagrange multipliers or dual variables.
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KKT Conditions

L(x , λ) = f (x) +
m

∑
i=1

λigi (x)

∂L
∂xj

= 0⇒ ∂f (x)
∂xj

+
m

∑
i=1

λi
∂gi (x)

∂xj
= 0, j = 1, · · · , n

In matrix form

∇f (x) +
m

∑
i=1

λi∇gi (x) = 0 (1)
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Duality

Primal problem

min f (x)
s.t. gi (x) ≤ 0 i = 1, · · · ,m

x ≥ 0

Define θ(λ) = inf{x ≥ 0 : f (x) +
m

∑
i=1

λigi (x)}.

θ(λ) is called the Lagrangian dual function and is obtained by
relaxing the constraints gi (x) ≤ 0, i = 1, · · · ,m, λ ∈ Rm, λ ≥ 0.
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θ(λ)is a concave function on λ ∈ Rm, λ ≥ 0.

If λ ≥ 0,and if x satisfies the constraints of the primal problem, then
θ(λ) ≤ f (x)(weak duality theorem).

Dual problem

Dual problem max
λ≥0

θ(λ).

Strong duality theorem: θ(λ∗) = f (x∗).

In addition, due to (2) of KKT,
m

∑
i=1

λ∗i gi (x
∗) = 0.
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Relation to LP (Primal Problem)

Primal problem

min bT x
s.t. Ax ≥ c

x ≥ 0

θ(λ) = inf{x ≥ 0 : bT x + λT (c − Ax)}
= inf{x ≥ 0 : (bT − λTA)x + λT c}

=

{
λT c for bT − λTA ≥ 0

−∞ otherwise
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Dual LP Problem

max
λ≥0

θ(λ) = max λT c

s.t. bT − λTA ≥ 0
λ ≥ 0

Weak duality: λT c < bT x .

Strong duality: λ∗T c = bT x∗.

Complementary slackness:

λT (c − Ax∗) = 0

(bT − λ∗TA)x∗ = 0
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