LP and NLP Optimization

Danny H.K.Tsang

Department of Electronic and Computer Engineering Hong Kong University of Science and Technology Email:eetsang@ust.hk

Linear Programming

• Max
$$Z = 3x_1 + 5x_2$$

 $S.T: x_1 \le 4,$
 $2x_2 \le 12,$
 $3x_1 + 2x_2 \le 18,$
 $x_1 \ge 0,$
 $x_2 \ge 0$

э

- Optimality Test for CPF(corner point feasible) solution
 - Consider any LP problem that possesses at least one optimal solution. If a CPF solution has no adjacent CPF solutions that are better, then it must be an optimal solution.
 - The simplex method focuses only on CPF solution (start from some simple CPF solution such as (0,0)), find a better CPF solution until the best one is found (*i.e.* moving from CPF solution to CPF solution).

- Simplex method: Basically solving system of equations with slack variables
- Original Problem Max Z = 3x₁ + 5x₂

$$\begin{array}{l} S.\, \mathcal{T}: x_1 \leq 4, \\ 2x_2 \leq 12, \\ 3x_1 + 2x_2 \leq 18, \\ x_1 \geq 0, \\ x_2 \geq 0, \end{array}$$

• Augmented Form Max $Z = 3x_1 + 5x_2 + 0x_3 + 0x_4 + 0x_5$ $S.T: x_1 + x_3 = 4,$ $2x_2 + x_4 = 12,$ $3x_1 + 2x_2 + x_5 = 18,$ $x_i \ge 0$ for all i

▶ < ∃ ▶

 Using the simplex method start from (x₁, x₂, x₃, x₄, x₅) = (0, 0, 4, 12, 18)

after several iterations, we get $x^* = (2, 6, 2, 0, 0)$ $\therefore Z^* = 3(2) + 5(6) = 36.$

• The simplex method also produces shadow-prices which are useful for resource allocation by the manager.

Simplex Method

- In the example, $b_1 = 4$, $b_2 = 12$, $b_3 = 18$ (allocated resource).
- Shadow price for resource i (y^{*}_i) measures the rate at which Z could be increased by slightly increasing b_i (i.e., dZ/db_i).

In the example, $y_1^* = 0, y_2^* = 1.5, y_3^* = 1$

Simplex Method

- If b₁ = 4 → b₁ = 5, no increase in Z, i.e : y₁^{*} = 0, since the 1st constraint is not binding at x^{*}.
- If $b_2 = 12 \rightarrow b_2 = 13$, Z increases by 1.5 (when b_2 finally increases to $b_2 = 18$, $x^* = (0, 9)$ and further increase in b_2 does not increase Z).
- If $b_3 = 18 \rightarrow b_3 = 19$, $\triangle Z = 1$, because $y_3^* = 1$.

The shadow prices are also produced from the simplex method Coefficients Coefficients $Z \quad x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5$ $1 \quad -3 \quad -5 \quad 0 \quad 0 \quad 0 \quad \rightarrow \quad \begin{array}{c} Z \quad x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \\ 1 \quad -3 \quad 0 \quad 0 \quad 5/2 \quad 0 \\ \hline Z \quad x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \\ 1 \quad 0 \quad 0 \quad 0 \quad 3/2 \quad 1 \end{array}$

- Coefficients of x_3 , x_4 , $x_5 = y_1^*$, y_2^* , $y_3^* = (0, 3/2, 1)$.
- For the managers, they may increase allocation of b_2 and b_3 by taking them from other productions if those $y_2^*(<1.5)$ and $y_3^*(<1)$.

• Primal Problem Max $Z = \sum_{j=1}^{n} c_j x_j$ s.t. $\sum_{j=1}^{n} a_{ij} x_j \le b_i$, for $i = 1, 2 \cdots m$ and $x_j \ge 0, j = 1, 2 \cdots n$

• Dual Problem

$$\begin{array}{ll} \text{Min} & y_0 = \sum_{i=1}^m b_i y_i \\ \text{s.t.} & \sum_{i=1}^m a_{ij} y_i \geq c_j, \\ & \text{for } j = 1, 2 \cdots n, \\ \text{and} & y_i \geq 0, \text{ for } i = 1, 2 \cdots m \end{array}$$

э

• In matrix form

$$Max \quad Z = cx = [\cdots c \cdots] \begin{bmatrix} \vdots \\ x \\ \vdots \end{bmatrix} \qquad Min \quad y_o = yb = [\cdots y \cdots] \begin{bmatrix} \vdots \\ b \\ \vdots \end{bmatrix}$$
s.t.
$$Ax \le b, \qquad \qquad s.t. \quad yA \ge c$$
and
$$x \ge 0 \qquad \qquad and \quad y \ge 0$$

< 同 ▶

If x is a feasible solution for the primal problem and y is a feasible solution for the dual problem, then $cx \le yb$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- If x* is the optimal solution for the primal problem, y* is also an optimal solution for the dual problem, then cx* = y*b.
- Thus, the two properties imply that cx < yb for feasible solutions if one or both of them are not optimal (i.e., cx < yb, cx* < yb, or cx < y*b), whereas equality holds when both are optimal.

- At each iteration, the simplex method simultaneously produces a CPF solution x for the primal problem and a complementary solution y for the dual problem, where cx = yb.
- If x is not optimal for the primal, then y is not feasible for the dual problem.

Example

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 6 \end{bmatrix}$$

$$[y_1, y_2, y_3] = \begin{bmatrix} 0, 5/2, 0 \end{bmatrix}$$

$$cx = \begin{bmatrix} 3, 5 \end{bmatrix} \begin{bmatrix} 0 \\ 6 \end{bmatrix} = 30$$

$$yb = \begin{bmatrix} 0, 5/2, 0 \end{bmatrix} \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix} = 30$$

$$cx = yb$$

• x is not optimal and y is not feasible.

- At the final iteration, the simple method simultaneously finds an optimal solution x* for the primal problem and a complementary optimal solution y* for the dual problem, where cx* = y*b.
- y* is feasible to the dual problem since x* is optimal. In fact, y* is also optimal to the dual.
- y_i^* are the shadow-prices for the primal problem.

•
$$y_i^* = \frac{dZ}{db_i}|_{x=x^*}$$

- For any primal problem and its dual problem, all relationships between them must be symmetric, because the dual of the dual problem is the primal problem.
- Therefore, all the preceding properties hold regardless of which of the two problems is labeled as the primal problem.

The following are the only relationships between the primal and dual problem.

• If one problem has feasible solution and a bounded objective function (i.e it has an optimal solution), then so does the other problem. Both weak duality (cx < yb) and strong duality ($cx^* = y^*b$) properties are applicable here.

- If one problem has feasible solution and an unbounded objective function (i.e no optimal solution), then the other problem has no feasible solution.
- If one problem has no feasible solution, then the other problem has either no feasible solution or an unbounded objective function.

- If m > n, then solving the dual may be easier (the constraints become less than the primal):
- If we find x and y (both are feasible) and if cx = yb, then we know we have found the optimal solution x^{*} and y^{*}. Even if they are not equal, cx < yb,if yb − cx is small. We know x is close to x^{*}, then we may stop.
- Another important application is its use in the economic interpretation of the dual problem (shadow prices), and the resulting insight for analyzing the primal problem.

•
$$y_i^*$$
=shadow prices. $y_i^* = \frac{dZ}{db_i}|_{x=x^*}$.

- x_i =number of product j we want to produce.
- $c_j =$ unit of profit from product j.
- Z = total profit.
- b_i =amount of resource of type i available.
- a_{ij} =amount of resource of type i needed by each unit of product j.

Economic Interpretation of Duality

$$\begin{array}{ll} Max \quad Z = cx = [\cdots c \cdots] \begin{bmatrix} \vdots \\ x \\ \vdots \end{bmatrix} & Min \quad y_o = yb = [\cdots y \cdots] \begin{bmatrix} \vdots \\ b \\ \vdots \end{bmatrix} \\ s.t. \quad Ax \le b, \\ s.t. \quad yA \ge c \\ and \quad x \ge 0 & and \quad y \ge 0 \end{array}$$

y₀ = b₁y₁ + · · · + b_my_m =the current contribution to the profit by having b_i units of resource i available for the primal problem.
 ∑^m_{i=1} a_{ij}y_i ≥ c_j that the actual contribution to profit of the above mix of resources must be at least as much as they need by 1 unit of product j; otherwise the use of the resources mix is not good.

• $y_i = 0$, if the corresponding slack variable is positive.

•
$$\frac{dZ}{db_i}|_x = 0$$
, if the slack variable for b_i is positive

• $\sum_{i=1}^{m} a_{ij} y_i = c_j$ if $x_j > 0$. When the number of product j produced is

positive, then the marginal profit $\left(\frac{dZ}{db_i}\right|_{\times} = y_i$) of the resource it consumes must equal to the unit profit of product *j*.

• Optimal
$$x^* = (2, 6, 2, 0, 0), y_1^* = 0, y_2^* = 3/2, y_3^* = 1.$$

• $[0, 3/2, 1] \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix} \ge \begin{bmatrix} 3 \\ 5 \end{bmatrix}$

• Both constraints are equal since $x_1 > 0$, and $x_2 > 0$.

Transportation Problem

• Transportation Problem

24 / 45

æ

Transportation Problem

• Transportation Problem

$$\begin{array}{lll} \textit{Min} \quad Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \\ \textit{s.t.} \quad \sum_{j=1}^{n} x_{ij} = s_i & \textit{for } i = 1, 2 \cdots m \\ & \sum_{i=1}^{m} x_{ij} = d_j & \textit{for } j = 1, 2 \cdots n \\ & x_{ij} \ge 0 & \forall i, j \end{array}$$

Remarks:

 $\sum_{i=1}^{m} s_i = \sum_{j=1}^{n} d_j \text{ is assumed above.}$ If total supply > total demand, then create dummy demand node D_0 with $c_{i0} = 0, i = 1, ..., m$. If total supply < total demand, then create dummy supply node S_0 with $c_{0i} = 0, j = 1, ..., n$.

Assignment Problem

• Assignment Problem

Assignment Problem

$$\begin{array}{ll} \textit{Min} \quad Z = \sum_{i} \sum_{j} c_{ij} x_{ij} \\ \textit{s.t.} \quad \sum_{j=1}^{n} x_{ij} = 1 \qquad \forall i \\ \sum_{i=1}^{m} x_{ij} = 1 \qquad \forall j \\ x_{ij} \geq 0 \qquad \qquad x_{ij} = 1 \text{ or } 0 \end{array}$$

Remarks:

m = n is assumed above.

If m > n, then create dummy node T_0 with $c_{i0} = 0$, i = 1, ..., m. If m < n, then create dummy node A_0 with $c_{0i} = 0$, j = 1, ..., n.

Topics

- Shortest-path problem.
- Minimum spanning tree.
- Maximum flow problem.
- Minimum cost flow problem.

- A cut may be defined as any set of directed arcs containing at least one arc from every directed path from source node to destination node.
- The cut value is the sum of the arc capacity of the cut.
- The theorem says: For any network with a single source node and destination node, the maximum feasible flow from S to D equals the minimum cut value for all cuts of the network.

Maximum Flow Problem (efficient solution method exists)

30 / 45

Optimal Solution

э

The Minimum Cost Flow Problem (very efficient solution method exists)

It encompasses

 TransportationProblem.
 AssignmentProblem.
 Shortest-pathProblem.

4.MaxFlowProblem.

Special case of the minimum cost flow problem

The Minimum Cost Flow Problem

1

- A network of n nodes, at least one source node (supply node) and one destination node (demand node).
- Find x_{ij} =amount of flow through link i → j to minimize the total cost.
- Given

$$c_{ij} = \text{cost per unit flow for link } i
ightarrow j$$

$$\mu_{ij} = capacity of link i
ightarrow j$$

$$b_i$$
 = net flow generated at node i

- $b_i > 0$ if *i* is the source node
- $b_i < 0$ if *i* is the destination node
- $b_i = 0$ if *i* is the transit node

min
$$Z = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

s.t.
$$\sum_{j=1}^{n} x_{ij} - \sum_{j=1}^{n} x_{ji} = b_i \quad \forall i$$
$$0 \le x_{ij} \le u_{ij} \qquad \forall i, j$$

э

< A

- Feasible solution property.
 - A necessary condition for a minimum cost flow problem to have any feasible solution is that $\sum_{i=1}^{n} b_i = 0$ (*i.e.* total supply = total demand). If not, create dummy source or dummy destination node with $c_{ij} = 0$.
- Integer solution property.
 - For minimum cost flow problem when all b_i and u_{ij} are integer, all the feasible solution from simplex method including the optimal x^* have the integer value.

Non-Linear Programming

э

Non-Linear Programming

э

- 4 同 6 4 日 6 4 日 6

Problem	Necessary Condition	Also sufficient if
	for Optimality	
one variable uncon- strained	$\frac{df_0}{dx} = 0$	$f_0(x)$ is concave
Multi-variables unconstrained	$\begin{vmatrix} \frac{df_0}{dx_i} &= 0 & (j &= 1, \cdots, n) \end{vmatrix}$	$f_0(x)$ is concave
General constrained	Karush-Kuhn-	$f_0(x)$ is concave and
problem	Tucker condition	$f_i(x)$ is concave $(i =$
		$1, \cdots, m$

max $f_o(x)$	max $f_o(x)$	$\min f(x) = -f_o(x)$
s.t. $f_i(x) \leq b_i$	s.t. $f_i(x) - b_i \leq 0$	s.t. $g_i(x) \leq 0$
$i=1,\cdots,m$	$i=1,\cdots,m$	$i=1,\cdots,m+r$
$x_j \ge 0$	$-x_j \leq 0$	$x \in \mathbb{R}$
$j=1,\cdots,n$	$j=1,\cdots,n$	

æ

< 17 ▶

• Given a feasible $x^* \in \mathbb{R}^n$, if there exists $\lambda \in \mathbb{R}^m$, with $\lambda \ge 0$, such that

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla g_i(x^*) = 0 \quad (1)$$

and
$$\sum_{i=1}^m \lambda_i g_i(x^*) = 0 \quad (2)$$

- Then x^* is a global optimal solutions for the primal problem.
- $\lambda's$ are the Lagrange multipliers or dual variables.

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x)$$
$$\frac{\partial L}{\partial x_j} = 0 \Rightarrow \frac{\partial f(x)}{\partial x_j} + \sum_{i=1}^{m} \lambda_i \frac{\partial g_i(x)}{\partial x_j} = 0, j = 1, \cdots, n$$
$$\text{In matrix form}$$
$$\nabla f(x) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x) = 0 \text{ (1)}$$

포 제 표

Image: A math a math

Primal problem

$$\begin{array}{ll} \min & f(x) \\ s.t. & g_i(x) \leq 0 \quad i = 1, \cdots, m \\ & x \geq 0 \end{array}$$

• Define
$$\theta(\lambda) = \inf\{x \ge 0 : f(x) + \sum_{i=1}^m \lambda_i g_i(x)\}.$$

• $\theta(\lambda)$ is called the Lagrangian dual function and is obtained by relaxing the constraints $g_i(x) \leq 0, i = 1, \dots, m, \lambda \in \mathbb{R}^m, \lambda \geq 0$.

- $\theta(\lambda)$ is a concave function on $\lambda \in \mathbb{R}^m$, $\lambda \ge 0$.
- If $\lambda \ge 0$, and if x satisfies the constraints of the primal problem, then $\theta(\lambda) \le f(x)$ (weak duality theorem).

Dual problem

- Dual problem $\max_{\lambda \ge 0} \theta(\lambda)$.
- Strong duality theorem: $\theta(\lambda^*) = f(x^*)$.
- In addition, due to (2) of KKT, $\sum_{i=1}^m \lambda_i^* g_i(x^*) = 0.$

• Primal problem

$$\begin{array}{ll} \min & b^T x \\ s.t. & Ax \ge c \\ & x \ge 0 \\ \theta(\lambda) &= \inf\{x \ge 0 : b^T x + \lambda^T (c - Ax)\} \\ &= \inf\{x \ge 0 : (b^T - \lambda^T A)x + \lambda^T c\} \\ &= \begin{cases} \lambda^T c & \text{for } b^T - \lambda^T A \ge 0 \\ -\infty & \text{otherwise} \end{cases}$$

Dual LP Problem

$$\begin{array}{ll} \max_{\lambda \geq 0} & \theta(\lambda) = \max \lambda^T c \\ s.t. & b^T - \lambda^T A \geq 0 \\ & \lambda \geq 0 \end{array}$$

- Weak duality: $\lambda^T c < b^T x$.
- Strong duality: $\lambda^{*T}c = b^T x^*$.
- Complementary slackness:

$$\lambda^{T}(c - Ax^{*}) = 0$$

$$(b^{T} - \lambda^{*T}A)x^{*} = 0$$