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Abstract—Acceleration of the FDTD (finite-difference time-
domain) computation is very important for the electromagnetic
simulations. Conventional FDTD acceleration methods using
multicore CPUs and GPUs have the common problem of memory-
bandwidth limitation due to a large amount of parallel data
access. Although FPGAs have the potential to solve this problem,
very long design, testing and debugging time is required to
implement an architecture successfully. To solve this problem, we
propose an FPGA architecture designed using C-like pro-
gramming language called OpenCL (open computing language).
Therefore, the design time is very small and extensive knowledge
about hardware-design is not required. We implemented the
proposed architecture on an FPGA and achieved over 114
GFLOPS of processing power. We also achieved more than 13
times and 4 times speed-up compared to CPU and GPU
implementations respectively.

Index Terms—OpenCL for FPGA, FDTD, stencil computation,
accelerator.

I. INTRODUCTION

The finite difference time domain (FDTD) method [1] is
widely used in electromagnetic simulations. However, the
computation requires a large amount of processing time. On the
other hand, FDTD computation is a massively parallel
application. Therefore, parallel processing hardware such as
multicore processors, GPUs and FPGAs are already used to
accelerate the FDTD computation. Fig.1 shows the flow-chart
of the FDTD computation. It is an iterative computation
method where external memory is accessed in every iteration.
Therefore, the computation speed is usually decided by the ex-
ternal memory bandwidth. Even many acceleration techniques
such as tiling [2], spatial blocking, temporal blocking [3] have
been proposed, the performance of the multicore CPU and
GPU accelerations are eventually restricted by the memory
bandwidth bottleneck. Compared to CPUs and GPUs, FPGAs
contain a large amount of internal memory and registers.
Therefore, it is possible to utilize those resources to reduce the
external memory access. In fact, works [4], [5] done on other
stencil computations such as Jacobi-method report better
performance compared to GPUs even the external memory
bandwidth of the FPGAs is very low.

There are many FPGA implementations proposed to accel-
erate 2-D and 3-D FDTD computations. The work in [6] uses
parallel processing similar to GPUs to accelerate the FDTD
computation. The works in [7] and [8] propose a pipelined
FPGA architecture to increase the data sharing. Fixed-point
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Fig. 1. Flow-chart of the FDTD computation.

computation is used in [9] and [10] to increase the amount of
parallel processing in FPGAs. However, recent FPGAs contain
enough DSP units (to do floating-point multiplication) so that
floating-point computation is not a problem.

Although the results are promising, FPGA accelerators
are designed using hardware description languages such as
Verilog HDL or VHDL. As a result, the designing, testing and
debugging time is very large. Extensive knowledge about the
hardware design is also required to use FPGAs. Moreover, we
have to re-design the FPGA architecture when an algorithm
change or an update occurs. To overcome these problems,
OpenCL-based FPGA design has been introduced [11]. It is
a complete framework that includes firmware, software and
devise drivers to connect, control and transfer data to and
from the FPGA. It supports different FPGA boards by the
means of a BSP (board support package) that contains pre-
designed hardware controllers and interconnects. Recently,
some works such as [12] and [13] propose OpenCL-based
FPGA accelerators. However, none of those works are about
FDTD computation. One rare attempt in [14] to accelerate
FDTD computation using OpenCL-based design was not that
successful due to very low performance.

In this paper, we propose an OpenCL-based FPGA accelera-
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tor for FDTD computation. The design concept is quite similar
to [4] and [5], where deep-pipelines with few ten thousands
of stages are used to transfer and re-use the computed results
internally without accessing the external memory. Unlike
previous works, both the accelerator and host program are
designed entirely using software. Therefore, the design time
has been reduced to just few hours. Any algorithmic change
could be easily implemented by just changing the software
code. Moreover, the same code can be re-used in OpenCL
capable board so that the proposed method support any future
hardware or software update. In fact, we used almost the
same software code in two different FPGA boards to generate
FDTD accelerators. According to the experimental results, we
easily achieved over 13 times better performance compared to
multicore CPUs and 4 times better performance compared to
GPUs. We also achieved over 58% of the theoretical maximum
performance provided by the FPGA.

II. OPENCL-BASED FPGA ARCHITECTURE FOR FDTD
COMPUTATION

A. OpenCL-based design environment

OpenCL is a framework to write programs to execute across
heterogeneous parallel platforms [15]. Such systems consist of
a host CPU and OpenCL capable devices such as multicore
CPUs, GPUs, FPGAs, etc. Kernels are the functions that are
executed on an OpenCL device. The unit of the concurrent
execution of a kernel is called a work item. OpenCL for
FPGA classifies kernels in to two types, NDrange kernels
and single work item kernels. The processing in the NDrange
kernels are similar to the SIMD processing used by GPUs.
This is very effective when the work items are completely
independent. However, when there are data dependencies,
users have to explicitly insert barriers at different stages to
synchronize. This synchronization mechanism costs a lot of
hardware resources and decreases the performance. Therefore,
it is recommended to use single work item kernels, so that
the barriers are not required. The parallelism is achieved by
designing deep-pipelines with many thousands of stages. The
“#pragma unroll” directive is used to unroll the inner-loops
to avoid pipeline stalls. Conditional branches are processed
in parallel by assigning separate processing elements for all
conditions. This is a major difference compared to CPU or
GPU based implementations.

B. Data dependencies and parallelism in the FDTD compu-
tation

FDTD belongs to the class of stencil computation where
the computation is done in multiple iterations using a grid. To
compute one iteration, the data of its previous iteration are re-
quired. Therefore, the data dependencies exist among multiple
iterations. The electric and magnetic fields computations of 2-
D FDTD are given by Eqs.(1), (2) and (3). As shown in Eqs.(2)
and (3), not only the magnetic field values of the previous
iteration, but also the electric field values of the same iteration
are required for the magnetic field computation. Therefore,

even in the same iteration, magnetic field computation depends
on the data of the electric field computation.
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If we consider one iteration and either electric or magnetic
field, the computations of different cells (grid-points) are
completely independent. Those computations can be done in
parallel and we call it “cell-parallel” computation. There is
another parallelism exists among multiple iterations and we
explain it using Fig.2. For the simplicity, let us consider a
square-shaped 3⇥3 stencil. As shown in Fig.2(a), to compute
CellT+1

1,1 in iteration T + 1, data of its surrounding cells
belongs to iteration T are required. When the computation
of CellT3,2 is in progress in iteration T , all the data required
for the computation of CellT+1

1,1 are available. Therefore, the
computations of CellT3,2 and CellT+1

1,1 are done in parallel. In
the next step in Fig.2(b), computations of CellT4,2 and CellT+1

2,1

are done in parallel. This type of computation is called “cell-
serial iteration-parallel” computation. In order to successfully
implement this method, we have to store the computed data
temperately until those are accessed in the next iteration. The
lifetime of these data are usually not long and we can reuse
the same storage space for different data. Therefore, we need
to store only a small portion of the data belong to an iteration.
However, to compute more iterations in parallel, more storage
space is required.

C. FDTD accelerator architecture using deep-pipelines
Previous works such as [4] and [5] have proposed FPGA

accelerators that use iteration level parallelism for stencil
computations such as Jacobi method. Those accelerators
are designed using hardware description languages such as
Verilog HDL. Therefore, a complete re-design is required
for complex stencil computations such as FDTD, where a
complicated data dependencies and boundary conditions exist
among electric and magnetic field computations. Additional
pipeline registers are required to solve the data dependencies
and conditional branches are required to implement various
boundary conditions. Since FDTD computation parameters,
boundary conditions, required observation points, etc may vary
for different simulations, re-designing the whole accelerator
is required very often. However, this takes a large design,
testing, debugging and compilation time and not practical. In
this paper, we discuss how to design an FDTD accelerator
entirely using software and still achieve good performance.

Fig.3 shows the architecture of the FDTD computation. It
consists of multiple PCMs (pipelined computation modules)
for parallel computation. The computations of one whole
iteration are done in one PCM. The number of PCMs equals
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(a) Computations of CellT3,2 and CellT+1
1,1 are done in parallel.
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(b) Computations of CellT4,2 and CellT+1
2,1 are done in parallel.

Fig. 2. Cell-serial iteration-parallel computation.

to the number of parallel iterations and it is constrained by
the FPGA resources. A PCM consists of shift-register arrays
and multiple PEs (processing elements). The computation of
a cell is done in a PE. Multiple PEs are used to compute
electric and magnetic fields in parallel for different cells in the
same iteration. All PEs are fully pipelined, so that an output
is produced in every clock cycle after the pipeline is filled.
Usually, we can implement over 40 PCMs in an FPGA in
a pipeline, and we call such pipelines as deep-pipelines. Two
shift-register arrays are used per an iteration. One array is used
to carry the electric filed data for magnetic field computation
in the same iteration. Another array is used to carry the results
of one iteration to the next iteration.

We explain the lifetime of the temporary storage on registers
in Fig.4 using an example of 3⇥ 3 stencil. Fig.4(a) shows the
scan order of the grid and Fig.4(b) shows the order of the data
are stored. In each clock cycle, new data are pushed-in while
the oldest data are popped-out from the shift-register array. In
this computation, one data value should remain 2 ⇥ N + 4
clock cycles in the pipeline. That means, we need a shift-
register array of 2 ⇥ N + 4 stages long. The lifetime of the
data depends on the grid size and the shape of the stencil. For
the FDTD computation, the lifetime is N + 3 cycles. PEs can
access any position of the shift registers in parallel. Therefore,
the data are shared among the computations of the cells in the
same iteration.

Fig.5 shows the FDTD computation flow. Initially, the host
computer transfers data to the external memory of the FPGA.
Then, FPGA computes d iterations in parallel and write the
output data to the external memory. The FPGA computation

continues for Max Iterations/d times until all the iterations
are finished. Then the output data are transferred to the host.
In this method, the external memory is accessed only twice for
every d iterations. Compared to that, the conventional method
in Fig.1 accesses the external memory twice in every iteration.
Therefore, the external memory access can be reduced greatly
in the proposed architecture by increasing d.

III. EVALUATION

For the evaluation, we used two FPGA boards; DE5 and
395-D8, four GPUs and two CPUs. FPGAs are configured
using Quartus 15.0 with OpenCL SDK. GPUs are programmed
using CUDA 7.5. CUDA 6.5 is used for the older GTX285
GPU. The operating system is CentOS 6.7. The FDTD com-
putation example uses a 1024⇥ 1024 grid and runs for 15360
iterations. All computations are single precision.

Table I shows the processing time comparison for FPGAs,
GPUs and multicore CPUs. The most straight-forward “cell-
parallel” computation is used in CPUs and GPUs. The process-
ing time of the CPUs and GPUs are decided by the memory
bandwidth. GTX760 GPU that has the largest bandwidth gives
the minimum processing time. The processing time of both
FPGA boards are smaller than that of CPUs and GPUs. The
DE5 FPGA gives 13.19 times and 4.12 times large processing
speed compared to the fastest CPU and GPU implementations
respectively. We achieved such performance using DE5, even
having a 7.5 times smaller memory bandwidth, 11.5 times
smaller peak performance and 3.6 times smaller clock fre-
quency compared to GTX760. Note that, the FDTD accelerator
generated on 395-D8 FPGA board uses two parallel data
streams to double the computations. Since it has a larger
memory bandwidth compared to that of DE5, such parallel
data access is possible.

Fig.6 shows the performance of different devices measured
in GFLOPS. We achieved over 114 GFLOPS and 87 GFLOPS
for DE5 and 395-D8 FPGA boards. Compared to this, we
achieved only 27.7 GFLOPS using GTX760. The reason for
the low performance in GPUs and CPUs is the memory
bandwidth limitation. The performance of 7 years old GTX285
GPU is similar to the performance of 1 year old GTX960
GPU due to the superior memory bandwidth of the older one.
The FPGAs we used are also 6 years old Stratix V devices.
However, the performance are many times better compared to
recently launched GPUs. If we use the very recent Stratix 10
FPGAs that have more than 10 times of resources, we could
expect over 10 times better performance compared to that of
older Stratix V FPGAs.

Fig.7 shows the “effective to peak performance ratio
(EPR)” given by Eq.(4). Although GPUs provide over 2200
GFLOPS of peak performance, only 2% of those are utilized
by the FDTD computation. Compared to that, FPGA in the
DE5 board uses over 58% of its peak performance. This is
because, more parallel computations are implemented on the
FPGA using cell-serial iteration-parallel method. Since the
cells in the same iteration are processed in serial, data are also
accessed in serial from the external memory. This serial data
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Fig. 3. The architecture of the FDTD accelerator that computes d iterations in parallel. PCM is a pipelined computation module.

TABLE I
PROCESSING TIME COMPARISON FOR FPGAS, GPUS AND MULTICORE CPUS.

FPGA GPU CPU
DE5 395-D8 C2075 GTX285 GTX760 GTX960 i7-4960x E5-1650 v3

Number of cores 44 PCMs 24 ⇥ 2 PCMs 448 240 1152 1024 6 (12 threads) 6 (12 threads)
Memory bandwidth (GB/s) 25.6 34.1 150.3 159 192.2 112.1 59.7 68

Peak performance (GFLOPS) 196 1503 1054 1062 2257 2308 47 307
Processing time (s) 1.69 2.20 9.20 10.6 6.97 9.90 26.14 22.30

access reduces the memory bandwidth. The computed results
are stored in the shift-registers and carried to the next PCM
for the computation of the next iteration. Only the data of the
final PCM are written to the external memory. As a result, the
memory bandwidth is not a bottleneck.

EPR =
Actual performance

Peak performance
⇥ 100% (4)

Table II shows the comparison between our proposed ac-
celerator and the one in [10] for 2-D FDTD computation. The
accelerator in [10] is implemented on a similar Stratix V FPGA
using fixed-point arithmetic. According to the results, the
processing speeds are very similar. However, [10] uses 32-bit
fixed-point computation that requires less resources compared
to our single-precision floating-point computation. Moreover,
the proposal in [10] is a custom accelerator designed using
hardware description language. Compared to that, our work
is entirely software designed. This shows that the proposed
OpenCL-based FPGA accelerator is very efficient and almost
as good as a custom designed one. Compared to the other
benefits such as extremely small design time, software based
debugging and software-based updates for algorithm changes,

TABLE II
COMPARISON WITH THE WORK IN [10].

FPGA Performance

Work in [10] Stratix V 5SGSMD5K2F40C2N 119.9 Giga fixed-point
operations per second

This paper Stratix V 5SGXEA7N2F45C2 114.2 GFLOPS

boundary condition changes, etc, the proposed FDTD acceler-
ator has a definite advantage.

IV. CONCLUSION

We proposed an FPGA-based architecture for FDTD com-
putation using OpenCL. The proposed architecture is designed
to utilize the iteration level parallelism instead of the cell
level parallelism to minimize the external memory access.
The architecture contains deep-pipelines to fully utilize the
computation results between iterations without accessing the
external memory. We achieved over 13 times and 4 times larger
processing speed compared to CPU and GPU implementations
respectively. The proposed implementation gives almost the
same performance compared to a custom accelerator designed
using HDL. The proposed architecture is completely designed
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Fig. 5. Flow-chart of the proposed FDTD acceleration using FPGA.

by software using OpenCL. Therefore, the design time is
extremely small compared to that of a custom accelerator.
The same program code can be reused by recompiling it
for any OpenCL capable FPGA board, irrespective of the
FPGA type or I/O resources such as different external memory
specifications, etc.
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