
Architecture of an FPGA Accelerator for
Molecular Dynamics Simulation Using OpenCL
Hasitha Muthumala Waidyasooriya, Masanori Hariyama
Graduate School of Information Sciences, Tohoku University

Aoba 6-6-05, Aramaki, Aoba, Sendai, Miyagi,980-8579, Japan
Email: {hasitha, hariyama}@tohoku.ac.jp

Kota Kasahara
Institute for Protein Research, Osaka University,

3-2 Yamadaoka, Suita-shi, Osaka, 565–0871, Japan
Email: kota.kasahara@protein.osaka-u.ac.jp

Abstract—Molecular dynamics (MD) simulations are very im-
portant to study physical properties of the atoms and molecules.
However, a huge amount of processing time is required to
simulate a few nano-seconds of an actual experiment. Although
the hardware acceleration using FPGAs provides promising
results, huge design time and hardware design skills are required
to implement an accelerator successfully. In this paper, we
propose an FPGA accelerator designed using C-based OpenCL.
We achieved over 4.6 times of speed-up compared to CPU-based
processing, by using only 36% of the Stratix V FPGA resources.
Maximum of 18.4 times speed-up is possible by using 80% of the
FPGA resources.

Index Terms—OpenCL for FPGA, molecular dynamics simu-
lation, hardware acceleration, scientific computing.

I. INTRODUCTION

Molecular dynamics (MD) simulations [1] are very im-
portant in the fields of computational chemistry, materials
science, bio-informatics, etc to study physical properties of
the atoms and molecules. In MD simulations, an actual sys-
tem is modeled at the atomic level and classical physics is
used to simulate the movements of atoms. There are many
publicly available and widely used software packages for MD
simulations such as AMBER [2], Desmond [3], GROMACS
[4], LAMMPS [5], etc. All of those are based on an iterative
computation method, where the computation results of one
iteration are used as the inputs in the next iteration. Each
iteration consists of two major phases: force computation and
motion update as shown in Fig.1. MD simulations require
millions of iterations and a huge amount of processing time on
general purpose CPUs to simulate few nanoseconds of the real
time. Months to years of processing time is spend to find at
least some useful results while simulating an actual laboratory
experiment is not possible even today.

Hardware acceleration is already used to reduce the huge
processing time. ASIC (application specific integrated circuit)
implementations of MD simulation are already proposed in
[6], [7] and [8]. However, designing such special purpose
processors requires years of design, debugging and testing time
and also involves a huge financial cost. Therefore, ASICs are
out-of-reach for most researchers, although their performances
are quite excellent. A cheap way of hardware acceleration
is provided by FPGAs (feild-programmable-gate-arrays) [9]–
[11]. Although the cost is extremely small compared to ASICs,
the design time is still very large. FPGAs are designed

F2

F1 Fk

Force)computation Motion)update

Fig. 1. Molecular dynamics simulation model.

using hardware description language (HDL) so that hardware
design skills and experiences are required for a successful
FPGA implementation. When there are algorithm changes and
hardware updates, it is often required to redesign the whole
FPGA architecture.

To overcome these problems, OpenCL for FPGA has been
introduced [12]. It is a complete framework that includes
firmware, software and device drivers to connect, control and
transfer data to and from the FPGA. It provides a heteroge-
neous system consist of a host CPU and a device which is an
OpenCL capable FPGA. Lightweight tasks can be processed
on the host CPU while the heavyweight tasks can be offloaded
to the FPGA. The host program is written in C code and the
device program is written in OpenCL code [13] which is also
similar to C code. FPGA implementation can be done entirely
using software without requiring a single line of HDL code.
Recently, some works such as [14] and [15] propose FPGA
accelerators using OpenCL.

In this paper, we propose an FPGA Accelerator for MD
simulations using OpenCL. The FPGA design time has been
reduced to just few hours due to software based design.
Any algorithmic change could be easily implemented by just
changing the software code, and the same code can be re-used
in any OpenCL capable FPGA board. Therefore, the proposed
method supports any future hardware or software update. In
this paper, we demonstrate that it is possible to achieve over
4.6 times of speed-up compared to CPU implementation for
the most time consuming non-bonded force computations.
This speed-up is achieved by using only 36 % of the FPGA

978-1-5090-0806-3/16/$31.00 copyright 2016 IEEE
ICIS 2016, June 26-29, 2016, Okayama, Japan

115

Cut$off'distance

Atom

Cell

Fig. 2. Division of the simulation box in to cells.

resources. If we assume a 80% resource usage, we can achieve
a similar speed-up compared to custom FPGA accelerators
designed using HDL. We also highlight the problems of the
FPGA-based heterogeneous systems such as data transfers
between the host and the device and shows some insights to
tackle those problems in future OpenCL capable FPGA-based
systems.

II. MOLECULAR DYNAMICS SIMULATION

As explained in section I, MD simulations are based on
two tasks; force computation and motion update. The force
computation consists of bonded-force and non-bonded force
computations. Bonded forces only affect few neighboring
atoms, and can be computed in O(N) time for N atoms. Non-
bonded forces comprise of van der Waals and electrostatic
forces. Those forces exist between two atoms for all atom-
pairs so that the computation requires O(N2) processing time.
There are several techniques available to reduce the computa-
tion cost and accelerate non-bonded force computation.

MD simulation is done for a box of atoms. To reduce the
computation complexity, the box is divided in to multiple cells.
Fig.2 shows a 2-D representation of the cell division. A cut-off
distance is set between two atoms and the neighboring cell-
pairs within the cut-off distance are extracted to a cell-pair list.
Non-bonded force computation is done for the atoms of the
cell-pairs in the list. As a result, we do not have to consider
all atom-pair combinations for the force computation. Since
the atoms move in the box, the cell-pair list is updated in
each iteration. A periodic boundary condition is used when
an atom leaves the box. We assume that the same box is
replicated at the boundaries so that an atom leaves from the
box reappears from the opposite direction. Using this method,
we can simulate a large system by using only a small number
of atoms.

Even with these techniques, MD simulation takes a huge
amount of processing time. Non-bonded force computation
occupies most of the total processing time. Therefore, we ac-
celerate the Non-bonded force computation using FPGA. The

for(i=0;) i<N;)i++)){
a)=)inA[i])x)inA[i]
b)=)a)6 inB[i]
c)=)b)/)inC[i]
out[i])=)c)+)inD[d])}

x 6 / +inA[4]

inB[3] inC[2]
Out[0]

registers

inD[1]

Fig. 3. Loop-pipelining in OpenCL for FPGA.

FPGA acceleration is based on the MD simulation software
“myPresto/omegagene” [16], [17].

III. MD SIMULATION ACCELERATOR ARCHITECTURE
USING OPENCL

A. Parallel processing using loop-pipelining
OpenCL for FPGA uses pipelines on FPGA to implement

parallel computations. A pipeline contains many computation
stages, and the results of one stage are stored in registers
and used as the inputs of the next stage. The Altera offline
compiler (AOC) reads an OpenCL code and implements
pipelines for the computations inside loops. This is called
“loop-pipelining”. As shown in Fig.3, the computations in a
loop are done sequentially similar to a typical “C program”.
However, for each computation, a pipeline stage is designed.
Parallel processing is executed in all stages for different data.
Since FPGAs have a large number of registers, pipelines with
hundreds of stages can be designed easily.

When there is another loop inside a loop and data dependen-
cies exist between loops, a separate pipeline is implemented
for the inner-loop. Therefore, an iteration of the outer-loop
proceeds only after all the iterations of the inner-loop are
finished. Otherwise, the computation of the outer-loop stalls.
To avoid this, we have to unroll the inner-loops by using more
hardware resources.

B. FPGA architecture using OpenCL
The summery of non-bonded force computation method in

an iteration is shown in Algorithm.1. We use a cell-pair list to
reduce the amount of computations. Since the atoms moves in
each iteration, the atoms in a cell also changes. Therefore,
we have to refresh the cell-pair list in each iteration. The
computation is done in three loops. The outer-loop proceeds
for each cell-pair in the list. In the inner-loops, two atoms from
each cell in the cell-pair are selected to compute non-bonded
forces. As explained in section III-A, this algorithm is not
suitable for OpenCL implementations due to the stalls in the
outer-loops. Moreover, we cannot unroll the inner-loops since
we do not know the loop boundaries. The loop boundaries
are decided by the number of atoms in a cell and it is not a

116

1 refresh cell-pair list
2 Non-bonded force computation (cell-pair list, force)
3 foreach cell-pair in the cell-pair list do
4 CELL1 = cell-pair!cell1;
5 CELL2 = cell-pair!cell2;
6 foreach atom in CELL1 do
7 foreach atom in CELL2 do
8 calculate force between the two atoms;
9 end

10 end
11 end
12 end
13

Algorithm 1: Pseudo code of the non-bonded force compu-
tation method.

constant for all cells. Even for the same cell, the number of
atoms changes in each iteration due their movements.

To solve this problem, we separate the force computation
from the atom-pair selection. We first extract the complete list
of atom-pairs based on the cell-pair list. Then we perform the
force computation for each atom-pair in the list. The atom-
pair-list extraction is just a searching procedure and no heavy
computations are required. On the other hand, force compu-
tation contains many multiplications and divisions. Therefore,
we use the host processor for atom-pair list extraction and
transfer the list data to the FPGA for force calculation. Once
the list is extracted, only a single loop is sufficient for the
force computation of all the atom-pairs in the list. As a result,
AOC can implement loop-pipeling on FPGA to accelerate this
process.

Fig.4 shows the flow-chart of the proposed CPU-FPGA
heterogeneous processing. Bonded-force computation is done
on CPU while non-bonded force computation is done on
FPGA. After computing all the forces, the atom coordinates
are updated considering the motion due to forces. Then a new
atom-pair-list is extracted based on the cell-pair-list. However,
we get two overheads; atom-pair-list data transfer to FPGA
and force data transfer from FPGA. We will further discuss
this problem in the evaluation, and suggest some solutions.

Fig.5 shows the proposed CPU-FPGA heterogeneous pro-
cessing system for molecular dynamic simulations. Fig.5(a)
shows the block diagram of the system architecture. FPGA
board is connected to the CPU through a PCI express bus. The
data are transferred to the DRAM of the FPGA. The computed
force data are written to the DRAM and read by the host CPU.
Fig.5(b) shows a picture of the designed heterogeneous system
that contains a CPU and an FPGA board.

IV. EVALUATION

For the evaluation, we used DE5 board that contains Stratix
V 5SGXEA7N2F45C2 FPGA. The operating system is Cen-
tOS 6.7. The FPGA is configured using Quartus 15.0 with
OpenCL SDK. The molecular dynamics simulation contains
22,795 atoms.

Bonded&force
computation

Non1bonded&
force

computation

Motion&update

Generate&
atom1pair1list&

data&transfer

data&transfer

Executed&for
all&iterations&?

Initialize

Finish
yes

No

Fig. 4. Flow-chart of the CPU-FPGA heterogeneous processing.

TABLE I
FPGA RESOURCE USAGE.

Resource Usage Percentage used (%)
Logic (ALMs) 83,653 35.64

Registers 91,682 9.76
Memory (Mbits) 3.35 6.70

DSPs 49 19.14

TABLE II
COMPARISON OF THE PROCESSING TIME USING THE STRAIGHT FORWARD

METHOD BY USING THE SAME SOFTWARE CODE USED IN CPU
IMPLEMENTATION.

CPU FPGA
Non-bonded force computation 0.68 s 88.03 s

Total computation 0.86 s 88.24 s

Table I shows the FPGA resource utilization details. The
most used resource is ALMs (adaptive logic modules) and
36% of the total ALMs are used for the implementation. From
those resources, around 19% of the resources are used for the
I/O implementations such as PCIe and memory controllers,
etc. As a result, we can increase the parallel processing by 4
times using 80% of the FPGA resources. The measured clock
frequency of the accelerator is 202 MHz.

Table II shows the processing times of one iteration on
CPU and FPGA. According to the results, the non-bonded
force calculation takes 79% of the total CPU processing time.
We implemented the force computation method shown in
Algorithm 1 without any changes on FPGA using OpenCL.
However, the processing time on FPGA is more than 129 times
larger compared to that in CPU. Therefore, just using the same
code on hardware does not provide any acceleration and in fact
increases the processing time.

Table III shows the processing time comparison when

117

DRAM

Pipelined,force,
computation,modulePC

I,E
xp
re
ss

Host
CPU

FPGA,board

(a) System architecture.

FPGA%:%Stratix V%5SGXEA7N2F45C2%

CPU%:%i7%4960x

(b) Implemented system.

Fig. 5. CPU-FPGA heterogeneous processing system for molecular dynamic
simulations.

TABLE III
COMPARISON OF THE PROCESSING TIME USING PROPOSED ATOM-PAIR

LIST BASED IMPLEMENTATION.

CPU FPGA Speed-up
Measured results 0.68 s 0.14 s 4.6

Estimation based on 0.68 s 0.037 s 18.4 (maximum)80% resource usage

the proposed atom-pair list based method is implemented
on FPGA using OpenCL. We achieved a speed-up of 4.6
times compared to CPU implementation. The work in [11]
reports 11.1 times speed-up using a single FPGA, while the
work in [18] reports over 13 times speed-up using multiple
FPGAs. However, direct comparison is difficult since both
CPUs and FPGAs of the previous works are quite different
from what we have used. In our implementation, we used
only 36% of the FPGA resources. If we used upto 80 % of the
FPGA resources, we can theoretically increase the speed-up to
18.4 % if memory bandwidth permits. This evaluation shows
that a considerable speed-up can be achieved using OpenCL
implementation.

Although the processing time is reduced, frequent data
transfers between CPU and FPGA is still a problem. This
problem can be solved by using SoC (system-on-chip) based

OpenCL capable FPGAs, which will be released in near future.
Such a system contains a multicore CPU and an FPGA on the
same chip. Since both host and device are on the same chip,
PCI express based data transfers are no longer required. We
can use on-board data transfers which are much faster. If we
use the shared memory for both host and the device, we can
completely eliminate the data transfers.

V. CONCLUSION

We propose an FPGA Accelerator for MD simulations using
OpenCL. We used an atom-pair list to describe the force
computation using a single loop in OpenCL. This allows AOC
(Altera offline compiler) to automatically generate an efficient
pipelined architecture. We achieved over 4.6 times speed-up
compared to CPU implementation by using only 36% of the
FPGA resources. Maximum of 18.4 times speed-up is possible
by assuming an 80% resource utilization. Such a performance
is similar to an HDL-designed custom accelerator.

Since the proposed architecture is completely designed by
software, the same program code can be reused by recom-
piling it for any OpenCL capable FPGA board. We can
also implement any future algorithm change by just updating
the software and recompiling it by using just few hours
of design time. However, the data transfers between CPU
and FPGA is still a problem. This problem can be solved
by future SoC based FPGA boards that contain a multicore
CPU and an FPGA on he same chip. Therefore, PCI express
based data transfers can be replaced by much faster on-board
data transfers. We may also able to use shared memory to
completely eliminate data transfers.

ACKNOWLEDGMENT

This work is supported by MEXT KAKENHI Grant Num-
ber 15K15958.

REFERENCES

[1] D. C. Rapaport, The art of molecular dynamics simulation. Cambridge
university press, 2004.

[2] D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz,
A. Onufriev, C. Simmerling, B. Wang, and R. J. Woods, “The amber
biomolecular simulation programs,” Journal of computational chemistry,
vol. 26, no. 16, pp. 1668–1688, 2005.

[3] K. J. Bowers, E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. A.
Gregersen, J. L. Klepeis, I. Kolossvary, M. A. Moraes, F. D. Sacerdoti,
et al., “Scalable algorithms for molecular dynamics simulations on com-
modity clusters,” in SC 2006 Conference, Proceedings of the ACM/IEEE,
pp. 43–43, IEEE, 2006.

[4] S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R.
Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, et al., “Gromacs 4.5:
a high-throughput and highly parallel open source molecular simulation
toolkit,” Bioinformatics, vol. 29, no. 7, pp. 845–854, 2013.

[5] S. Plimpton, P. Crozier, and A. Thompson, “LAMMPS-large-scale
atomic/molecular massively parallel simulator,” Sandia National Lab-
oratories, vol. 18, 2007.

[6] T. Narumi, Y. Ohno, N. Okimoto, A. Suenaga, R. Yanai, and M. Taiji,
“A high-speed special-purpose computer for molecular dynamics simu-
lations: MDGRAPE-3,” in NIC Workshop, vol. 34, pp. 29–36, 2006.

[7] D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin, R. H. Larson,
J. K. Salmon, C. Young, B. Batson, K. J. Bowers, J. C. Chao, et al.,
“Anton, a special-purpose machine for molecular dynamics simulation,”
Communications of the ACM, vol. 51, no. 7, pp. 91–97, 2008.

118

[8] D. E. Shaw, J. Grossman, J. A. Bank, B. Batson, J. A. Butts, J. C. Chao,
M. M. Deneroff, R. O. Dror, A. Even, C. H. Fenton, et al., “Anton 2:
raising the bar for performance and programmability in a special-purpose
molecular dynamics supercomputer,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 41–53, IEEE Press, 2014.

[9] E. Cho, A. G. Bourgeois, and F. Tan, “An FPGA design to achieve fast
and accurate results for molecular dynamics simulations,” in Parallel
and Distributed Processing and Applications, pp. 256–267, Springer,
2007.

[10] M. Chiu and M. C. Herbordt, “Molecular dynamics simulations on high-
performance reconfigurable computing systems,” ACM Transactions on
Reconfigurable Technology and Systems (TRETS), vol. 3, no. 4, p. 23,
2010.

[11] M. A. Khan, Scalable molecular dynamics simulation using FPGAs
and multicore processors. PhD thesis, Boston University College of
Engineering, 2013.

[12] “Altera SDK for OpenCL.” https://www.altera.com/products/
design-software/embedded-software-developers/opencl/overview.html,
2016.

[13] “The open standard for parallel programming of heterogeneous systems.”
https://www.khronos.org/opencl/, 2015.

[14] S. Tatsumi, M. Hariyama, M. Miura, K. Ito, and T. Aoki, “OpenCL-
based design of an FPGA accelerator for phase-based correspondence
matching,” in Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA),
p. 90, 2015.

[15] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.-s.
Seo, and Y. Cao, “Throughput-optimized OpenCL-based FPGA accel-
erator for large-scale convolutional neural networks,” in Proceedings of
the 2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, FPGA ’16, pp. 16–25, 2016.

[16] T. Mashimo, Y. Fukunishi, N. Kamiya, Y. Takano, I. Fukuda, and
H. Nakamura, “Molecular dynamics simulations accelerated by GPU
for biological macromolecules with a non-Ewald scheme for electrostatic
interactions,” Journal of chemical theory and computation, vol. 9, no. 12,
pp. 5599–5609, 2013.

[17] “mypresto.” http://presto.protein.osaka-u.ac.jp/myPresto4/index.php?
lang=en, 2015.

[18] S. Kasap and K. Benkrid, “Parallel processor design and implementation
for molecular dynamics simulations on a FPGA-based supercomputer,”
Journal of Computers, vol. 7, no. 6, pp. 1312–1328, 2012.

119

