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Abstract—Latent Dirichlet allocation (LDA) based topic in-
ference is a data classification method, that is used efficiently
for extremely large data sets. However, the processing time
is very large due to the serial computational behavior of the
Markov Chain Monte Carlo method used for the topic inference.
We propose a pipelined hardware architecture and memory
allocation scheme to accelerate LDA using parallel processing.
The proposed architecture is implemented on a reconfigurable
hardware called FPGA (field programmable gate array), using
OpenCL design environment. According to the experimental
results, we achieved maximum speed-up of 2.38 times, while
maintaining the same quality compared to the conventional CPU-
based implementation.

Index Terms—Latent Dirichlet allocation, Gibbs sampling,
data classification, OpenCL for FPGA, machine learning.

I. INTRODUCTION

Recently, big data are obtained in everywhere with the
intention of contributing to the society in terms of decision
making, problem solving, quality improving, etc. However, it
is not possible for human to analyze such an enormous amount
of data to make any meaningful contribution. Therefore, auto-
matic classification of the data in to topics desired by human
is necessary. Latent Dirichlet allocation (LDA) [1] based topic
inference is one of such automatic classification method, that
is used efficiently for extremely large data sets. LDA is used in
many different areas such as image classification [2], customer
data classification [3], etc.

Markov Chain Monte Carlo method (MCMC) [4], [5] is
used for sampling in LDA based topic inference. The MCMC
approach uses previous sample values to randomly generate
the next sample value. Therefore, the processing time increases
in proportion to the number of words, and the total processing
time is very large. The computation is sequential so that it is
difficult to increase the processing speed even using modern
day multicore CPUs.

In this paper, we propose a hardware accelerator for LDA
based topic inference to increase the processing speed. The
proposed accelerator is based on an MCMC method called
Gibbs sampling [6]. We use a pipelined approach to exploit
the time-step level parallelism and to decrease the processing
time. Memory allocation method is proposed to eliminate the
data dependency of the variables and to design a pipelined

accelerator. We use a field programmable gate array (FPGA)
to implement the proposed accelerator. FPGA is an integrated
circuit that users can reconfigure the circuit design, after
manufacturing. OpenCL (Open Computing Language) based
FPGA accelerator design method [7] is used for the proposed
implementation. According to the results, the processing speed
of the proposed accelerator is 2.38 times and the quality of
the results is the same, compared to those of the LDA-based
topic inference on a CPU. Much larger speed-up could be
achieved by using an advanced FPGA board with a larger
memory bandwidth.

II. LATENT DIRICHLET ALLOCATION

Latent Dirichlet allocation (LDA) [1] is a generative statis-
tical model that allows sets of observations to be explained by
unobserved groups. For example, if observations are words in
documents, each document is a mixture of a small number of
topics. Variables in this topic model are as follows.

✓d The topic distribution in document d.
�k The word distribution in topic k.
wi The ith word.
di The document of ith word.
zi The topic of ith word.
K The number of topics.
D The number of documents.
L The total number of words.
W The number of vocabulary words.

The process of generation is as follows.
1) Choose ✓d ⇠ Dir(↵) for each document.
2) Choose �k ⇠ Dir(�) for each topic.
3) For each ith word in w = {w1, ..., wL}

(a) Choose zi ⇠ Cat(✓di).
(b) Choose wi ⇠ Cat(�zi).

The Dirichlet distribution with parameter ↵ is denoted by
Dir(↵), and the categorical distribution with parameter ✓d is
denoted by Cat(✓d).

We can estimate ✓ and � if we can calculate the condi-
tional probability P (z|w) of the topic assignment zi of word
w = {w1, ..., wL}. However, It is difficult to calculate this con-
ditional probability directly. We use collapsed Gibbs sampling
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(CGS) method [8] to generate this conditional probability.
Eq.(1) is the conditional distribution of zi. The ¬i notation
of a variable indicate that it does not contain the current topic
assignment of wi.

nwk The number of word w of topic k.
nk The number of words of topic k.
ndk The number of words of topic k in the document d.

P (zi = k|z�i,w) /
n�i

wk + �

n�i
k + W�

n�i
dk + ↵ (1)

Samples of topic assignment are given by the following
process.

Step1: Assign a topic randomly to each word.
Step2: For all words, update the topic assignments based on

Eq.(1).
Step3: Repeat Step2 for N times.

III. FPGA IMPLEMENTATION

A. OpenCL for FPGA

OpenCL is a framework to write programs to execute across
heterogeneous parallel platforms [9]. It views a system as a
number of computing devices (OpenCL devices) connected
to a host. The host is usually a CPU while the devices
can be any of OpenCL capable CPUs, GPUs, FPGAs, etc.
The OpenCL for FPGA compiler is called “offline compiler”.
Loops in a device code are implemented as pipelines on
FPGA for parallel processing. Fig.1 show a loop that contains
four kinds of operations, load, addition, subtraction and store.
When this code is implemented on an FPGA, functional units
are generated for computations, while registers are placed in
between two functional units to hold result of the previous
operation. Fig.2 shows the time-chart of pipeline processing.
In the clock cycle t0, A[0] and B[0] are loaded. In the clock
cycle t1, the addition operation for A[0] and B[0] is done and
A[1] and B[1] are loaded simultaneously. In the clock cycle
t2, the subtraction operation is also done, after the clock cycle
t3, all four operations are done simultaneously for different
data.

OpenCL based FPGA design uses a hierarchical memory
structure that consists of global, constant, local and private
memories. The global memory is the largest memory and it is
place outside the FPGA. Therefore, we also call it the external
memory. The latency of the global memory could be large as
few hundred cycles. The memory access throughput can be
changed due to the access patterns such as sequential, random,
etc. The throughput of the global memory is usually large for
read only or write only access, compared to read-write access.
The local and private memories are implemented using block
RAMs and registers inside the FPGA chip. As a result, the
latency is very small and does not change with the memory
access patterns. However, the memory size is extremely small.
The constant memory is initialized on the global memory,
but downloaded later to the local memory when the circuit
is executed on the FPGA.

for(i=0;	I<n;	 i++)
{

C	=	A[i]	+	B[i];
E[i]	=	C	– D[i];

}

Load
A[i]

+

Load
B[i]

Load
D[i]

Store
E[i]

-
registersAlgorithm

Datapath

Fig. 1. Loop pipelining in OpenCL for FPGA.

i =	0 Load	A[0]
Load	B[0]

C	=	A	+	B
Load	D[0] E	=	C	- D Store	E[0]

i	=	1 Load	A[1]
Load	B[1]

C	=	A	+	B
Load	D[1] E	=	C	- D Store	E[1]

i	=	2 Load	A[2]
Load	B[2]

C	=	A	+	B
Load	D[2] E	=	C	- D Store	E[2]

i	=	3 Load	A[3]
Load	B[3]

C	=	A	+	B
Load	D[3] E	=	C	- D Store	E[3]

!" !# !$ !$ !% !& !'
Time	in	clock	cycles

Fig. 2. Time chart of the computation in Fig.1.

for (int i = 0; i < L; i++)
{
ushort w = word[i]
ushort d = doc[i];

old_topic = the topic of word w that belongs to
the document d

numWK[w][old_topic]--;
numDK[d][old_topic]--;
numK[old_topic]--;

for (int k = 0; k < K; k++)
{

p[k] = (numDK[d][k]+alpha) *
(numWK[w][k]+beta)/(numK[k] + sum_beta);

if (k != 0)
p[k] += p[k - 1];

}

//determine the new topic;
...

numWK[w][new_topic]++;
numDK[d][new_topic]++;
numK[new_topic]++;

}

Listing 1. Computation of loop 2 of Fig.3.
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loop	1
(number	of	iterations)

START

loop	2
(number	of	words)

Remove	old	topic

Calculate	cumulative	
probability	distribution

Determine	new	topic

Add	new	topic

loop	2

loop	1

END

Assign	a	topic	 randomly
to	each	word

Fig. 3. Tasks of the collapsed Gibbs sampling.

B. FPGA Implementation of collapsed Gibbs sampling (CGS)

Fig.3 shows the tasks of the conventional CGS algorithm.
The random topic assignment is done only once and the topics
are allocated after computing the probabilistic distribution. The
topic allocation is done for all words and for many iterations.
Computation of the two loops in Fig.3 requires the most
processing time. Therefore, we allocated these two loops to
the FPGA and the initial random topic assignment to the CPU.

Listing 1 shows the computation of loop 2 in Fig.3. Loop
2 runs for L iterations to infer topics for all words. All words
are stored in word array, while the document number of each
word is stored in doc array. The arrays numWK, numDK and
numK are corresponds to nwk, ndk and nk in Eq.(1) explained
in section II. The number of vocabulary word w of each
documents that are assign to topic k is stored in numWK,
while the number of documents that the vocabulary word w is
assigned to topic k is stored in numDK. Since there are many
documents and each document contains many words, the sizes
of word, doc, numWK and numDK arrays are larger than the
size of the local memory in FPGA. Therefore, they should be

stored in the global memory of the FPGA board. The number
of words of topics k is stored in numK. When the number of
topics are small, the size of numK array is also small and we
can store it in the local (or private) memory of the FPGA.

Fig.4 shows the FPGA architecture based on the conven-
tional CGS algorithm. In loop 2, a word from the word array,
and its appropriate elements from numWK and numDK arrays
are accessed form the global memory. The array numK is
transferred from the global memory to the private memory at
the beginning of the computation. Therefore, it is accessed
from the private memory. After computing a new topic in
FPGA, the numWK and numDK arrays are updated and write
back to the global memory. The next word is accessed only
after the updated values are stored in the global memory.
If the next word is accessed before the updated values are
stored and the next word is also the same as the previous
word with the same topic, we may load the previous values of
numWK array. Similarly, if the next word belongs to the same
document and have the same topic, we may load the previous
values of numDK array. This leads to incorrect results. As
explained in section III-A, the latency of the global memory
access is very large and changes according to the memory
access pattern. Therefore, we cannot determine the latency of
the global memory access. As a result, offline compiler cannot
implement pipelines for loop 2, and the topic assignment is
done for each word after the topic assignment of its previous
word is completed. Such serial processing does not increase
the processing speed.

To increase the processing speed, we have to implement
pipelines for loop 2. For this purpose we propose a memory
allocation scheme to remove the data dependency of the
memory access. We allocate all words in to small sets, where
two words wx and wy in the same set must be different
(wx 6= wy) and also belongs to different documents (dx 6= dy).
Fig.5 shows the memory allocation of the word and doc
arrays. All the words in the same set are different, and belongs

numWK numDK

Probability	distribution	
computation	module

Topic		update	module

word

_numK

Co
nt
ro
l	c
irc
ui
t

Global	memory

FPGA	chip
FPGA	board

Private	memory

numK doc

Fig. 4. FPGA architecture based on conventional CGS algorithm.
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Address word[	i ] doc[i]
0x0000 1 1
0x0001 2 2
0x0002 4 3
0x0003 5 4
0x0004 8 5

… … …
… 2 1
… 3 2
… … …

Fig. 5. Memory allocation of word array and doc array.

Address numWK[	word	][ topic	]

0x0000 word :	1
topic	:	1

word	: 1
topic	:	2

… word	: 1
topic	:	16

0x0001 word	:	2
topic	:	1

word :	2
topic	:	2

… word :	2
topic	:	16

… … … … …

32	bytes

Fig. 6. Memory allocation of numWK array.

to different documents. The allocation of words to sets is done
on CPU, and the processing time required for this task is
negligible compared to that of the whole computation.

Fig.6 shows the memory allocation of the array numWK.
The allocation of the array numDK is also done similarly. The
data belongs to all topics for a vocabulary word are allocated
to consecutive memory locations, where each entry occupy 2
bytes. For 16 topics, each array entry of a word is 32 bytes
long.

Listing 2 shows an extract of the OpenCL kernel code of
the proposed accelerator architecture. Due to the serial nature
of the CGS algorithm, we use single work-item kernel to
implement the FPGA accelerator. Loop 2 is divided into two
loops, one for the number of sets and the other is for the
number of words in a set. The number of topics K = 16.
For each word, we copy the data of all topics from the global
memory to the private memory. The computation is done using
the data of the private memory. The cumulative probability
distribution is computed in parallel using loop unrolling. After
the new topic is determined, the private memory and then the
global memory are updated. However, the updated data are
not required for the computation of any words in the same set.
We use the directive #pragma ivdep to instruct the offline
compiler that there is no data dependency between different
words in the same set. As a result, offline compiler implement
piplines for the innermost loop.

__kernel void cgs(
global ushort* restrict word,
global ushort* restrict doc,
global ushort16* restrict numWK,
global uint* restrict numDK,
global ushort16* restrict numK,
global uint* restrict pos_set_div,
... )

{
...
for(int i = 0; i < iteration; i++) {

for(int y = 0; y < num_sets; y++) {
uint start = pos_set_div[y];
uint end = pos_set_div[y+1];

#pragma ivdep
for(int x = start; x < end; x++) {
ushort w = word[x]
ushort d = doc[x];

old_topic = the topic of w in set y,
which belongs to the document d

ushort16_u _numWK, _numDK;
_numWK.allTopics = numWK[w];
_numDK.allTopics = numDK[d];

#pragma unroll 16
for(int k = 0; k < K; k++) {
if(k == old_topic)

p[k] = (_numDK.topic[k]-1 + alpha) *
(_numWK.topic[k]-1 + beta) /
(_numK[k]-1 + sum_beta);

else
p[k] = (_numDK.topic[k] + alpha) *
(_numWK.topic[k] + beta) /
(_numK[k] + sum_beta);

}

#pragma unroll
for(int k = 1; k < K; k++)
p[k] += p[k - 1];

//determine the new topic;
...

_numWK.topic[old_topic]--;
_numDK.topic[old_topic]--;

_numWK.topic[new_topic]++;
_numDK.topic[new_topic]++;

numWK[w] = _numWK.allTopics;
numDK[d] = _numDK.allTopics;

...
}

}

for(int k = 0; k < K; k++)
numK[k] = 0;

for(int i = 0; i < L; i++) {
toic = the topic of word[i]
numK[topic]++;

}
}

}

Listing 2. Extract of the OpenCL kernel that implements the proposed
accelerator architecture.
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Topic		update	module
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FPGA	chip
FPGA	board
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_numWK _numDK

wordnumKnumDKnumWK doc

Fig. 7. FPGA architecture based on the proposed memory allocation method.

Word	1	(S1)

Word	2	(S1)

Word	k1	(S1)

Word	1	(S2)

Word	2	(S2)

Word	k2	(S2)

Word	1	(S1)

Word	2	(S1)

Word	k1	(S1)

Iteration	1
set	1

Iteration	1
set	2

Iteration	2
set	1

Fig. 8. Time chart of the computation.

Fig.7 shows the expected accelerator architecture that would
be generated by compiling the OpenCL code. All the arrays
are initially stored in the global memory. At the beginning
of the computation, array numK is transferred to the private
memory. For each word, the required elements in numWK
and numDK arrays are transferred to the private memory. The
data in the private memory are used for the computation. The
updated data are written back to the global memory while an
another word of the same set is processed. The time chart
of the computation is shown in Fig.8. For the same set, the
topic inference is done in a pipelined manner where a topic
is inferred in every clock cycle. All sets are processed one-
by-one in the same pipeline. This process is repeated for all
iterations.

IV. EVALUATION

We evaluate the proposed FPGA accelerator for CGS in
terms of the inference quality and the processing time. We
use two data sets “NIPS” and “KOS” that are available online
[10]. Details of the data sets are given in Table I. Training
data set has 90% of the total words and the test data set has
the remaining 10%. We use the Terasic DE5-Net board [11]
that has Intel Stratix V FPGA. Kernel codes are compiled
using Intel FPGA SDK for OpenCL Version 16.1. For the
comparison with the conventional CPU-based implementation,
we use a workstation that has Intel Core i7-4930K CPU
and 16GB memory. The conventional CGS algorithm for

TABLE I
DATASETS FOR THE EXPERIMENTS.

Dataset D L W
NIPS 1,500 1,932,365 12,419
KOS 3,430 467,714 6,906
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(a) Perplexity of the NIPS data set.
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(b) Perplexity of the KOS data set.

Fig. 9. Comparison of the perplexity against CPU implementation.

topic inference is written in C-language, and compiled using
Microsoft visual studio C-compiler with relevant optimization
options.

We measure the inference quality using perplexity. Perplex-
ity [12] is defined by Eqs.(2), (3) and (4) for the test data
set x. The value of nd is the number of words in document
d. Values of nwk, nk, ndk and nd are obtained by sampling
training data. The number of sampling attempts is given by S.

Perplexity(x) = exp(
1

Nx

X

i

p(xi)) (2)
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Fig. 10. Processing time comparison against CPU implementation.

p(xi) =
1

S

X

s

X

k

✓s
kdi

�s
xik (3)

✓s
kd =

ns
dk + ↵

ns
d + K↵

, �s
wk =

ns
wk + �

ns
k + W�

(4)

We set the parameters ↵ = 50/K, � = 0.1, N = 500,
and S = 10. The burn-in period is 200 iterations. Fig.9
shows the comparison of perplexity of the proposed FPGA
accelerator and the conventional CGS implementation on the
CPU. Figs.9(a) and 9(b) shows the perplexity when using NIPS
and KOS data sets respectively. There is no difference between
the proposed and the conventional implementation in terms of
perplexity. It shows that the inference quality of our FPGA
accelerator is almost the same as that of the conventional CPU-
based implementation.

We measure the processing time of the topic inference using
training data. Fig.10 shows the processing time of the proposed

FPGA accelerator and the conventional CGS implementation
on the CPU. The processing time using NIPS and KOS
data sets are given by Figs.10(a) and 10(b) respectively.
The processing time of the proposed FPGA accelerator is
approximately 50% of that of the conventional method for
different K values. Note that, K is the number of topics. The
maximum speed-up is 2.38 times.

V. CONCLUSION

We proposed a pipelined FPGA accelerator for LDA-based
inference. We divide the words in to small sets, and allocate
words in such a way that the same memory location is not
accessed for the computation of two words in the same set.
As a result, we were able to fully pipeline the computation
of a set to achieve time-step level parallelism. Moreover,
the quality of the results is the same, since word-by-word
topic inference behavior of the CGS algorithm is preserved
in the proposed method. However, the required data access
throughput exceeds the bandwidth of the DE5 FPGA board, so
that the memory access stall rate is reasonably large. Using an
FPGA board with a larger memory bandwidth, or compressing
the global memory data may solve this problem and increase
the processing speed further.
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