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Abstract: Succinct data structures are introduced to efficiently
solve a given problem while representing the data using as lit-
tle space as possible. However, the full potential of the succinct
data structures has not been utilized in software-based imple-
mentations due to the large storage size and the memory access
bottleneck. This paper proposes a hardware-oriented data com-
pression method based on clustering of blocks. We use a parallel
processing architecture to reduce the decompression overhead.
According to the evaluation, we achieve 73% and 27% of stor-
age size and memory access reductions respectively.
Keywords: Succinct data structures, data compression, text-search,
FPGA, big-data.

I. Introduction

Succinct data structures are introduced in [1, 2] to efficient-
ly solve a given problem while representing the data using
as little space as possible. In early days, succinct data struc-
tures were not popular and not practically beneficial due to
the lack of large storage devices and no demand for big-data
processing. However, recent developments in big-data pro-
cessing and large storage devices have re-focused the atten-
tion to succinct data structures. When using succinct data
structures, we can compute most operations in constant time,
irrespective of the data size. That means, the benefits of suc-
cinct data structures increase with the data size, which is the
ideal situation for big-data applications. Moreover, succinct
data structures can be used in many fields such as data mining
[3, 4], information retrieval [5, 6], graph processing [7, 8],
bio-informatics [9, 10], etc. The storage space required by
the succinct data structures is close to the information theo-
retic lower bound. In many cases, the storage space grows
linearly (O(n) storage space for n bits of data) with the data
size, so that they can be used in practical applications.
The two main operations of the succinct data structures are
called rank and select. The operation rankq(B, x) return-
s the number of “q”s from a data set B up to the index x.
The operation selectq(B, x) returns the index, where the xth

“symbol q” exists in B. The symbol q could be a number,
a character, a bit, a byte, etc, and the data set B contain-
s many such symbols. The main difference of the succinct
data structures compared to the traditional compressed da-

ta structures, is related to the processing time. In traditional
compressed data structures, the operations need not be sup-
ported efficiently, so that the processing time of the oper-
ations increases with the data size. However, in succinc-
t data structures, the operations are supported efficiently so
that the processing times required for the rank and select
operations are independent of the data size. Since the oth-
er operations on succinct data structures are defined by a
combination of rank and select operations, their process-
ing times are also independent of the data size. This inter-
esting behavior has attracted by the recent big-data applica-
tions. Note that, the processing time mentioned here is the
time required to do a particular operation and not the total
processing time of an application. Examples of succinct data
structures are “level-order unary degree sequence (LOUD-
S)” [2], “balanced parentheses” [11], “depth first unary de-
gree sequence (DFUDS)” [12], etc. However, to compute
rank or select in constant time, the implementation of the
data structure must be efficient. Depending on the imple-
mentation, we may require additional storage or additional
processing time. The main problem of the implementation is
to minimize the additional data overhead while minimizing
the processing time required to compute rank and select.
Although the processing time using many succinct data struc-
tures is a constant, this constant could take any value such as
few clock cycles or thousands of clock cycles, depending on
the implementation. Similarly, the actual storage size can
be many times larger than the original data size. Although
the data compression is a promising way to solve these prob-
lems, the decompression overhead of such a large amount of
data could be huge so that the decompression is impractical.
Due to such limitations, the full potential of the succinct data
structures has not been exploited in software-based applica-
tions that use general purpose CPUs.
On the other hand, hardware-based implementations have a
huge potential to get the maximum benefits from the succinct
data structures. Parallel processing can be used not only to
increase the processing speed, but also to handle compressed
data efficiently. We propose a hardware-oriented succinc-
t data structure where the data are compressed to reduce the
storage space and data access time. The proposed method is
based on block-based compression where a given data set is
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Position 1 2 3 4 5 6 7 8 9 10 11 12
Symbol A B B A B A C A C C C B

(a) A text data set.

Position rank_A rank_B rank_C
1 1 0 0
2 1 1 0
3 1 2 0
… … … …
11 4 3 4
12 4 4 4

(b) rank result table.

Figure. 1: rank operation on a text data set.

divided in to blocks. Usually, different blocks have different
compression ratios. Since the hardware is designed consid-
ering the worst case, the data compression is restricted by the
least compressible block. This has been the main problem in
our previous works in [13] and [14]. To solve this problem,
we proposed a compression method based on block cluster-
ing in [15]. The proposed method assigns the blocks in to
clusters in such a way that we can achieve a near-uniform
compression among all blocks. Therefore, the worst case im-
proves and gets closer to the average case.
This paper is as extension of the work done in [15]. We ex-
tend the idea of compression based on block clustering to be
used in different data sets that have different sizes of alpha-
bets. We propose two compression methods for the data sets
with small and large alphabets. We performed experiments
on different data samples to evaluate the proposed methods
in terms of data compression and memory access using an
FPGA (Field programmable gate array) based hardware plat-
form. Note that, an FPGA is a reconfigurable LSI that con-
tains millions of programmable logic gates [16]. According
to the evaluation, we were able to reduce the storage size by
over 73% compared to the conventional methods. Moreover,
by compressing data, we can reduce the memory access time
by over 27%.

II. Related works

In this paper, we consider succinct data structures for text
processing, such as text search and statistical analysis. One
of the most popular text search method is based on FM-index
[17]. It is widely used in genome sequence alignment [9, 18]
which is also a text search. In this method, the Burrows-
Wheeler (BW) transform [19] is applied to text data. The
rank operation is mainly used for text search and statistical
data analysis. The details of text search is discussed in [17]
or our previous work in [13]. Figure 1 shows an example
of the rank operation. Figure 1(a) is the text data set and
figure 1(b) is the rank result table. The succinct implemen-
tation of the rank operation is important for text processing
applications.

A. Implementations of succinct data structures on CPUs us-
ing software

In this section, we discuss the implementation of succinct
data structures on general purpose processor based system-
s using software. A method to compute rank in a constant
time is proposed in the initial work of succinct data struc-
tures [2]. In this proposal, a two-level block structure is built
for a given binary sequence B[0, n − 1] of size n. The first
level contains large blocks of size log2n × log2n. For each
large block, the rank of the first entry is stored in a sepa-
rate array. This requires n/log2n storage size. Each large
block is divided in to small blocks of size 1

2 log2n. There-
fore, each large block contains 2log2n small blocks. Within
a large block, another array is used to store the rank of the
first entry of all small blocks. For all large blocks, this array
requires 4nlog2(log2n)/log2n bits. A look-up table is used
to store the answer to every possible rank on a bit string of
size 1

2 log2n. It requires 2
1
2 log2n× 1

2 log2n×log2( 1
2 log2n) bit-

s. All arrays and tables can be implemented using O(n) bits,
and it supports rank operation in a constant time. Please re-
fer [2] and [15] for more details. Since we use many arrays
and tables, this method needs multiple (although a constant
number of) memory reads to compute rank. Another pop-
ular method is proposed in [20] and often called “RRR” en-
coding. This method is originally introduced for a bit vector.
Similar to [2], a two level block structure is used. The small
blocks are classified in to different classes according to the
number of ones (or zeroes) in their bit vector. For each class,
a separate table of rank results at each bit index is stored.
In the small blocks, the class number and a pointer to the
bit index are stored. The rank operation is done by adding
the global rank from the large block and the local rank from
the table entry which is find easily by referring the pointers
stored in the small blocks. Although these methods are ini-
tially proposed for bit vectors, they are later extended to be
used with multi-bit words.
These methods are mainly used in software that use gener-
al purpose CPUs. They require multiple memory access-
es when the data size increases. As a result, the perfor-
mances are often limited by the memory bandwidth as shown
in many applications such as genome sequence alignmen-
t [9, 18]. One promising way of reducing the storage and
memory access is data compression. However, this is not
an effective solution for software, since the decompression
is complicated and time consuming. However, this problem
can be solved by hardware. Parallel processing in hardware
can be used to decrease the decompression overhead greatly.
In this paper, we propose a succinct data structure that can be
decompressed easily using hardware.

B. Implementation of succinct data structures on hardware

Hardware-based succinct data structures are already used in
text search [14, 15] and genome sequence alignment [18, 21],
which is basically a text search. Succinct data structures
allow efficient search operations on genome data that con-
tain only four symbols. The implementation methods used
in those works are based on a two-level block structure as
shown in figure 2. The text data set is divided into equal sized
blocks. The first level consists of an array of rank compu-
tation results where each result corresponds to the first entry
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A:1,%B:0,%C:0

A B B A B A C A

A:2,%B:3,%C:0 A:4,%B:3,%C:2

C C C B

Level%1
(rank of% the%1st
entry%of%a%block)

Level%2
(Same%as%the%
text%data) Block%size%=%Memory%word%size

Figure. 2: Succinct data structure implementation on hard-
ware.

of each block. The second level consists of multiple block-
s, where each block contains fixed amount of words from
the text. A popcount (population count) module is used to
count the number of appearance of each symbol in the al-
phabet. The rank operation is done by adding the popcoun-
t value of a block in level two to the corresponding rank
computation result in level one. For example, to calculate
rankC(Data set, 7), we access the second block from lev-
el two since the seventh word is stored there. We count the
number ofC symbols up to the third position and add it to the
second entry of the level one. Since, the number of C sym-
bols in the second entry is zero, rankC(Data set, 7) equals
to one.
The storage size is calculated as follows. We consider a data
set of N words with an alphabet of A symbols. To store a
word, dlog2(A)e bits are required. The block size is given
by Bsize. Note that, Bsize is a given constraint usually de-
cided by the hardware. Each block contains P words, where
P equals Bsize/dlog2(A)e. The number of blocks required
equals dN/P e. The storage size of level two data (SizeL2)
is given by Eq.(1).

SizeL2 = dN/P e ×Bsize (1)

Defining an alphabet A as {A0, A1, ...}, the number of bits
required to store the number of Ai (symbol count) is denoted
by (nA)i. The number of bits required to store all symbol
counts in the alphabet is given by Σ(nA)i bits. This equals
to the storage size of a rank operation result. Since we store
only the first rank result of a block, the storage size of the
data in level one can be determined by Eq.(2).

SizeL1 = dN/P e × Σ(nA)i (2)

Data compression can be used in hardware effectively to re-
duce the storage size while applying parallel processing to
reduce the data decompression time. In our earlier works,
we used word-pair encoding [13] to compress the data. Note
that, although this method is very similar to the byte-pair en-
coding (BPE) [22], a pair can have any number of bits unlike
8 bits in BPE. Figure 3 shows an example of the word-pair
encoding. The data set is shown in figure 3(a). In this data
set, the most common word-pair is replaced by a new word
that has not been used before. After replacing the word pair,
the next most common word pair is searched and replaced
by a new word. This process continues until the end of all
available symbols. Figure 3(b) shows the compressed da-
ta set. We replaced the word pairs “c,o” and “a,n” by new
words “X” and “Y” respectively. In this example, we assume
that we can use an alphabet of 16 symbols. Therefore, each
symbol is represented by 4 bits. The 112-bit data set is com-
pressed to 84 bits, where the compressed one contains 21

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Symbol c o c o n u t ̺ a n d ̺ b a n a n a ̺ c o o k i e s . ̺

(a) Data set. Total size = 28 symbols × 4 bits = 112 bits

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Symbol X X n u t ̺ Y d ̺ b Y Y a ̺ X o k i e s . ̺

Dictionary : co ← X, an ← Y 

̺h

(b) Compressed data set after word-pair encoding. Total size =
22 symbols × 4 bits = 88 bits

Figure. 3: Word pair encoding (WPE).

Block 1

Position 1 2 3 4 5 6

Symbol c o c o n u

Block 2

1 2 3 4 5 6

t ̺ a n d ̺

Block 3

1 2 3 4 5 6

b a n a n a

Block 4

1 2 3 4 5 6

̺ c o o k i

Block 5

1 2 3 4 5 6

e s . ̺

(a) Data sequence divided in to blocks.

Block 1

Position 1 2 3 4

Symbol X X n u

Block 2

1 2 3 4 5

t ̺ Y d ̺ 

Block 3

1 2 3 4

b Y Y a

Block 4

1 2 3 4 5

̺ ̺X o k i

Block 5

1 2 3 4

e s .

Dictionary : co ← X, an ← Y 

(b) Compressed sequence after word-pair encoding. Total size = 5
blocks × 5 symbols × 4 bits = 100 bits

Figure. 4: Block based compression used in [14]. Differen-
t blocks have different compression ratio. Hardware is de-
signed for the worst compression ratio.

words. Note that, the space (indicted by “ ”) is also consid-
ered as a symbol. The compression ratio is 1.33 as calculated
according to Eq.(3). In WPE, we have to store the dictionary
data which also require storage space.

compression ratio =
Uncompressed size

Compressed size
(3)

The advantage of WPE is that we can decompress from any
position. However, it has a major disadvantage when access-
ing a particular data value from the memory. As shown in
figure 3, the compression is not uniform in every parts of the
data set. That is, some parts are heavily compressed while
some other parts are not compressed at all. Therefore, we
cannot find a direct relationship between the position of the
initial data set and the memory address of the correspond-
ing compressed data are stored. In order to find a particular
data value, either we have to decompress the whole com-
pressed data, or we have to maintain a separate index that
gives the corresponding positions the words in the original
and the compressed data sets. Neither of these methods are
efficient.
To solve this problem, we have considered a block-based
compression in [14]. Figure 4 gives an example of this
method. As shown in figure 4(a), the data set is divided in
to multiple blocks of the same size. Then, each block is
compressed using WPE as shown in figure 4(b). Now, every
block is directly corresponds to its compressed block. For
example, the third symbol in the block 3 (that is the symbol
“n”), is found in the compressed block 3. Due to the com-
pression, the position of a symbol inside a block has been
changed. Therefore, we have to decompress the whole block
to find a symbol. However, this decompression overhead is
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very small compared to the overhead required to decompress
the whole compressed data set. As shown in figure 4, some
blocks are easy to compress while the others are difficult. As
a result, the compressed data set contains blocks of differ-
ent sizes. To store these blocks in the memory, we have to
consider a constant block size. If we store the blocks with
variable sizes, we need additional information such as the
block sizes, memory address of each block, etc to access the
correct block. Therefore, we chose the largest block size as
the constant block size and allocate the same memory capac-
ity for every block, irrespective of their sizes. As a result,
although the data are compressed, the compression ratio is
small compared to the previous method shown in figure 3.
As shown in the above example, hardware are designed for
the worst case where the least compressed block is importan-
t. On the other hand, the software are designed for the aver-
age case, where the average compression ratio is important.
Therefore, to increase the compression ratio in hardware, we
have to improve the worst case. In text processing, we often
use BW transformed data for text search. Some parts of the
BW transformed text contain repeated symbols, while some
other parts have different symbols. As a result, it is much
harder to achieve a near-uniform compression for BW trans-
formed text. Therefore, providing an efficient solution to this
problem is necessary to achieve a good hardware implemen-
tation.

III. Hardware-oriented compressed succinct
data structure based on clustering of blocks

In this section, we propose a compressed succinct data struc-
ture for hardware. Figure 5 shows the basic hardware struc-
ture that consists of a computational module, a memory con-
troller and memory modules. The computation module ac-
cesses the memory through the memory controller. When
we talk about memory access, we mean the memory con-
troller access while the memory controller takes care of the
memory access. In this paper, we use the word memory ac-
cess instead of memory controller access. The number of
bits accessed in one clock cycle is decided by the memory
controller bus width. As shown in figure 5, Dlength bits can
be accessed in one clock cycle. In succinct data structures,
if the block size is smaller than or equals to Dlength, one
memory access is enough to access the data. Otherwise, we
need multiple memory accesses which increase the process-
ing time. In the proposed compressed succinct data structure,
we consider not only reducing the data size, but also reducing
the memory access.
The proposed data structure also uses the same two level
block structure explained in section II-B. According to the
type of the data, we classify the proposed data compression
in to the following two methods.

• Word vector compression.

• Bit vector compression.

The first method is suitable for data sets with small alpha-
bets, such as genome data (which has only four symbols in
the alphabet), small-range temperature data etc. According
to Eq.(2), level one storage size depends on the number of

Memory'
1

Accelerator'/
Processor

Memory'
n

Bus'width'='Dlength

Data'transfer'frequency'='f

Memory
controller

Memory'side Computation'side

Figure. 5: Memory access through the memory controller in
hardware. Dlength bits can be transferred in one clock cycle
at frequency f .

bits required to store a rank result given by Σ(nA)i. For s-
mall alphabets, Σ(nA)i is small so that the level one storage
size is small. Therefore, the overall storage size is mostly
affected by the level two data. The second method is suitable
for the data sets with large alphabets, such as text data. For
such data sets, the level one data occupy a significant portion
of the total storage size. Therefore, we use a different data
structure to reduce the level one data. For the data sets that
have medium size alphabets, we can use either of these meth-
ods considering the pros and cons of each. In next sections,
we discuss each of these methods in detail.

A. Word vector compression

A word vector is an array of equal size words. Although we
separate word vectors from bit vectors, both are represented
by bits. However, in a word vector, a word or a group of bits
has a meaning. For example, in a text data set, a word or a
group of eight bits represents a character such as an English
letter. In a genome data set, a word or a group of two bits
represents one of the four nitrogenous bases presents in any
living organism. Since a word has a meaning, some words
or a group of words appear more frequently than the others.
Such data sets can be compressed easily. On the other hand,
a group of bits in a bit vector does not have a particular mean-
ing and that is the main reason we call them bit vectors. In
this section, we focus on the compression of a word vector,
which will be the base for both compression methods.
As we have explained at the beginning of section III, we ac-
cess Dlength bits from the memory controller in one clock
cycle. It is usually a constant for a given system such as an
FPGA board. The proposed succinct data structure is also
based on the two-level block structure explained in section
II-B. The block size of the compressed data must be a mul-
tiple of Dlength. As explained in section II-B, it is difficult
to achieve a uniform compression among different blocks.
One way of overcoming this problem is to use multiple dic-
tionaries. However, it is impractical to use separate dictio-
naries for every block, since that will increase the dictionary
size. Better way is to use a small number of dictionaries by
sharing one dictionary among many blocks. However, with-
out calculating the compression ratio, we do not know which
dictionary should be applied for a particular block.
Therefore, we consider grouping similar blocks together and
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Figure. 6: Clustering of blocks.

apply a separate dictionary for every group. This way, we can
reduce the number of dictionaries. To find similar blocks, we
use k-means clustering [23]. Figure 6 shows an example of
block clustering. Considering an alphabet that contains t-
wo symbols A0 and A1, the x and y axis show the number
of A0 and A1 symbols in a block respectively. Blocks are
plotted according to their A0 and A1 symbol counts. In this
example, blocks are divided into three clusters. The blocks
in cluster 1 contain a lot of A0 symbols while the blocks in
cluster 2 contain a lot of A1 symbols. Since the blocks in
the same cluster share the same properties, such blocks can
be compressed easily using a common dictionary. The less
compressible blocks are usually very different from each oth-
er. Therefore, such blocks are not belong to the same cluster
and are distributed among different clusters. As a result, dif-
ferent clusters have a similar compression ratio. That means
the worst case is changed to the average case. Note that, in
actual clustering, there are more than two axis depending on
the alphabet size. We also used the number of symbol pairs
as axis and that also gives similar results. The number of
symbol pairs increases exponentially with the alphabet size,
so that it takes a lot of processing time for clustering. There-
fore, we used the number of symbols instead of symbol pairs
to represent the similarity of the blocks.
The k-means clustering has several problems. One of such is
to determine the number of clusters or the value k. According
to the experimental results, we found that k varies from 100
to 500 depending on the size of the data set. Therefore, by
prior experimental knowledge, we can guess the value k by
considering the data size. Since the compression is done of-
fline, we can experiment with different k values to find a suit-
able one. Another problem in the k-means clustering is that
the clustering result depends on the initialization method. To
reduce this effect, clustering starts with a larger k value and
we later reduce the number of clusters by merging the similar
ones.
Figure 7 shows an example of the proposed succinct data
structure. The word vector is divided in to blocks of 6 sym-
bols similar to the example in figure 4. The blocks 1 and 4
are assigned to the cluster 1, the blocks 2 and 3 are assigned
to the cluster 2 and the block 5 is assigned to the cluster 3.
The data compression is explained as follows.

Step 1: As shown in figure 7(a), the symbol pair “c,o” is
replaced by the new symbol “X” in cluster 1 and the
symbol pair “a,n” is replaced by the new symbol “X” in

Block 1

1 2 3 4

X X n u

Block 2

1 2 3 4 5

t ̺ X d ̺

Block 3

1 2 3 4

b X X a

Block 4

1 2 3 4 5

̺ X o k i

Cluster 1 Cluster 2 Cluster 3

Block 5

1 2 3 4

e s . ̺

Dictionary : co ← X Dictionary : an ← X 

(a) Encoding in step 1. Storage size= 5 blocks × 5 symbols × 4 bits = 100
bits

Block 1

1 2 3 4

X X n u

Block 2

1 2 3 4

Y X d ̺

Block 3

1 2 3 4

b X X a

Block 4

1 2 3 4

̺ X Y i

Block 5

1 2 3 4

e s . ̺

Cluster 1 Cluster 2 Cluster 3

Dictionary : co ← X
ok ← Y 

Dictionary : an ← X
t   ̺ ← Y

(b) Encoding in step 2. Storage size = 5 blocks × 4 symbols × 4 bits = 80
bits

Figure. 7: Clustering of blocks. Different blocks have a sim-
ilar compression ratio.

cluster 2.

Step 2: As shown in figure 7(b), the symbol pair “o,k” is
replaced by the new symbol “Y” in cluster 1 and the
symbol pair “t, ” is replaced by the new symbol “Y” in
cluster 2.

After Step 1, we used only 15 symbols in clusters 1 and 2.
Since we are allowed 16 symbols we can use another sym-
bol in each cluster. We use the new symbol to compress the
blocks with low compression ratios such as the blocks 2 and
4, where each contains 5 symbols compared to 4 in the other
blocks. After Step 2, all the blocks contain only 4 symbols.
That is, the worst case is reduced from 5 symbols to 4 sym-
bols. As a result, we can improve the compression ratio in
hardware.
The compressed data size is calculated as follows. We as-
sume that a compressed block can be decompressed in to
Q words. That is, we initially divide the word vector in to
blocks by assigning each Q words to a new block. At this
stage, the size of a block exceeds Bsize. However, After
the compression, the sum of the largest block size and the
flag bits is smaller than Bsize. Note that, in every block, we
keep a flag that shows the assigned cluster number. The total
number of blocks equals dN/Qe. The level two storage size
(SizeL2(word)) is given by Eq.(4).

SizeL2(word) = dN/Qe ×Bsize (4)

The level one storage size (SizeL1(word)) is given by Eq.(5).

SizeL1(word) = dN/Qe × Σ(nA)i (5)

Note that, although the alphabet is changed after compres-
sion, the level one data use the original alphabet. This is
not a problem since the rank is computed after completely
decompressing a block. After the decompression, the data
contain only the original alphabet.
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In this method, we directly compress the level two data us-
ing WPE. Due to this compression, we can pack more words
into one block. Since one block contains more words, we
can reduce the number of blocks. Note that, the number of
blocks dN/Qe in Eq.(5) is smaller than the number of blocks
dN/P ein Eq.(2). Since the level one storage size depends on
the number of blocks, it also reduces even though we have
not performed any direct data compression on it. Moreover,
from Eqs.(1) and (4) and also from Eqs.(2) and (5), we can
say that the compression ratios of both level two and level
one are the same.

B. Bit vector compression

In the bit vector compression, we use the wavelet tree struc-
ture with block clustering. The wavelet tree was introduced
in [24] as a data structure to represent a sequence and answer
some queries on it. Wavelet tree represents any word vector
in a hierarchy of bit vectors. The number of bit vectors in the
hierarchy equals to log2(A), whereA is the size of the alpha-
bet. Figure 8 shows an example of a wavelet tree. Figure 8(a)
shows the wavelet tree representation of a word vector. The
word vector is represented by zeros and ones in the top bit
vector β, where the first half of the alphabet is encoded as 0
and the second half as 1. In the bit vector β0, the 0-encoded
words are re-encoded as 0 and 1. The same process is applied
for the 1-encoded words in the bit vector β1. We apply this
process repeatedly for all the bit vectors until there are only
one or two symbols left. Figure 8(b) shows an example of
a rank computation. To compute rankE(word vector, 10),
we first consider the top bit vector β. Since E is 1-encoded,
we compute rank1(β, 10). From the 1-encoded words in β1,
E is re-encoded as 0. Therefore, we compute rank0(β1, 5).
Then, E is re-encoded as 1 in β10, so that, we compute
rank1(β10, 3). Since this is the end of the wavelet tree,
rankE(word vector, 10) = rank1(β10, 3) = 2.
As shown in figure 8a, if the initial word vector hasN words,
the bit vectors in each stage containsN bits each. Since there
are dlog2(A)e stages, the storage size of the wavelet tree is
N × log2(A) which equals to the size of the initial word
vector. We apply the two level block structure to the wavelet
tree. As explained in section II-B, the rank results of the
first entry of a block is stored in level one. As shown in
Eq.(2), the storage size of the level one increases with the
alphabet size A. Since the alphabet size of the bit vectors
is two (only 0 and 1), the storage size is significantly small.
Also note that, although the alphabet size is two, we store the
rank results of either 0 or 1. This reduces the storage size
by further 50%. We can compute the rank result of the other
symbol by subtracting the rank result of one symbol from
the index (rank1 = index − rank0). However, to compute
rank, we have to access several bit vectors. As a result, the
memory access will increase.
Using wavelet trees, the level one data size is reduced by n-
early Σ(nA)i from Eqs.(2) since we store the rank results
of only one symbol. The level two data size is not reduced,
since the sum of bits in all bit vectors equals to the size of
the word vector. To compress the level two data, we use the
same WPE-based compression on bit vectors. As explained
in section III-A, a group of bits in a bit vector does not have
a strong meaning like in a word vector. However, for the ap-
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Figure. 8: Wavelet tree

plications such as text search, we use BW-transformed text.
After BW transform, we can see patterns such as a series of
zeros or ones. Therefore, we can compress the bit vectors by
grouping few bits into words and applying WPE. However,
we cannot expect a large compression ratio for the level two
data since bit vectors are more random compared to the word
vectors.
Note that, although the discussion of bit vector compression
is done using wavelet trees, we use wavelet matrix [25] to
implement the bit vectors. Wavelet matrix is almost the same
as wavelet trees. However, it is more practical since it has
continuous and the same size bit vectors in each stage unlike
in a wavelet tree that has separated bit vectors as shown in
figure 8(a). Interested readers can follow the works in [25,
26] that give a comprehensive discussion on wavelet matrix.

C. Implementation on hardware

The overall hardware architecture based on the FPGA is
shown in figure 9. In the hardware implementation, we con-
sider that the compressed data are stored in the DRAM and
accessed by the FPGA hardware. The dictionaries of differ-
ent clusters are stored in the on-chip memory of the FPGA.
The accessed data are decompressed and sent to the process-
ing elements for parallel processing. The DRAM is accessed
through a memory controller.
Figure 10 shows the format of the code word of the com-
pressed data in level two. It consists of the cluster number
and the compressed data. The cluster number points to the
dictionary of the corresponding cluster. Since the dictionary
data is small, we store those in the on-chip memory. All sym-
bols in the compressed data set are of the same size. Howev-
er, they can represent one or more words in the original data
set. Figure 11 shows the architecture of the decompression
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Figure. 10: Compressed data format

module. In the decompressing process, one block is fully
decompressed in to its original words by referring the dic-
tionary. The correct dictionary is selected according to the
cluster number. The decompressing of each word is done in
parallel so that the processing time overhead is minimized.
After the decompression is completed, a popcount hardware
is used to count the number of symbols in the alphabet. The
rank or select operations are computed by adding the pop-
count value to its corresponding rank result stored in the
level one data.

IV. Evaluation

The evaluation is done using an FPGA board called “DE5”
[27]. It contains an “Altera 5SGXEA7N2F45C2 FPGA” and
two 2GB DDR3-SDRAMs. The memory controller produces
512 bit large data in one clock cycle. The k-means clustering
is done using Matlab R2014b, and it takes around 10 min-
utes to complete. The WPE is applied using a c-program
compiled by gcc compiler. The compression takes less than
one hour on an Intel Xeon E5-2643 CPU and CentOS 6.6
operating system.
All the text data are used after doing the BW transform [19],
so that we can use them for text search. Temperature data
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Figure. 11: Architecture of the decompression module.
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Figure. 12: Block size distribution after compression.

(which are also represented as texts) used in this evaluation
are not BW transformed. Those data are mainly used for the
statistical analysis which does not require BW transform. In
the proposed compression, we have to store the cluster num-
ber of each block. That requires log2(number of clusters)
bits per block. We consider this overhead also in the eval-
uation. For example, 512 bit block may consists of 500bits
and 12bits for the compressed data and the cluster number
respectively.

A. Evaluation of the data compression

Figure 12 shows the block size distribution after compres-
sion. Figure 12(a) shows the distribution after the conven-
tional compression method [14] that uses a common dictio-
nary. As we can see, some blocks are very small while some
others are very large. Figure 12(b) shows the distribution af-
ter the proposed compression that uses cluster-based multiple
dictionaries. In the proposed method, there are no extreme-
ly large or small blocks. The worst block size is close to
the average size. This method is better for hardware since it
reduces the worst case.
Table 1 shows the comparison of the proposed method com-
pared to the other methods. The proposed method uses word
vector compression. The sample data sets contain the av-
erage daily temperature data of different cities [28]. Ac-
cording to the comparison, the proposed method has a larger
compression ratio than that of the conventional method [14].
These data samples use a small alphabet. As a result, the lev-
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Figure. 13: Storage size comparison.

el two storage is the largest component in the total storage
size.
Table 2 shows the word vector compression using data sets
with large alphabets. We use text data from the Bible [29]
and Wikipedia [30]. Although the data are compressed, the
compression ratio is smaller compared to that in Table 1. The
dictionary size does not affect the compression ratio, since it
is very small compared to the data size. When the alphabet
is large, the level one storage is much larger than the level
two storage. To achieve a large compression ratio, we have
to reduce the level one storage size. Note that, the dictionary
size is excluded from the total storage in Table 2, since it is
stored separately in the internal memory for fast access.
To reduce the level one storage size, we use the bit vector
compression. Figure 13 shows the comparison of the bit vec-
tor compression with other methods. This method gives a
large compression ratio for level one storage. Since the level
one storage is the largest component, the storage size reduc-
tion is over 73% compared to the conventional methods.
Another way of reducing the level one storage is to increase
the block size. However, if the block size is larger than
Dlength, we have to access the memory many times. Fig-
ure 14 shows the storage size for larger block sizes. If the
block size is large, the number of block are small. As shown
in Eq.(2) level one storage size depends on the number of
blocks. Therefore, level one storage is reduced by reducing
the number of blocks. Note that, in the bit vector implemen-
tation, level one storage is very small even for small block
sizes. Therefore, increasing the block size does not show
any significant reduction in the total storage size. Also note
that, using large blocks does not guarantee a level two stor-
age reduction. However, large blocks are easy to compress
in practice since they contain more patterns compared to s-
mall blocks. Also note that, even though the storage size is
reduced in word vector compression by increasing the block
size, the bit vector compression gives the largest reduction.
We can also reduce the storage size by using more clusters.
Table 3 shows the relationship between the number of clus-
ters and the compressed data size. However, there is a limit
to this reduction. Maximum compression for Bible data is
achieved by using 100 clusters. Using over 100 cluster has
disadvantages such as a large dictionary size, large compres-
sion time, large decompression hardware, etc. Therefore, it
is always better to use small number of clusters. Howev-
er, in k-means clustering, we have to provide k in order to
start the clustering. According to the experimental results,
we found that the number of clusters are quite similar for
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ue.

the same types of data. For example, compressing of tex-
t data requires around 100 to 500 clusters. Small data sets
at the range of few megabytes require around 100 clusters,
while large data sets of over few gigabytes require around
500 clusters. Moreover, the data compression is done offline
and it takes less than an hour of processing time. Therefore,
we can examine different cluster sizes to find a near optimal
cluster number. Another method is to start clustering using a
large k value. Then, we can merge the similar ones to reduce
the number of clusters.

B. Evaluation of the memory access time reduction

In section IV-A, we have shown that the bit vector compres-
sion gives a significantly large compression ratio compared
to word vector compression. However, such advantages are
accompanied with a significant draw back. That is the large
memory access time. Figure 15 shows the number of mem-
ory accesses required to access one data value. The memory
access of the bit vector compression is significantly larger
than that of the word vector compression. This means, we
have to trade memory access time to achieve large data com-
pression ratio.
However, if we can cache the already accessed data, we can
reduce the memory access time. Figure 16 shows the memo-
ry access percentage assuming that we can use cache. If we
compress the data, we can retrieve more data in one memory
access. That means, if the compression ratio is large, there is
a better chance to hit the cache. Note that, we store the data in
cache in the compressed format, so that no additional cache
memory is required. The proposed word vector compression
reduces the memory access by 27% and 9.88% compared to
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Table 1: Word vector compression using data sets with small alphabets.
No compression Conventional method [14] Proposed method

Data set Storage (Bytes) Storage (Bytes) Compression Storage (Bytes) Compression
level 1 level 2 Total level 1 level 2 Total ratio level 1 level 2 Total ratio

USA - Hawaii 975 3840 4815 732 2880 3612 1.33 618 2432 3050 1.58
Singapore 675 3840 4515 473 2688 3161 1.43 428 2432 2860 1.58

Indonesia - Jakartha 900 3840 4740 675 2880 3555 1.33 570 2432 3002 1.58
Sri Lanka - Colombo 825 3840 4665 633 2944 3577 1.30 523 2432 2955 1.58

Table 2: Word vector compression using data sets with large alphabets.
No compression Proposed method
(Storage MB) (Storage MB) Compression Dictionary

level 1 level 2 Total level 1 level 2 Total ratio (storage MB)
Bible (4.37MB) 8.04 3.78 11.82 5.95 2.80 8.75 1.35 0.02

Wikipedia (4MB) 3.70 3.01 6.71 3.15 2.56 5.71 1.18 0.15
Wikipedia (8MB) 16.30 7.01 23.32 11.90 5.12 17.02 1.37 0.26
Wikipedia (24MB) 26.82 18.07 44.89 22.80 15.36 38.16 1.18 0.39
Wikipedia (48MB) 66.71 36.14 102.85 56.70 30.72 87.42 1.18 0.83

Table 3: Number of clusters vs. compression ratio. Data
sample is Bible data.

Compressed Number of Compressed Dictionary
block size (bits) clusters data size (MB) size (kB)

540 10 9.41 4.6
530 30 9.21 8.2
510 80 8.84 14.4
500 100 8.75 20.1
500 130 8.75 21.4
500 500 8.75 53.4
500 1000 8.75 74.8
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Figure. 16: Aveage memory access for a large amount of
data. Bloack size is 512 bits

the no-compression and the conventional compression [14]
methods respectively. However, for the bit vector compres-
sion, the memory access is increased significantly, although
it provides a large data compression ratio.

V. Conclusion

In this paper, we propose a hardware-oriented succinct da-
ta structure. The proposed method is based on block-based
compression where a given data set is divided in to blocks.
Since the hardware are designed considering the worst case,
the data compression is restricted by the least compressible
block. To solve this problem, we assign the blocks to clusters
where all clusters have a similar compression ratio. The least
compressible blocks are distributed among multiple clusters
in such a way that their compression ratio is improved. The

proposed data compression method is evaluated considering
an FPGA based hardware platform.
We proposed two method, word vector and bit vector com-
pression for data sets with small and large alphabets respec-
tively. Bit vector compression reduces the storage size signif-
icantly at the cost of large memory access time. Irrespective
of the disadvantages, it is hugely beneficial for the data sets
with large alphabets due to the significantly large data com-
pression ratio. For the data sets with smaller alphabets, it is
better to use word vector compression, since it reduce both
the data size and the memory access time. For the data sets
with moderate alphabet sizes, we can use either of the two
methods weighing each method’s advantages and disadvan-
tages. We can also use word vector compression with large
block sizes to achieve a reasonable data compression with
small increase of memory access time.
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