1358

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.5, MAY 2016

Hardware-Acceleration of Short-Read Alignment
Based on the Burrows-Wheeler Transform

Hasitha Muthumala Waidyasooriya, Member, IEEE and Masanori Hariyama, Member, IEEE

Abstract—The alignment of millions of short DNA fragments to a large genome is a very important aspect of the modern computational
biology. However, software-based DNA sequence alignment takes many hours to complete. This paper proposes an FPGA-based
hardware accelerator to reduce the alignment time. We apply a data encoding scheme that reduces the data size by 96 percent, and
propose a pipelined hardware decoder to decode the data. We also design customized data paths to efficiently use the limited
bandwidth of the DDR3 memories. The proposed accelerator can align a few hundred million short DNA fragments in an hour by using
80 processing elements in parallel. The proposed accelerator has the same mapping quality compared to the software-based methods.

Index Terms—Short-read alignment, genome mapping, Burrows-Wheeler alignment, FPGA accelerator

1 INTRODUCTION
NEXT Generation sequencers have a very high demand
in bioinformatics due to the low-cost and high speed
[1]. Computer-based genome sequence alignment has been
widely used to construct a genome from the short-sequen-
ces (also known as short-reads) produced by the next gener-
ation sequencers. Fig. 1 shows the short-read alignment.
Using the fact that the genomes of the same organism differ
only slightly, short-reads are aligned to a reference genome
in such a way that most bases are matched. Although this
process is very simple, the alignment bottleneck is yet to be
solved due to the huge quantities of the short-read data pro-
duced by the sequencers every day. The short-read data can
be up to 600 Gbs (giga bases) which is very huge data
amount for the present day computers to handle. Therefore,
the existing software applications such as Maq [2], Bowtie
[3], Burrows-Wheeler alignment (BWA) [4], etc require
hours to days to align a whole genome.

Software applications used for the short-read alignment
can be categorized into two groups. The first group of appli-
cations such as Maq [2], BFAST [5], and BLAST [6] use
dynamic programming. In these applications, small parts of
the short-reads called seeds are compared with the seeds of
the reference genome. After the partial alignment is com-
pleted, they are combined to find the best alignment. These
methods are usually good but take a large processing time.
The second group of software applications such as Bowtie
[3], BWA [4] and SOAP2 [7] use “Burrows-Wheeler Trans-
form (BWT)” [8]. These methods are very fast and have a
sufficient accuracy.

The main problem of BWT-based short-read alignment
methods is the large data size. Usually the required data
size is several times larger than the original reference

o The authors are with the Graduate School of Information Sciences, Tohoku
University, Aoba 6-6-05, Aramaki, Aoba, Sendai, Miyagi 980-8579, Japan.

E-mail: {hasitha, hariyama}@ecei.tohoku.ac.jp.

Manuscript received 9 Dec. 2014; revised 2 June 2015; accepted 8 June 2015.
Date of publication 10 June 2015; date of current version 13 Apr. 2016.
Recommended for acceptance by R. Cumplido.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2015.2444376

<+

genome data. BWT based string search is characterized by
an unpredictable and highly irregular memory access pat-
tern, which poses difficult challenges for the efficient imple-
mentation in CPUs or graphic processing units (GPUs). Due
to the irregularity of the data access, it is difficult to store
such huge data amount in the limited memory, let alone
allowing efficient access for parallel processing while utiliz-
ing the available memory bandwidth.

In this paper, we propose an FPGA-based custom hard-
ware accelerator for fast short-read alignment based on BWT.
An FPGA is a reconfigurable LSI that contains millions of pro-
grammable logic gates [9]. The basic accelerator architecture
is published in our previous works [10], [11]. This paper dis-
cusses the hardware architecture and memory access in
detail. To efficiently utilize the limited bandwidth of the
FPGA, we designed custom data paths that store all the
address requests from multiple processing elements (PEs) in
a pipeline, so that the memory access requests are issued con-
tinuously. We also exploit the special locality of the memory
access to increase the cache hits. The huge data size is reduced
by data encoding. A pipelined hardware decoder is proposed
to decode the data efficiently. The proposed FPGA accelerator
aligns over hundred million short-reads in an hour to con-
struct a whole human genome. According to the experimental
results, we achieved 21.8 times of speed-up compared to the
BWA software that uses a four-core CPU. It is faster than
many hardware-based implementations.

2 SHORT-READ ALIGNMENT BASED ON THE
BURROWS-WHEELER TRANSFORM

BWA [4] is a widely used tool for the short-read alignment.
It can be used for gapped-alignments also where a short-
read is not exactly matched with the reference genome. Fol-
lowing are the reasons for the mismatches.

1) single nucleotide polymorphism (SNP): A nucleotide
in the reference genome and short-read at the same
position is different.

2) Deletion: A nucleotide in the reference genome is not

present in the short-read.

1045-9219 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

WAIDYASOORIYA AND HARIYAMA: HARDWARE-ACCELERATION OF SHORT-READ ALIGNMENT BASED ON THE BURROWS-WHEELER TRANSFORM

Reference genome

gl [c GG lclalaltlalclalclalalr clTlclc a B

Short-reads

r\HEEIE AlT[alc|c AT c T G

MR c | c AT AlclclcllT clTlsl
ERO0E EECOH HEENE

Mismatches

Fig. 1. Short-read alignment: short-reads (short sequences) of an
unknown genome are aligned to a known (reference) genome in a such
a way that most bases are matched. Most short-reads have all the bases
matched with the reference, while some may have few mismatches.

3) Insertion: A short-read contains an additional nucle-
otide which has not been present in the reference
genome.

Algorithm 1. Short-read Alignment Algorithm

CalculateD(W, D)
begin
calculate DJi] for (0 <i < |W|—1)
end
InexRecur(W, i,z k, 1, D)
begin
if z < D(i) then
return
end
ifi < 0then
return [k, []
end
I =1 UInexRecur(W,i —1,z — 1,k,1)
for each a € {A,C,G,T} do
ko =C(a) +O(a,k—1)+1
lo =C(a) + O(a,1)

if k, <, then
I = IUInexRecur(W,i,z— 1, k,,1,)
if a = W[i] then
I = I UInexRecur(W,i — 1, z,k,,1,)
else
I =TUInexRecur(W,i — 1,z —1,k,,1,)
end
end
end
return [
end
main()
begin

CalculatedD(WW, D)
Suffix array interval I =
InexRecur(W, |W| — 1,2, 1,|X| — 1, D)
Aligned position = SA[I]
end

In this paper, we use the word “mismatches” to indicate
the sum of all SNPs and indels (insertions and deletions).
In this section, we briefly describe BWA using Algorithm 1.
To explain the algorithm, let us consider the example shown
in Fig. 2. We have a reference genome X and a short-read W
as shown in Fig. 2a. The inputs are C(.) shown in Fig. 2a, the
occurrence array O(., .) shown in Fig. 2b and short-reads. The
number of symbols that are lexicographically smaller than a
is given by C(a) where a € {A,C,G, T} . The occurrence
array is constructed by applying BW transform to the

1359
Suffix Occurrence
Position 0[1|2|3]4|5|6| |array (SA)|BWT | array O(.,.)
Reffrence Position| @MY

) ACGT

genome (X) CITIGIAIG|S in X $
0 6 G J0j0oj0|1]0
Position 0|1|2 1 4 G J0j0j|0|2]0
2 0 $ |1/ojo[2]0
Short read (W) |C|G|A 3 1 c Tilol1 210
4 5 A J1]1[1]2]0
a4 o Bl 5] 3 | T 1121
Cla) |1]2]|4]|6 6] 2 < EAAL

(a) Reference genome X,
short-read W and C(a) of X

(b) Occurance array of X. It is con-
structed by counting the number of
symbols up to each entry.

Fig. 2. Example of aligning the short-read W using X as the reference.

reference genome X. Please refer [8] for a detailed description
on BW transform. BWA algorithm uses the “exact matching”
method explained in [12]. According to [12], if a string W is a
substring of the string X and k(aW) < l(aW), string aW is
also a substring of X where oWV equals the string {a, W}. The
terms k and [, given by Egs. (1) and (2) respectively, are the
lower and upper bounds of the suffix array interval of X

K(aW) = C(a) + Oa, k(W) — 1) + 1, W
l(aW) = C(a) + O(a, (W)). (2)

Note that, the suffix array shown in Fig. 2b shows the corre-
sponding positions to the reference genome, for the symbols
of the BWT array. The BWT array is also shown in Fig. 2b
Fig. 3 shows the recursive search results of the short-read
W in the “InexRecur” procedure. The position of a symbol
in W, the number of mismatches allowed, the lower and
upper bounds of the suffix array interval are given by i, z, k
and [respectively. The number of symbols in W (or the size
of W) is given by |W|. Fig. 3 shows all executions of the pro-
cedure “InexRecur” given in Algorithm 1. For example, the
alignment result with one insertion has a suffix array inter-
val of [5,5]. According to Fig. 2b, Suffix array interval [5, 5]
refers to the position 3 (that is, SA[5, 5] = 3) in the reference
genome X. Note that, the procedure “CalculateD” gives a
lower bound D[i] for the number of mismatches of W[0,].
We recommend to refer [4], which is the original paper that
proposes the BWA, for further details. Our intension of
explaining the same BWA algorithm in this paper is to
show what the inputs are, and what kind of calculations are
required. The occurrence array data for the short-read align-
ment are created using the reference genome. In practical
problems, the same reference genome data are used to align

i=2 i=1 i=0 i=-1 Alignment result
(2,0,1,1) (1,0,06) (0,-1,55) »(-1,-1,1,1) SA=[1,1]: 2 insertions
4
wz,s (#1110~ 0. 0.1 1)/:(-1,-1,5,5) SA=[5,5] : 1 insertion,
v 1 SNP
InexRecur /£ (1.055) %, 1,55/ (-1.0.5.5) sA=[5,5]: 1 insertion
(2,1,0,6) Eie(1,0,2,3) v ™(-1,0,6,6) sA=[6,6]: 1 SNP
m,4’5y.,‘.‘(1,0,4,5) ©, 0.’6’6)?‘(-1,-1,6,6) SA=[6,6] : 1 qeletritgn,
4 * Insertion
(2,0,6,6) (1.066) (0-13.3) (4 033) SA=[3,3] : 1 deletion
***» Match > SNP = Insertion =~ —*Deletion
InexRecur(i, z, k, I)
", 7 N <
position of a symbol ~ number of Suffix array
in a short read mismatches interval

Fig. 3. Recursive search of the short-read W in the “InexRecur’
procedure.

1360

Short-read data
transfer to FPGA

Processing in FPGA 1
Yes
BTN =< Processins Rl mermory i

e\

Processing

Occurrence array data
transfer to FPGA

l<—

Output data
read tiv CPU

finished ?

No

short read
processed

Processing finish

Fig. 4. Flow-chart of the short-read alignment process. Blocks shown in
black background corresponds to the processing in FPGA. The other
blocks corresponds to the processing in CPU. The processing in CPU
are mainly control processing and data transfers while the alignment is
done in FPGA.

different set of short-reads. Therefore, in this paper, we per-
form the Burrows-Wheeler transform and calculate the
occurrence array beforehand and transfer the data to the
FPGA for different alignments.

The most critical problem of the BWA algorithm is the
enormous size of the occurrence array data of the reference
genome. Since a human genome has over three billion sym-
bols, there are three billion entries in the occurrence array.
To represent this number, we need 32 bits. Therefore, each
entry in the occurrence array needs 128 bits where, 32 bits
each gives the number of A, C, G and 7" symbols. Total mem-
ory required to store the occurrence array is 128 x 3 billion
bits, which is approximately 48 GBs. Since we use the reverse
order of the reference genome data to determine the lower
bound, we need another 48 GB memory. There is no FPGA
board in the market that could hold 96 GB of data. One com-
mon way of dealing with such problems is to partially trans-
fer the data to the memory. However, such a technique is
impossible to use since the memory access pattern is data
dependent and cannot predict which data are required next,
before processing the current data. In this paper, we use the
encoding scheme discussed in [4] to reduce the data amount.
We propose a method to reduce the decoding overhead and
propose a pipelined hardware decoder so that the data are
decoded in every clock cycle after the pipeline is fully filled.

3 ACCELERATION OF THE SHORT-READ
ALIGNMENT

3.1 Accelerator Architecture

Fig. 4 shows the flow-chart of the short-read alignment pro-
cess. First, the occurrence array data are transfered to the
two DDR3 memories in the FPGA board. Then two blocks
of short-reads are transfered to the DDR3 memories. After
that, the short-reads are processed in FPGA and the align-
ment results are written to the internal memory of the
FPGA. When the internal memory is full, the processing is
paused and the data are read-back from the FPGA. After
processing the short-reads, new blocks of short-reads are
transfered to the DDR3 memories. The accelerator can pro-
cess unlimited number of blocks of short-reads sequentially.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.5, MAY 2016

DDR3 SDRAM 1 DDR3 SDRAM 2

eit

Interconnection network |

$

| .
(0]
- —
2 ©
Qo = Channel 1 Channel 2
el 5| [EEee | |(EElle] - [e

>
_S. E | Shared memory | | Shared memory |
‘n I I
(@] 9 [_Output data | |
T =

| FPGA accelerator
FPGA board

Fig. 5. Accelerator architecture. The inputs of the FPGA accelerator are
stored in DDR3 memories. Output is write to the FPGA internal memory
and read by the host computer.

The overall architecture of the accelerator is shown in
Fig. 5. It consists of a memory controller and two groups of
PEs belong to channel 1 and channel 2. A channel contains
multiple PEs. The parallel data processing is achieved by
executing different short-reads in parallel on those multiple
PEs. The occurrence array data and the short-read data are
transferred to the DDR3 memory. Each channel operates
independent of each other. All PEs in a channel also works
independently. There outputs are written to a shared mem-
ory. If there are multiple request at the same time to write
output data, on request is granted by using a priority arbi-
ter. The main reason of using the priority arbiter is that it is
very simple and its implementation takes a very small logic
area. The main disadvantage of the priority arbiter is that,
the lower priority requests must wait for a long time to
receive a grant. However, this problem does not have a big
effect in the proposed accelerator due to the following rea-
son. The search process in the “InexRecur” procedure is
done for several thousands of cycles and just write one out-
put to the memory. Therefore, between two memory access
requests from the highest priority PE, there are several thou-
sands of cycles. During that period, the other less priority
PEs receive the grants to access the memory.

Structure of a PE is given in Fig. 6. It consists of a 32-bit
adder, a comparator and pipeline registers to perform the
calculations explained in Algorithm 1. After finishing one
“InexRecur” procedure, a new one is loaded from the regis-
ter file. In each “InexRecur” procedure, new calls to the same
procedure are generated as explained in Algorithm 1. The

Data path Register fiie
) L | | InexRecur | i |z | k [|
Register ADD/SU B k index
o.,) || 32bit 2
DDR3 _'lLI_' NN
- Control path Data@
z,i,k :@_
Data Comparator Output
D).l 32bit Control | memory
D, signals

Fig. 6. Structure of a PE. The register file is used to store the parameters
of the “InexRecur” procedure.

WAIDYASOORIYA AND HARIYAMA: HARDWARE-ACCELERATION OF SHORT-READ ALIGNMENT BASED ON THE BURROWS-WHEELER TRANSFORM

Occurrence array Of. , .
n

umber [A [¢ TG [1 |
0_ 0 1 0 0
3 2 1 0 1
Index 0 1 2 3 4 5 6 7 ; ; i g ; Block 0
Syembol
Index 8 9 1011 12 13 14 15 e
Symbol [G|G|A|[T|[A|T|A|C 15 5 3 4 4 | Block1

(a) BWT string. (b) Occurrence array constructed using

the BWT string.

Entry Occurrencearray O(... il jndex 0 12 34567 8
number
Header 0 0 1 0 0 Symbol |CIT|A[A|T|G|C|G]|G]|..
(block 0) : . \ J
2

Header H
(block 1) 45

. Y
2 2.3 Symbols correspond|to block 0

Code word
D (o o[22 c c[d

2|2|3[2|G|A|T|A|T|A|C
\)\ J
Y Y
Header : Body: BWT array
Occurrence array entry symbols (First symbol of
(First entry of the block) the block is omitted)

(c) Code words of block 0 and 1.

(.

Fig. 7. Example of the encoding scheme. A block of several entries is
compressed to a one cord word.

parameters of such recursive calls are stored in the register
file, so that we can keep a track of all the recursive calls. The
“ADD/SUB” unit in PE is used to calculate the alignment
positions given by Egs. (1) and (2). The comparator and the
control path do all the conditional branches in the
“InexRecur” procedure. New short-reads are fed to the PEs
after the old short-reads are aligned. The alignment result is
read by the CPU. Unlike the CPU that has a complex float-
ing-point ALU and very complicated control circuit, a PE is a
very simple unit that specialized only to align a short-read. It
is designed using minimum resources. Therefore, we can
have a lot of PEs in the same FPGA to provide performance
comparable to a computer cluster that has many CPUs.

To implement this architecture, we use an FPGA board
that contains two 2 GB DDR3 SDRAMSs, PCle connector and
an FPGA. The occurrence array data and the input short-
read blocks are stored in DDR3 memories. One block con-
tains 8.3 million short-reads which is approximately 500 MB
large. There are 80 PEs in two channels where one channel
contains 40 PEs. The outputs of a PE contains the details such
as the short-read number, the suffix array interval, mapping
quality, “CIGAR string” (this contains the positions of inser-
tions and deletions), number of mismatches, etc. The output
is read from the shared memory and stored in a binary file
by the CPU and later converted to “sam” format. It is then
converted to “bam” format using the software called “sam
tools” [19]. This process is similar to the traditional usage of
“BWA software” where it produces a binary “’sai” file which
later converted to “sam” and then to “bam” formats.

3.2 Reducing the Occurrence Array Size by Data
Encoding

The total memory capacity of the FPGA board is only 4 GB,

where each memory can hold 2 GB of data. However, the

occurrence array data size is 96 GB. To reduce this huge data

amount, we employ the data encoding method proposed in

1361

Code word
EN o[:[oo[r[a[a][T]s]c]s
f N J

Y
Number of “A”s in header =0 Number of “A”s in body = 2
Occurrence(6, A) = “A”s in header + “A”sinbody =0+2=2
Occurrence(b, *)=2,2,1,2

Fig. 8. Decoding a code word. The number of symbols in the body of the
code word is added to the header to decode an entry.Although only the
decoding process of symbol “A” is shown, it is similar for all the symbols.

[12]. To explain the encoding method, we consider the exam-
plein Fig. 7. The BWT string is shown in Fig. 7a. Fig. 7b shows
the occurrence array constructed using the BWT string. It is
constructed by counting the number of symbols up to each
entry. We divide the occurrence array into two blocks where
each block has eight entries. Then we assign a code word for
each block. Fig. 7c shows the code word. It has two parts; the
header and the body. The first occurrence array entry of a
block is stored as the header. The BWT symbols of the block
except the first symbol is stored in the body. For example, lets
consider the “block 0”. The first entry of the block (entry
“0,1,0,0”) is stored as the header and the symbols from the
BWT string from index 1 to 7 are stored in the body.

We explain the decoding method using Fig. 8. Let us con-
sider an example of obtaining the occurrence array entry 6
denoted by “Occurrence(6, *)”. Since the entry 6 belongs to
the block 0, we use the code word 0. From the first six symbols
of the body of the code word, we count the number of “A,C,
G,T” symbols. In this example, there are two “A”s, one “C”,
one “G” and two “T”s in the body. Then we add the symbol
counts to the header. Therefore, Occurrence(6, *) is “2,2,1,2”.
Note that, to get an occurrence array entry, we need to decode
only one code word and the decoding of the entire occurrence
array is not required. In the human genome, there are three
billion entries in the occurrence array. Each entry is 128 bit
long. We divide the occurrence array into blocks of 64 entries.
The first entry of each block is stored as the header and the
rest of the 63 BWT array symbols are stored in the body.
Therefore, we require 128 bits for the header and 63 x 2 bits
for the body. As a result, one codeword is 254 bit large and
contains the data of 64 occurrence array entries. The compres-
sion ratio is 254 bits/(64 x 128 bits) ~ 0.03. However, in the
worst case, we have to count the occurrence of 63 symbols
which takes a large hardware overhead.

To reduce the decoding overhead, we propose a slightly
different encoding scheme in Fig. 9. Note that, we use the
same example given by Figs. 7a and 7b. In the proposed
encoding scheme, the occurrence array entry at the middle of
a block is stored as the header. For example, we use the entry
number 3 and 7 from the block 0 and 1 respectively as the
headers. The body is the same as in the conventional scheme
shown in Fig. 7c. The decoding is done differently to the con-
ventional method by considering the following two scenarios.

Scenario 1: Obtaining an occurrence array entry comes
before the header.

Scenario 2: Obtaining an occurrence array entry comes
after the header.

Let us consider an example of obtaining “Occurrence
(1, ®)”. The entry 1 comes before the entry 3 (the header).
Therefore, this example belongs to the scenario 1. The

1362
Entry
numbed A] € | G| T | Index 012345678 ..
Header i
(block0) 3 2 1 o0 1]
8 Symbols correspond to block 0
Header 7 : : : : Middle Symbol
S bol ymbols
(block 1) 11 3 2 al3] ymoo's to the right
i to the, left o the rig|
——iA
Code word;

G o[A~ fr e cldl

3|/2|4[3|G|A|TEFA|T|A|C
\ X J\ y J
Header : Body: BWT array symbols
Occurrence array entry (First symbol of the block
(Middle entry of the block) is omitted)

Fig. 9. Proposed encoding scheme. The occurrence array entry at the
middle of a block is used as the header.

decoding is shown in Fig. 10a. We consider “three minus
one” symbols from the middle to the left. Then we count the
number “A,C,G,T” symbols and deduct the symbol count
from the header to determine Occurrence(1, *). In this case,
itis “0,1,0,1”. Let us consider another example of obtaining
“Occurrence(6, *)”. Since the entry 6 comes after the entry 3
(the header), it belongs to the scenario 2. The decoding is
shown in Fig. 10b. We consider “six minus three” symbols
from the middle to the right and count the number of “A,C,
G, T” symbols. By adding the symbol count to the header,
‘Occurrence(6, ¥) is 6. Note that, the maximum symbol count
in the proposed method is approximately half of that of the
conventional method. Therefore, we can reduce the decod-
ing overhead of the symbol count.

We explain the architecture of the hardware decoder
using Fig. 11. The hardware module that decodes the occur-
rence array data of symbol “A” is shown in Fig. 11a. The
decoder has a very simple architecture that consists of bit-
shifters, adders, a population count (popcount) module, etc.
The body of the code word that contains a part of the BWT
string is decoded in to a 32bit word of 0’s and 1’s. If the sym-
bol (in this case symbol “A”) exists, we use 1, otherwise we
use 0. Then we extract only the required bits. For example,

Code word

EXN - [:o[:[r[afna]T]c]cc
7 _Y_)

Number of “A”s in header =2 Number of “A”s in body (left) = 2

Occurrence(1, A) = “A”s in header - “A”s in body (left)=2-2=0
Occurrence(l, *)=0,1,0,1

(a) Decoding an entry to the left of the header. The
number of occurrences of each symbol in the body to
the left is deduct from the header.

Code word
EEN - (2 [of:]r[ala[T][c]c]a

Number of “A”s in header =2 Number of “A”s in body (right) = 0
Occurrence(6, A) = “A”s in header + “A”s in body (right) =2 +0=2
Occurrence(6, ¥)=2,2,1,2

(b) Decoding an entry to the right of the header. The
number of occurrences of each symbol in the body to
the right is added to the header.

Fig. 10. Decoding a code word in the proposed encoding scheme. Since
we count only the half of the occurrences, the counting overhead is
reduced. Although only the decoding process of symbol “A” is shown, it
is similar for all the symbols.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.5, MAY 2016

|Header| | |BWT string

Decoder

Decoder Decoder l Decoder

Address
decoder

| Occurrence
‘array address

(a) Hardware decoder for the occurrence array data of symbol “A”

reg [31:0] x

X <= x — ((x >> 1) & 32’h55555555)

x <= (x & 32’h33333333) + ((x >> 2) & 32’h33333333)
X <= (x + (x >> 4)) & 32’hofofofof

x <=(x * 32’h01010101) >> 24

(b) Computations in the popcount module. Few additions, a
subtraction, bitwise operations and a multiplication are required.

Fig. 11. Hardware decoder. Similar decoders are used to decode the
symbols “C, G” and “T".

if we need only 16 bits starting from the least significant bit
(LSB), we do the “bitwise AND” operation with a mask. In
this case, the mask is Ox0000FFFF. Since the memory
address corresponds to the occurrence array entry number,
the mask is obtained by decoding the memory address.
After the required bits are determined, we count the num-
ber of 1’s using a popcount module. Finally, the number of
occurrences are added to or subtracted from the header.
There are many popcount methods available [13]. We use
the popcount method shown in Fig. 11b, since it requires a
small hardware overhead. Although it has the multiplica-
tion operation, we can perform fast multiplications in the
FPGA using hardware-based multipliers (DSP units). The
decoder has a latency of four clock cycles. However, it is
fully pipelined, and an output is produced in every clock
cycle after the pipeline is fully filled.

3.3 Efficient Utilization of the Limited Memory
Bandwidth
Efficient Bandwidth Utilization by Multiple
Channels

In the proposed architecture, we use 80 PEs to process the
short-reads. Therefore, multiple PEs request access to the
same DDR3 memory simultaneously. To grant access to a
single request, we use an arbiter. The granted requests are
stored in a FIFO, so that new requests can be issued seam-
lessly. Fig. 12 shows the data paths and memory access
from multiple PEs. The data and the address paths between
the accelerator and DDR3 memory is shown in Fig. 12a. The
memory controller connected to the DDR3 memory handles
all memory-side transactions such as data read/write,
refresh, etc. It provides a 32 bit address bus and a 512 bit
data bus to the FPGA-side. The memory controller reads the
granted requests from the FIFO and sends the correspond-
ing addresses to the DDR3 memory. Usually, the accelerator
clock frequency f; is smaller than the memory controller

3.3.1

WAIDYASOORIYA AND HARIYAMA: HARDWARE-ACCELERATION OF SHORT-READ ALIGNMENT BASED ON THE BURROWS-WHEELER TRANSFORM

Accelerator clock (f1) Memory controller clock (f2)

A)
f LA

32bit Addresses
from multiple Pés:>

Altera [
memory
controller 1

Arbiter)} FIFO [—)

DDR3

512bit data from memory controller -

FPGA accelerator-side Memory-side

(a) The data paths between the PEs and the memory for the one channel
implementation.

Accelerator ‘ I ‘ | ‘ I ‘ ‘

clock (f1)
) e

giipi il
08>8 - O

N

N

P
N

Memory controller
clock (f2)

Address read by
memory controlle

Data from
memory controller

. Invalid address / data

(b) Time chart of the memory access ((fi < f2)).

Fig. 12. Memory access using one channel. The memory access speed
is decided by the slowest frequency f;.

clock frequency f;. Fig. 12b shows the time chart of the
memory access when f; < fo. The rate that the addresses
are sent (by the PEs) is smaller than the rate that the mem-
ory controller is capable of receiving. Therefore, even a valid
address is issued in every clock cycle from the arbiter, the
data are received from the DDR3 at the same rate that the
addresses are sent in. The maximum rate that the data are
received is decided by the slower accelerator clock fre-
quency (f1).

We can solve this problem by using multiple channels
where each channel contains a group of PEs and an arbiter.
Fig. 13 shows an example where two channels are used in

Accelerator clock (f1)
\

f s 32bits !

-32bit
32bit Addresses [Arbiter1 Dual _—
from multiple PEsI-_m clock Aleera (=
Arbiter2 A FIFO

memory
controller ¢:|
512bit data from memory controllerl—]
FPGA-side

Memory controller clock (f2)
A

DDR3

Memory-side

(a) The data paths between the PEs and the memory for the two channel
implementation.

Accelerator
clock (f1)

Address from
arbiters

Memory controller|
clock (f2)

Address read by
memory controllef’

Data from
memory controller

- Invalid address / data

(b) Time char of the memory access (f; < f2)

Fig. 13. Memory access using two channels. The memory access speed
is decided by 2 x fi.

1363

DDR3 x 2 v FPGA
Address Data
| Memory controller
Acknowledge § pata
Request address Request address address

| Arbiter 1 | Arbiter 2 (Synchronizer

Adle ReqT Addr.IReq. Addr4 Req.I Addr.IReq.
PE1| PE1] PE64]|PE6 PE1| PE1] PE64|PE64]

PE | | PE |---| PE |

[PE]--

[Cache 2kB |
*

| Decoder

Fig. 14. The data paths of memory access using two channels.

parallel. The 32 bit addresses from the two arbiters are
stored in a “dual clock FIFO”. The write port of the FIFO is
64 bit large and operates at the clock frequency f;. The read
port of the FIFO is 32 bit large and operates at the clock fre-
quency f5. Therefore, two addresses of 32 bit each are writ-
ten to the FIFO in parallel while one address is read by the
memory controller. Fig. 12b shows the time chart of the data
access when f; < fo. Two address are written to the FIFO
at f1 and one address is read at f>. The accelerator clock fre-
quency is 85 MHz (f; = 85 MHz) and the memory controller
clock frequency is 200 MHz (f, =200MHz). Therefore,
2 x f1 < f3, and the memory controller is capable of reading
twice the amount of addresses compared to the situation
where only one channel is used. Although it is theoretically
possible to increase the memory access speed further
by increasing the number of channels to three, it is practi-
cally difficult to achieve the optimal performance of the
memory controller, that is one read from every clock cycle
at f>. Moreover, increasing the number of channels will also
increase the hardware overhead. Therefore, in the proposed
accelerator, we used only two channels.

The designed data path for two channel memory access is
shown in Fig. 14. Multiple PEs send address requests in par-
allel to the arbiter. The arbiter allows one request to proceed
in each clock cycle so that the FIFO is filled with addresses.
Those addresses are sent one-by-one to the memory control-
ler. We cannot determine how many cycles it takes to get the
data after sending an address. The timing of the address sent
and the data arrive varies for different requests. However,
the order of the data coming out from the memory controller,
and the order of their corresponding addresses are sent, is
the same. Therefore, if we know when the first address is
sent and the first data is arrived, we can synchronize the data
with their corresponding addresses. We use a synchronizer
circuit to align the data with their corresponding addresses.
Note that, the requested address is sent back to all PEs along
with the data so that each PE can determine whether the data
are correspond to their request or not.

3.3.2 Memory Interleave

As explained in Section 2, the memory access in BWA is
extremely irregular and unpredictable. However, extracting
some features even in such an irregular pattern is the key to
improve the performance. As shown in Algorithm 1, the
short-read alignment process has two major procedures
called “calculateD” and “InexRecur” executed one after the

1364

PE3 -

pe2 D@ |
pEL @
PE0 (I R X

- CalculatedD procedure (access memory A) Time
InexRecur procedure (access memory B)

Fig. 15. The execution of Algorithm 1 by multiple PEs. Since the same
procedure is executed by more than one PE simultaneously, multiple
requests to access the same memory could be issued in parallel.

other. These procedures require two different sets of data,
and we use two DDR3 memories on the FPGA board to
store those. The memories are used as follows.

Memory A: Data required for “calculateD” (“data A”).
Memory B: Data required for “InexRecur” (“data B”).

In the proposed accelerator, each PE is capable of execut-
ing the Algorithm 1 independently using different short-
reads as the inputs. The execution of Algorithm 1 by multi-
ple PEs is shown in Fig. 15. Usually, the processing time of
the “CalculatedD” procedure is smaller than that of the
“InexRecur” procedure. Note that, the processing time of
the “InexRecur” procedure depends on the short-read data,
and the processing time is different for the different short-
reads. Since, the “InexRecur” procedure takes a large
processing time, different PEs may execute this procedure
for different short-reads simultaneously. During the
“InexRecur” procedure, multiple requests to access
“memory B” could be issued in parallel by multiple PEs.
However, the memory controller accept only one requests
and the rest of PEs have to wait in a queue to access the
memory. To solve this problem, we use memory interleave.

Fig. 16 shows the data allocation for interleave and non-
interleave memory accesses. In the non-interleave memory
access, the “data A” is allocated to the memory A and the
“data B” is allocated to the memory B as shown in Fig. 16a.
Therefore, if one PE wants data B[0] and another PE wants
B[1] simultaneously, one PE has to wait while the other PE

Address

IS0 data B[O]
W data B[]

data A[0]
data A[1]
data A[2]
data A[3]

0x01
0x02
0x03

]

-

]

£ ISP data B[2]

= SXEN data B3]
|]

(a) Data allocation for non-interleave memory access. A data set
is allocated to one memory.

Input A
Input B

0x00
0x01

data A[0]
data A[2]

0x00
0x01

data A[1]
data A[3]

Input A

B --ta 81

— datB[O]
B -t B3]

| .. [EEEEn

Input B

(b) Data allocation for interleave memory access. A data set is
allocated to multiple memories.

Fig. 16. Data allocation for interleave and non-interleave memory
access. In the memory allocation for interleave memory access, both
data A and B are distributed in multiple memories.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.5, MAY 2016

TABLE 1

Processing Time Reduction Due to Memory Interleave
Number of Processing time (s) Reduction
mismatches Non-interleave Interleave %
0 82.6 63.4 23.2
1 104.6 83.3 20.3
2 151.6 140.4 74
3 1,635.3 922.3 43.6
4 24,117.0 13,027.7 45.9

accesses the memory B. Fig. 16b shows the data allocation
for interleave memory access. Part of the data A is allocated
to the memory A while the other part is allocated to the
memory B. Similarly, the data B is also allocated to both
memories. As a result, if two PEs want the data B[0] and B
[1] respectively, one PE can access memory A to get the data
B[0] while the other PE can access memory B to get the data
B[1]. Therefore, both PEs proceed with their computations
without waiting in a queue to access the memory.

Table 1 shows the comparison of interleave and non-
interleave memory access. We conduct experiments using
the short-read sample “DRR002191-1” obtained from [14].
The experiment is done for over 8.3 million bases. Accord-
ing to the results, we obtained a speed-up of over 20 percent
by interleaving the memory. This speed-up increases with
the maximum number of mismatches. Increasing the maxi-
mum number of mismatches will also increase the recursive
calls to the procedure “InexRecur”. As a result, data B is
accessed more frequently than data A. If the memory inter-
leave is not used, the access is concentrated on memory B,
so that the processing time is determined by the access
speed of a single memory. Interleaving the memory allows
to access both memories evenly so that the processing time
is reduced almost by half as shown in Table 1.

3.3.3 Efficient Data Cache by Exploiting the Spacial
Locality of the Memory Access

Data caches are often used in CPUs to increase the memory
access speed by serving the requests to the cached data
many times faster than accessing the main memory. This
method works well if the memory access pattern has a local-
ity of reference in terms of temporal or spacial. As explained
in Section 2, it is very hard to find a temporal locality for
BWA since the memory access pattern is data dependent.
However, we exploit the spacial locality of the memory
access, and propose an efficient cache policy and its hard-
ware architecture.

In Algorithm 1, there are two kind of memory requests;
one is to access the lower bound & and the other is to access
the upper bound (. Fig. 17 shows the suffix array interval
against time. Note that, since the size of the suffix array
interval changes from zero to billions, we draw the y-axis in
log scale to show the graph clearly. The upper and lower
bounds correspond to memory addresses. Therefore, when
the suffix array interval is small, two addresses close to each
other are accessed. That means, we have a spacial locality in
memory access. According to Fig. 17, the suffix array inter-
val is large at the beginning but gets smaller when the com-
putation proceeds. When a unique match is found, both the

WAIDYASOORIYA AND HARIYAMA: HARDWARE-ACCELERATION OF SHORT-READ ALIGNMENT BASED ON THE BURROWS-WHEELER TRANSFORM

30

25

20

log2[suffix array interval]

(&)

W HM h“i“’lm. Il |.n”mW“ Jlﬂlm “

392500 393000 393500 394000 394500 395000 395500 396000

o

Processing time (clock cycle)

Fig. 17. The suffix array interval against the processing time. The suffix
array interval is wide when the search begins, but gets narrower when the
search proceeds. If a unique match is found, the suffix array interval is zero.

upper and the lower bounds must give the same value, so
that the suffix array interval becomes zero. Now let see how
we could exploit this property.

As explained in Section 3.1 we have encoded 64 occur-
rence array entries into a single 254 bit code-word. A word
in a memory is 512 bits wide so that it contains two code-
words. Therefore, accessing a single word in the memory
gives us the access to 128 occurrence array entries. If the suf-
fix array interval is smaller than 128, there is a greater possi-
bility that we could find both the upper and the lower
bounds of the suffix array interval in the same word. There-
fore, we issue a request for the lower bound first and see
whether we could find the upper bound also in the decoded
data. If the upper bound is found in the decoded data, we
do not have to access the memory again. This is like data
caching in CPUs. We have to cache 512 bits to store the
code-words, 128 bits to store the upper bound and another
128 bits to store the lower bound. Therefore, the required
cache size is only 768 bits. This is significantly smaller com-
pared to the cache size of the CPUs.

Table 2 shows the processing time comparison with and
without the data cache. The processing time reduced by
more than 25 percent. The maximum theoretical process-
ing time reduction is 50 percent where both the upper and
the lower bounds are obtained in a single memory access.
According to Table 2, the processing time reduction
increases with the number of mismatches. It reaches
40 percent when the number of mismatches is 4. This
shows that the proposed method is very effective espe-
cially when the number of mismatches is large.

3.4 Exact Matching Using Reversed Reference
Genome Data

As explained in Section 2 using Algorithm 1, the
“CalculatedD” procedure is used to find a lower bound DJ[i
for the number of mismatches of W0, 7]. An abstract version
of the “CalculatedD” procedure is given in Algorithm 2. The
strings X’ and TV’ are the reverse of the reference genome X
and the reverse of the short-read W respectively. The num-
ber of symbols in W and X (or the size of W and X) are
given by |W| and | X| respectively. We have not shown the

1365
TABLE 2
Processing Time Reduction Due to Data Caching
Number of Processing time (s) Reduction
mismatches No cache With cache %
0 63.4 47.3 25.4
1 83.3 62.3 25.3
2 140.4 100.9 28.1
3 922.3 598.8 35.1
4 13,027.7 7,814.1 40.0

detailed computation of D[i], and please refer [4] for the
complete version of the “CalculatedD” procedure. In this
paper, we just want to show that, if 1V’ is a substring of X',
D[] = 0 for all 7. If W’ is a substring of X’, then W is also a
substring of X. That is, if D[i] = 0, there is an exact match.
Moreover, the aligned position equals | X| — SA'[I'] — [W],
where I’ is the suffix array interval in the reversed genome.
The modified “main” procedure is shown in Algorithm 2. If
D[i] = 0 for all i, we compute the aligned position directly
from the suffix array interval in the reversed genome.
Therefore, we do not call “InexRecur” procedure. If
D[i] #0, the aligned position is calculated similar to
Algorithm 1 by calling “InexRecur” procedure.

Algorithm 2. Short-Read Alignment Algorithm. Exact
Matching Using Reversed Reference Genome data.

CalculateD (W, D)
begin
i=0to |[W|-1:W1i]=W[|W|-1-i
i=0to|X|—1: X'[i] = X[|X| -1—1]
fori=|W|—-1to0do
Compute [K,!'] using X’
if {W'[i]..W'[|W| — 1]} is a substring of X’ then
D[i]=0
else
Compute D[i] (note that, D[i] # 0)
end
end
return [K, 1]
end
main()
begin
Suffix array interval in the reversed genome /' =
CalculatedD(W, D)
if Vi : D[i] == 0 then
Aligned position = | X| — SA'[I'] — |W|
else
Suffix array interval =
InexRecur(W, |W| —1,2,1,|X| — 1, D)
Aligned position = SA[I]
end
end

Since the genomes of the same organism differ only
slightly, most of the short-reads match exactly with the ref-
erence genome. Therefore, we can reduced the processing
time by not calling the “InexRecur” procedure for the exact
matches. Table 3 shows the processing time reduction using
Algorithm 2. We achieved up to 47 percent of processing
time reduction.

1366

TABLE 3
Processing Time Reduction Due to the Exact Matching Using
Reversed Reference Genome Data

Number of Processing time (s) Reduction
mismatches FPGA Hybrid %

0 47.3 42.0 11.3

1 62.3 45.9 26.3

2 100.9 65.9 34.7

3 598.8 447.7 25.2

4 7,814.1 4,134.9 47.1

3.5 Hybrid Processing Method Using CPU and FPGA

In real world problems, allowing less than two mismatches
is enough to align some of the short-reads data samples.
However, there are many data samples that have a consid-
erable percentage of short-reads that could only be aligned
considering a large number of mismatches. As we can see in
Table 2, even with so many efforts, the processing time
increases exponentially with the number of mismatches. To
solve this problem, we analyze the processing time of differ-
ent short-read alignments. Fig. 18 shows the processing time
distribution. The x-axis is the number of cycles (or process-
ing time) and the y-axis is the number of short-reads.
According to Fig. 18, the most of the total processing time is
spent to align less than 4 percent of the short-reads. In BWA
software, complex but efficient algorithms are used to pro-
cess these short-reads faster. However, a lot of hardware is
required to implement those algorithms. FPGA has a lim-
ited hardware resources and most of those are already used
in the proposed accelerator. To implement the algorithms
that process only 4 percent of the resources, we have to sac-
rifice the resources that are been used to process the rest of
the 96 percent short-reads. Such a method is not effective
since it increases the total processing time.

To solve this problem, we consider hybrid processing
method where both CPU and FPGA are used. We set a time
(clock cycle) limit to process a short-read in the FPGA. If a
hit is not found during the time limit, further processing of
that short-read stops. Those unaligned short-reads are
extracted and re-aligned in the CPU using BWA software.
Table 4 shows the total time reduction due to the hybrid
processing using FPGA and CPU. According to the results,
a large processing time reduction is achieved when the

1000

800

600

400

Number of sequences

200

0

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06
Processing time (clock cycle)

Fig. 18. Processing time distribution. Most short-reads require very small
amount of clock cycles to find an alignment.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.5, MAY 2016

TABLE 4
Processing Time of the Hybrid Method

Number of Processing time (s) Reduction
mismatches FPGA Hybrid %
0 42.0 42.0 0.0

1 45.9 60.7 —-32.3

2 65.9 92.5 —40.4

3 447.7 160.8 64.1

4 4,134.9 219.1 94.7

number of mismatches is large. However, when the number
of mismatches is small, the processing time is increased.
Note that, the minus reduction percentages in Table 4 shows
a processing time increase.

To find the cause for the processing time increase in
smaller number of mismatches, we analyze the different
component of the processing time. As shown in Table 5, the
total processing time is composed of the processing times of
the short-read alignment in FPGA, extraction of the
unaligned short-reads and the re-alignment of the
unaligned short-reads in CPU. To reduce the processing
time of the hybrid method, we consider parallel processing
using FPGA and CPU. The processing in FPGA accelerator
is done in batches. One batch contains approximately 8.3
million short-reads. As shown in Fig. 19, after the short-
read alignment of batch 1 is finished, the accelerator aligns
the batch 2. Meanwhile, we extract the unaligned short-
reads of the batch 1 from the FPGA output and realign those
using the BWA software in CPU. Therefore, both FPGA and
CPU are used in parallel. According to the experimental
results, more than 96 percent of the short-reads in a batch
are processed in the accelerator. The experiments are done
for different number of mismatches using short-read sam-
ples with different lengths. Although the percentage of the
short-reads processed by software is different for each sam-
ple, it does not exceed more than 4 percent. Therefore, it is
safe to assume that, less than 4 percent of the short-reads
are processed in CPU in every batch. Usually, the short-
read alignment in FPGA is the most time consuming pro-
cess. Therefore, the total processing time almost equals to
the short-read alignment time in FPGA.

4 EVALUATION

The proposed accelerator system has a host computer and
an FPGA board. The proposed accelerator is designed using
the FPGA board called DE5 [15] that contains an “Altera

TABLE 5
Processing Time Distribution in Hybrid Approach

Number of Processing time in hybrid approach (s)
mismatches Short-read Unaligned short-read
alignment - -
in FPGA extraction alignment
in CPU in CPU
0 419 0 0
1 45.8 13.0 1.9
2 53.4 13.1 26.0
3 715 13.5 75.8
4 98.0 14.0 107.1

WAIDYASOORIYA AND HARIYAMA: HARDWARE-ACCELERATION OF SHORT-READ ALIGNMENT BASED ON THE BURROWS-WHEELER TRANSFORM

FPGA| Batch1 | Batch2 |

Time

Total processing time

|:| Short-read alignment in FPGA
(8388608 short reads are processed per a batch)

Extraction and realign of the unaligned sequences using CPU

Fig. 19. Time chart of the hybrid processing. The processing in FPGA
and CPU are done in parallel for different batches of short-reads.

TABLE 6
FPGA Resource Utilization
LUT Registers ~ DSP Memory
Module %) (%) (%) Mbits (%)
PE array = 135,834 (57.8) 111,871 144 (56.2) 32.0(64.1)
DDR3 12,800 (5.5) 18,377 0(0) 0.3 (0.6)
Other 41,526 (17.7) 48,185 0(0) 1.1(2.2)
Total 190,160 (81.0) 178,433 144 (56.2) 33.4(66.9)
TABLE 7
Specifications of the Proposed Accelerator
Number of PEs 80
Memory 2 GB x 2 channels
Gonome size less than four billion bases
Maximum number 252 bases
of mismaches
Maximum short-read 252 bases
length
Maximum amount of unlimited

short-reads

Stratix V 5SGXEA7N2F45C2 FPGA” and two 2 GB DDR3-
SDRAMSs. The DE5 board is connected to the host computer
by the PCI express port. The CPU of the host processor is
Intel core i7-3960x. The operating frequency of the accelera-
tor is 85 MHz. Table 6 shows the resource usage. The FPGA
accelerator uses 81 percent of the look-up-tables (LUTs) in
the FPGA. Most of the resources are used by the PE array
while 23 percent of the LUTs are used to design the DDR3
controller, PCle controller and their data paths.

Table 7 shows the specifications of the designed accelera-
tor. Note that, the short-read length is 252 bases. It is limited
by word-length of the memory controller which is 512 bits.
However, if we use more than one word to represent a
short-read, we can increase the short-read length. For exam-
ple, using two words to represent a short-read, we can
increase the short-read length up to 507 bases. However,
this will increase the processing time slightly since we have
to access two words to read one short-read.

Fig. 20 shows the processing time against the number of
PEs. The processing time reduces when the number of PEs
increases. However, after around 40 PEs, processing time
reduces only slightly. Therefore, when designing the archi-
tecture, we have given the priority to increase the efficiency
of the memory access by allocating resources to the data
decoding, pipelined data paths and data caches. After
this goal is fulfilled, we implement many PEs as possible.
Due to the limited hardware resources, we were able to

1367

___ 10000
8000
6000
4000

2000

Processing time (s

EVIvEW PEVEVEVEVEVEVEV

0 10 20 30 40 50 60 70
Number of PEs

Fig. 20. Number of PEs versus processing time. The processing reduces
slightly after using over 40 PEs.

—~ 1000

-

Single channel
=—o0=—Dual channel

i
0--.9-_,&___8__0-_9_-0

Processing time (s

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
Number of PEs
Fig. 21. Number of PEs in a channel versus processing time. The proc-

essing time difference between the single and dual channel implementa-
tions gets wider when the number of PEs increases.

implement only 80 PEs. It is impossible to allocate more PEs
since such designed cannot be fit on to the FPGA, and the
compilation process failed to give a valid mapping result.
Fig. 21 shows the processing time of single and dual
channel implementations against the number of PEs. We
use the same number of PEs in both implementations. For
example, if the single channel uses 30 PEs, dual channel
uses 15 PEs per a channel, so that the total is 30 PEs. Accord-
ing to the results, when the number of PEs is small, both
implementations give similar processing time values. How-
ever, when the number of PEs is large, the processing time
of the dual channel is smaller than that of the single channel.
The processing time difference between the single and dual
channel implementations gets wider when the number of
PEs increases. For 48 PEs, the dual channel implementation
reduces the processing time by 8 percent. As explained in
Section 3.3.1, multiple PEs issue memory access requests
simultaneously and the arbiter grants only one request per
clock. Since the dual channel implementation uses two par-
allel arbiters, maximum of two memory access requests can
be granted per a clock cycle. For the single channel imple-
mentation that uses only one arbiter, maximum of one
memory access requests can be granted per a clock cycle. If
the number of PEs are small, the number of memory access
requests are also small. Therefore, very few requests are
granted. As a result, the processing time is almost the same
for both implementations. When the number of PEs are
large, more requests are sent to the arbiters. In this case, two
parallel arbiters grant more requests compared to the single
arbiter. When more requests are granted, more data can be
accessed. Therefore, the dual channel implementation is
faster than the single channel implementation. Since we use
a large number of PEs (80 PEs), the memory access speed is
definitely faster in the dual channel implementation.

1368

13 ® 12.8GBps
12 [@.119GBPS e
2 12
m ~
o ~
= 4 ® 4.1GBps
e
3
c 3
3 @
P
g 2
S
2 1
0

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Number of PEs

Fig. 22. Number of PEs versus memory read bandwidth. (D Theoretical
bandwidth. It is calculated using the specification of the memory control-
ler and DDR3 memory. @ Measured bandwidth using consecutive
addresses. (3 Measured bandwidth using non-consecutive addresses.
@ Measured bandwidth of the proposed accelerator against different
number of PEs.

Fig. 22 shows the memory bandwidth against the num-
ber of PEs. Initially the memory bandwidth increases line-
arly with the number of PEs. However, after using 16 PEs,
the bandwidth increases slowly and comes to almost a con-
stant value. When using 64 PEs, the memory bandwidth of
the accelerator is measured as 3.7 GBps. In Section 2, we
explained that the memory access of the short-read align-
ment is data dependent and unpredictable, so that the
addresses are non-consecutive. The memory bandwidth
using non-consecutive addresses is 4.1 GBps, and the pro-
posed accelerator achieved more than 90 percent of this
memory bandwidth. Therefore, the accelerator efficiently
utilizes the limited memory bandwidth available for non-
consecutive addressing.

However, as shown in Fig. 22, the bandwidth of non-con-
secutive addressing is only 32 percent of the theoretical
bandwidth of the DDR3 memory. Therefore, the perfor-
mance limiting factor could be either the memory controller
or the DDR3 memory. To find this out, we measured the
bandwidth using consecutive addresses and achieved 93
percent of the theoretical bandwidth. In this case, the mem-
ory addresses are sent at 200 MHz to the memory controller
and valid data are received at almost the same rate. There-
fore, we can say that the memory controller is capable of
drawing most of the performance of the DDR3 memory.
However, when using non-consecutive addresses, the valid
data are not received at the same rate, although the address
are sent to the memory controller in every clock cycle at
200 MHz. Also note that, one read from the memory con-
troller gives 512 bits of data. That is, eight 64 bit words from

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.5, MAY 2016

the DDR3, where the word length of the DDR3 is 64bits.
Therefore, the burst read access can be achieved for reading
512 bits, and it may not be the reason for the performance
limitation. Based on these observations, we could say that
the low bandwidth of the DDR3 memory for non-consecu-
tive addressing is the performance limiting factor. To solve
this problem, we have to use memories that have a larger
bandwidth for non-consecutive addressing.

4.1 Comparison with the BWA Software

We compared the performance of the proposed accelerator
against the conventional BWA software tool. The software
version is bwa-0.7.5a [16]. The software is executed on an
Intel Xeon ES-2643 (3.3GHz) processor that have four physi-
cal CPU cores. The software uses all four cores in parallel
with 100 percent CPU usage. We used the hybrid method
explained in Section 3.5, where most of the short-reads are
aligned on the FPGA accelerator while the rest are re-aligned
using the BWA software. The processing time of the pro-
posed method includes the processing time of the data trans-
fers also. It also includes the extraction and re-alignment time
of the short-reads. Note that, as explained in Section 3.5, the
extraction and re-alignment are done in parallel to the align-
ment on FPGA. The short-reads data are taken from [14] and
the reference human genome data are taken from [17].

Table 8 shows the processing time comparison for single-
end short reads. We have used different lengths of short-
reads with different number of mismatches to make the
evaluation as fair as possible. The speed-up varies from 3.8
to 15.34 times depending on the sample data. The proposed
accelerator is faster than the conventional software-based
method for all short-read samples.

Table 9 shows the processing time comparison for
paired-end short reads. There are two data files with the
same number of short-reads. We processed them in parallel
on two channels independent of each other. The total proc-
essing time is measured after all the short-reads in both files
are processed. According to the results in Table 9, the
speed-up varies from 6.91 to 21.84. The proposed accelera-
tor is faster than the conventional software-based method
for all short-read samples.

Table 10 shows the number of hits and the matching ratio
of the proposed accelerator, compared to the BWA software.
The matching ratio is defined by Eq.(3)

number of hits

Matching ratio = x 100%. (3)

number of short — reads

According to the results, the matching ratio is very similar
to the BWA software. Note that, the FPGA accelerator exe-
cutes the exact method given in Algorithm 1. Although the

TABLE 8
Processing Speed for Single-end Reads

Example Number of Short-read Processing time (minutes) Speed-up Maximum number
short-reads length BWA software Our approach (times) of mismatches
DRR013803 60,200,625 100 236.2 24.60 9.60 5
DRR000366 44,948,037 36 471 12.40 3.80 2
SRR064944 13,946,507 40 17.0 1.11 15.34 3
SRR042411 8,136,133 36 6.6 0.66 10.04 2

WAIDYASOORIYA AND HARIYAMA: HARDWARE-ACCELERATION OF SHORT-READ ALIGNMENT BASED ON THE BURROWS-WHEELER TRANSFORM

1369

TABLE 9
Processing Speed for Paired-End Reads

Example Number of Short-read Processing time (minutes) Speed-up Maximum number
short-reads length (bases) BWA software Our approach (times) of mismatches
DRR002191 126,605,856 90 371.5 30.83 12.04 4
SRR609083 59,087,904 100 482.0 22.09 21.84 37
SRR538828 20,125,197 88 68.8 7.51 9.14 13
SRR068810 1,008,910 36 4.0 0.57 6.91 8
SRR065033 277,328,866 101 2,091.8 182.25 11.47 42
TABLE 10
Matching Ratio of the Proposed Approach
Example Number of Short-read BWA software Our approach
Short-read length (bases) Number of hits =~ Matching ratio (%) Number of hits =~ Matching ratio (%)
SRR042411 8,136,133 36 7,924,046 97.39 7,675,806 94.86
SRR064944 13,946,507 40 13,763,219 98.69 13,693,678 98.19
DRR002191-1 126,605,856 90 111,497,861 88.06 111,699,118 89.80
TABLE 11
Workload Distribution in the Proposed Hybrid Method
Data sample FPGA CPU
Short-read Matching Short-read Matching Contribution to
amount % ratio (%) amount % ratio (%) total hits (%)
SRR042411 7,906,404 97.18 96.48 229,729 2.82 38.97 1.16
SRR064944 13,657,684 97.93 99.44 288,823 2.07 38.96 0.82
DRR002191-1 122,783,538 96.98 92.01 3,822,318 3.02 87.17 2.93

BWA software is based on Algorithm 1, it employs some
changes to increase the efficiency. This has caused the slight
difference in the matching ratio.

Table 11 shows the workload distribution among FPGA
and CPU in the proposed hybrid method. According to the
results, FPGA processes more than 96 percent of the short-
reads while CPU processes less than 4 percent. The contri-
bution to the total hits by the re-alignment in CPU is less
than 3 percent. That means, over 97 percent of the hits are
generated by the FPGA accelerator. If the number of input
short-reads are as large as several billions, the output of the
FPGA alone may enough to construct the genome. In such
cases, we can skip using software. If we use FPGA only, we
can reduce the power consumption also, since FPGAs con-
sume less power compared to high-end CPUs.

The mapping quality of a short-read refers to the phred-
scaled posterior probability that the aligned position of the
short-read is incorrect [18], [19]. Therefore, higher the map-
ping quality is, lower the probability of the aligned position
been incorrect. Mapping quality is determined by the align-
ment algorithm, and different algorithms use different func-
tions to calculate it. In BWA, the mapping quality is
determine by considering several factors such as the base
quality of a short-read (this is determined by sequencer
at the process of extracting a short-read), sensitivity of
the algorithm, types and the number of mismatches, multi-
ple aligned positions, (or multi-hits) etc. We have used the
same method using in the BWA software to calculate the

mapping quality. Therefore, both the BWA software and
the proposed accelerator have the same mapping quality.

4.2 Comparison with Other FPGA-Based
Accelerators

Recently, many FPGA-based accelerators have been pro-
posed for short-read alignment. Some of the most recent
works are [20], [21], [22], [23], [24] and [25]. The method pro-
posed in [20] can be used only for very small genomes such
as “E. Coli” [26]. The memory requirement for a human
genome is so large that it does not fit to any FPGA board.
The work in [21] reports a processing time of 34 seconds
using eight FPGAs to align 50 million short-reads of 76
bases long. In this method, 22 GB of the reference human
genome data is divided to eight partitions and each parti-
tion is stored in a separate FPGA. All eight FPGAs are
required to align the short-reads, so that the processing
speed per an FPGA is small. Table 12 shows the comparison
with [22] that uses Virtex 7 FPGA. The experimental results
are obtained using one million short-reads of 36 bases long.
Although we achieved over three times of speed-up com-
pared to [22], this comparison may not be very reliable since
the input short-read sample of [22] is not given. As shown
in Tables 8 and 9, the processing speed varies heavily with
the experimental conditions such as the input short-read
data, number of mismatches, etc.

The works in [23], [24] have mentioned the experimental
conditions and sample data files, so that we compare our

1370

TABLE 12
Comparison with the Work in [21]

Experimental conditions Processing time (s)
Short-read | Number of Work in Our Speed-up
length mismatches [22] approach
0 10 2.7 3.67
36 bases 1 12 3.8 3.19
2 15 4.8 3.10

work with those. The work in [23] uses the first one million
short-reads from the data sample “SRR385773-1.fastq”.
According to the results in Table 13, our proposed method
is 6.2 times faster. Although our matching ratio is smaller
than that of [23], it is almost the same or even better com-
pared to other software-based approaches such as BFAST,
BOWTIE and BWA.

Table 14 shows the comparison with [24]. It uses the first
50 million short-reads from the data sample “SRR385773-1.
fastq”. The maximum mismatches allowed in [24] is just
one. Therefore, we conduct two comparisons, the first one is
for zero mismatches (exact matching), and the second one
is for one mismatch. According to the results, our approach
is 2.29 times faster for exact matching and 2.85 times faster
for “one mismatch alignment” compared to [24] that uses
the “Xilinx Virtex-6 XC6VLX240T” as the FPGA. However,
when a high-end Xilinx Virtex-7 “XC7VX690T” is used as
the FPGA, the speed-up in exact matching is larger than
that of our approach. However, for “one mismatch
alignment” our approach is still better which gives 1.07
speed-up compared to [24]. Unfortunately, the work in [24]
used only a single short-read sample in its experiments. An
extensive evaluation under different conditions using dif-
ferent data samples is required to have a fair comparison.
Moreover, the proposed accelerator can handle multi-mis-
matches and the processing time does not increase exponen-
tially. Main reason for this is the hybrid processing method
discussed in Section 3.5, where we process some of the
unaligned short-reads that take unusually large processing
time, using the BWA software in CPU.

The accelerator proposed in [25] is a major contribution
of short-read alignment using FPGAs. In Table 15, we com-
pare our work with [25] considering the processing speed,
hardware resources and the scope of the implementation. In
[25], the processing speed is measured in-terms of “bases
aligned per second (baps)”. Equation (4) shows how to cal-
culate baps

short — read size x number of short — reads
baps = - - . @
Processing time (seconds)

According to the comparison, the accelerator proposed in
[25] has a larger baps value compared to ours when the max-
imum mismatches is two. We achieved a larger baps value
for the exact matching. However, we cannot compare it
with [25] since it has not done such an experiment. The baps
value of the proposed accelerator drops slightly when the
number of mismatches are more than 2. However, we can-
not compare this performance with [25] since it is not com-
patible of such large number of mismatches. Using the baps
value to measure the performance may not be fair due to
the following reasons. One reason is that, Eq.(4) assumes
that a linear relationship exists between the number of bases

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.5, MAY 2016

TABLE 13

Comparison of the Processing Time and the Matching Ratio
Method Processing Speed-up Matching
time (s) (times) ratio (%)

BFAST (12 16,428.0 0.004 95.35

BOWTIE (12 154.0 0.40 92.55

BWA @ 133.3 0.46 95.36

Work in [23] V) 61.9 1 99.48

Our approach 10.0 6.2 95.39

() Data are taken from [23].
2) Software based approach.

(short-read size) and the processing time. More bases could
increase the search space and time exponentially, so that a
linear processing time increase may not be possible.
Another reason is that, the number of mismatches are not
considered in Eq.(4). Therefore, it is difficult to compare
two methods using baps value alone unless the short-read
sample and the number of mismatches are the same.

The major performance bottleneck in the proposed accel-
erator is the memory bandwidth. If we increase the memory
bandwidth, we could be able to achieve a larger processing
speed. To use such larger bandwidths, we need wider data
paths also. Therefore, we have to increase both the memory
bandwidth and the logic area to increase the processing
speed. The number of logic elements in the high-end FPGA
(XC7VX690T) used in [24] is three times larger than the
FPGA used by us. The number of logic elements in the
FPGA used in [25] is also two times larger than the one
used by us, and the memory of the FPGA board in [25] is six
times larger than ours. However, neither [24] nor [25] does
mention the memory bandwidth. Therefore, even [25] gives
a slightly better speed-up for the exact matching and [25]
gives a better baps value, it is very difficult to say those
accelerators are better than ours without evaluating under
the same conditions.

The maximum number of mismatches of the proposed
method is 252 compared to 0 to 2 in most other methods such
as [25]. Since, many short-read samples have few tens of mis-
matches, our method is more practical and have a wider cov-
erage. Moreover, the processing time does not increase
exponentially with the number of mismatches, which is a
great advantage compared to other works. Selecting the tol-
erant number of mismatches is a difficult problem. Consider-
ing a large number of mismatches may increase the matching
ratio (number of hits), but also may decrease the mapping
quality. (Note that, the mapping quality depends on several
factors. For some short-reads, increasing the number of

TABLE 14
Comparison with the Work in [24]

FPGA specification Processing time (s)
FPGA Logic Block Number of
elements RAMs mismatches
(kb) 0 1 2 3
Work Virtex-7 693,120 52920 97 158 - -
in [24] Virtex-6 = 241,152 14976 296 419 - -
Ours Stratix V.. 234,720 51,200 129 147 160 173

WAIDYASOORIYA AND HARIYAMA: HARDWARE-ACCELERATION OF SHORT-READ ALIGNMENT BASED ON THE BURROWS-WHEELER TRANSFORM 1371
TABLE 15
Comparison with the Work in [25]
Work in [25] Our approach

Accelerator board MAX3 DE5
FPGA Xilinx Virtex-6 SX475T Altera Stratix V 55SGXEA7N2F45C2
Processing Number of mismatches used in experiments 2 2to42
speed Size of the short-reads used in experiments 75 bases 36 ~ 101 bases

Speed (Maximum mismatches > 2) not possible 1.04 ~ 8.37 million (baps)

Speed (Maximum mismatches = 2) 13.5 million (baps) 1.12 ~ 8.75 million (baps)

Speed (Maximum mismatches = 0) not given 5.21 ~ 17.45 million (baps)
Hardware Logic elements 476,160 234,720
resources Block RAM 38,304 kb 51,200 kb

Memory on board 24 GB 4GB

Theoretical memory bandwidth not given 12.8 GBps x 2 channels
Scope of the Genome type used in experiments human human
implementation =~ Maximum number of mismatches up to2 up to 252

Maximum short-read length 100 bases 252 bases

mismatches may also increases the mapping quality as well).
In order to construct the whole genome, we need more hits.
However, if the mapping qualities of the hits are low, the
constructed genome may not be accurate. Therefore, it is nec-
essary to take a balance between the quality and the quantity.
Usually, many aligners including BWA software have the
option of changing the number of mismatches. In the default
settings of the BWA software, it allows some percentage of
base errors. Usually, setting the proper amount of mis-
matches is done by the user and we allowed that option in
the proposed accelerator. If the users have not changed it,
the default settings, which are the same as in the BWA soft-
ware, will be applied.

5 CONCLUSION

We have proposed a hardware accelerator architecture for
short-read alignment. The processing speed of the proposed
accelerator is larger than that of the software implementa-
tion for all experimented short-read samples. The reason
behind this is the efficient memory access and parallel proc-
essing using FPGA hardware. The proposed accelerator has
a similar or better processing speed compared to many
other FPGA-based acceleration methods. The biggest
advantage of the proposed method compared to other
FPGA-based methods is the degree of freedom for short-
read alignment. Most other works are limited to exact
matching or less than two mismatches with less than 100
bases. Since increasing the number of mismatches could
increase the processing time exponentially, many other
methods do not consider such large number of mismatches.
Our method can process up to 252-base long short-reads
with 252 mismatches. The short-read length could be
increased further by allowing a small processing time
increase. Moreover, the processing time does not increase
exponentially with the number of mismatches.

It is possible to increase the processing speed further by
choosing the latest FPGAs such as Altera Stratix 10 with
more LUTs and memory bandwidth. Multiple FPGAs con-
nected by fiber optic cables can be used to increase the proc-
essing speed massively. Since we use FPGA, we can update
the accelerator to be compatible with the future versions of
BWA by hardware reconfiguration. Therefore, the proposed

FPGA accelerator has a great potential for a large processing
speed increase.

ACKNOWLEDGMENTS

This work is partially supported by MEXT KAKENHI Grant
Numbers 15K15958 and 24300013.

REFERENCES

[1] L. Liu, Y. Li, S. Li, N. Hu, Y. He, R. Pong, D. Lin, L. Lu, and
M. Law, “Comparison of next-generation sequencing systems,”
J. Biomed. Biotechnol., vol. 2012, pp. 1-11, 2012.

[2] H.Li. (2008). Maq: Mapping and assembly with qualities [Online].
Available: http:/ /maq.sourceforge.net/

[3] B.Langmead, C. Trapnell, M. Pop, and S. Salzberg, “Ultrafast and
memory-efficient alignment of short DNA sequences to the
human genome,” Genome Biol., vol. 10, no. 3, p. R25, 2009.

[4] H.Liand R. Durbin, “Fast and accurate short read alignment with
Burrows-wheeler transform,” Bioinfomatics, vol. 25, no. 14,
pp- 1754-1760, 2009.

[5] N.Homer, B. Merriman, and S. F. Nelson, “BFAST: An alignment
tool for large scale genome resequencing,” PLoS ONE, vol. 4,
no. 11, p. €7767, 2009.

[6] S. Altschul, W. Gish, W. Miller, E Myers, and D Lipman, “Basic
local alignment search tool,” J. Molecular Biol., vol. 215, no. 3,
pp. 403-410, 1990.

[71 R.Li, C. Yu, Y. Li, T. Lam, S. Yiu, K. Kristiansen, and]. Wang,
“SOAP2: An improved ultrafast tool for short read alignment,”
Bioinformatics, vol. 25, no. 15, p. 1966, 2009.

[8] M. Burrows and D. J. Wheeler, “A block-sorting lossless data com-
pression algorithm,” Digital Equipment Corporation, Palo Alto,
CA, USA, Tech. Rep. 124, 1994.

[9] W. Carter, K. Duong, R. H. Freeman, H. Hsieh, J. Y. Ja,]. E. Maho-

ney, and L. T. Ngo, “A user programmable reconfigurable gate

array,” in Proc. CICC, 1986, pp. 233-235.

H. M. Waidyasooriya, M. Hariyama, and M. Kameyama,

“Implementation of a custom hardware-accelerator for short-read

mapping using Burrows-Wheeler alignment,” in Proc. 35th Annu.

Conf. Eng. Med. Biol. Soc., 2013, pp. 651-654.

H. M. Waidyasooriya, M. Hariyama, and M. Kameyama,

“FPGA Accelerator for DNA Sequence alignment based on an effi-

cient data-dependent memory access scheme,” in Proc. 5th Int.

Symp. Highly-Efficient Accelerators Reconfigurable Technol., 2014,

pp- 127-130.

P. Ferragina and G. Manzini, “Opportunistic data structures with

applications,” in Proc. 41st Symp. Found. Comput. Sci., 2009,

pp- 390-398.

H. S. Warren, Hacker’s Delight, 2nd ed. Reading, MA, USA: Addi-

son-Wesley, 2012, ch. 5.

[Online]. Available:

2015.

[10]

[11]

[12]

[13]

[14] https://trace.ddbj.nig.ac.jp/DRASearch/,

1372

[15]

[16]
[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.5, MAY 2016

[Online]. Available: https://www.altera.com/support/training/
university/de5.html, 2012.

[Online]. Available: http:/ /bio-bwa.sourceforge.net/, 2013.
[Online]. Available: http://hgdownload.cse.ucsc.edu/golden-
path/hg18/chromosomes/, 2006.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, . Ruan, N. Homer,
G. Marth, G. Abecasis, R. Durbin and 1000 Genome Project Data
Processing Subgroup, “The Sequence alignment/map (SAM) for-
mat and SAMtools,” Bioinformatics, vol. 25, no. 16, pp. 2078-2079,
2009.

“Sequence Alignment/Map Format Specification,” The SAM/
BAM Format Specification Working Group, 2015.

Y. Chen, B. Schmidt, and D. L. Maskell, “A hybrid short read map-
ping accelerator,” BMC Bioinformat., vol. 14, p. 67, 2013.

C. B. Olsonl, M. Kim, C. Clausonl, B. Kogonl, C. Ebeling, S.
Hauckl, and W. L. Ruzzo, “Hardware acceleration of short read
mapping,” in Proc. Int. Symp. Field-Programmable Custom Comput.
Mach., 2012, pp. 161-168.

Y. Xin, B. Liu, B. Min, W. X. Y. Li, R .C. C. Cheung, A. S. Fong, and
T. F. Chan, “Parallel architecture for DNA sequence inexact
matching with Burrows-Wheeler Transform,” Microelectron. .,
vol. 44, pp. 670-682, 2013.

Y. Sogabe and T. Maruyama, “An Acceleration Method of Short
Read mapping using FPGA,” in Proc. Int. Conf. Field-Programmable
Technol., 2013, pp. 350-353.

Y. Sogabe and T. Maruyama, “FPGA acceleration of short read
mapping based on sort and parallel comparison,” in Proc. Int.
Conf. Field Programmable Logic Appl., 2014, pp. 1-4.

J. Arram, K.H. Tsoi, Wayne Luk, and P. Jiang, “Hardware acceler-
ation of genetic sequence alignment,” in Proc. 9th Int. Conf. Recon-
figurable Comput.: Architectures, Tools Appl., 2013, pp. 13-24.

F. R. Blattner, G. Plunkett III, C. A. Bloch, N. T. Perna, V. Burland,
M. Riley, J. Collado-Vides,]J. D. Glasner, C. K. Rode, G. F.
Mayhew, J. Gregor, N. W. Davis, H. A. Kirkpatrick, M. A. Goeden,
D. J. Rose, B. Mau, and Y. Shao, “The complete genome sequence
of Escherichia coli K-12,” Science, vol. 277, no. 5331, pp. 14531462,
1997.

ol - i

Hasitha Muthumala Waidyasooriya received
the BE degree in information engineering, and
the MS and PhD degrees in information sciences
from Tohoku University, Japan, in 2006, 2008,
and 2010, respectively. He is currently an assis-
tant professor with the Graduate School of
Information Sciences, Tohoku University. His
research interests include reconfigurable com-
puting, processor architectures for big-data proc-
essing, and high-level design methodology for
VLSIs. He is a member of the IEEE.

Masanori Hariyama received the BE degree in
electronic engineering, and the MS and PhD
degrees in information sciences from Tohoku
University, Sendai, Japan, in 1992, 1994, and
1997, respectively. He is currently an associate
professor with the Graduate School of Informa-
tion Sciences, Tohoku University. His research
interests include real-world applications such
as robotics and medical applications, big data
applications such as bio informatics, high-
performance computing, VLS| computing for

real-world application, high-level design methodology for VLSIs, and
reconfigurable computing. He is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

