
OpenCL-Based FPGA-Platform for Stencil
Computation and Its Optimization Methodology

Hasitha Muthumala Waidyasooriya,Member, IEEE, Yasuhiro Takei, Shunsuke Tatsumi,
and Masanori Hariyama,Member, IEEE

Abstract—Stencil computation is widely used in scientific computations and many accelerators based on multicore CPUs and GPUs
have been proposed. Stencil computation has a small operational intensity so that a large external memory bandwidth is usually
required for high performance. FPGAs have the potential to solve this problem by utilizing large internal memory efficiently. However, a
very large design, testing and debugging time is required to implement an FPGA architecture successfully. To solve this problem, we
propose an FPGA-platform using C-like programming language called open computing language (OpenCL). We also propose an
optimization methodology to find the optimal architecture for a given application using the proposed FPFA-platform. According to the
experimental results, we achieved 119 ! 237 Gflop/s of processing power and higher processing speed compared to conventional
GPU and multicore CPU implementations.

Index Terms—OpenCL for FPGA, high performance computing, stencil computation, FDTD

Ç

1 INTRODUCTION

STENCIL computation [1] is an iterative method where a
grid is updated in each iteration according to a fixed

computation pattern. As shown in Fig. 1, a stencil is a shape
that consists of neighboring grid points called cells. The typ-
ical computation pattern is in the form of a sum of products.
Stencil computation is widely used in scientific computa-
tions such as fluid dynamics [2] simulations, electromag-
netic simulations [3], iterative solvers [4], [5], etc. It is one of
the most researched subjects and yet requires improve-
ments in many areas.

Many works have been done already to accelerate stencil
computation using parallel processing capabilities of the
recent multicore CPUs and GPUs. However, stencil compu-
tation has a small operational intensity [6] so that the per-
formances are usually limited by the external memory
bandwidth. The operational intensity is defined as the ratio
of floating point operations to the total data movement.
Temporal blocking is used in CPUs [7], [8] and GPUs [9],
[10], [11] to increase the performance of the stencil computa-
tion. It is a technique that uses the cache or the internal
memory to re-use the data between consecutive iterations
without accessing the external memory. Recently, FPGA
accelerators have been successfully used to increase the per-
formance of stencil computation [12], [13]. The large amount
of registers in the FPGAs are utilized to transfer the data of
one iteration to the next internally without accessing the

external memory. This method increases the operational
intensity and also the processing speed.

Hardware design language (HDL) is usually used to
design FPGA accelerators. HDL-based design requires an
extensive knowledge about hardware and also a large
design time due to clock-cycle-level simulations, testing and
debugging. It is also very challenging to implement I/O
interfaces such as memory and PCIe for the applications to
transfer data and to communicate with the outside world
(off-chip memory, host PC, etc). With these limitations,
FPGAs are rarely used in actual scientific computation envi-
ronments irrespective of their potentially superior perfor-
mance compared to multicore CPUs and GPUs.

To overcome those severe disadvantages in HDL-based
design, open computing language (OpenCL) for FPGA has
been introduced [14]. The FPGA accelerator design is done
using a C-like programming environment. The I/O interfaces
are automatically generated.Moreover, OpenCL is a complete
framework that includes firmware, software and device driv-
ers to connect, control and transfer data to and from the
FPGA. It supports different FPGA boards by the means of a
board support package (BSP). It even comes with a software-
based emulator for testing and debugging. There are some
very recent works in [15], [16] that propose OpenCL-based
FPGAs architectures. However, none of those are about sten-
cil computation. One rare attempt in [17] to design an FPGA
accelerator for stencil computations using OpenCL was not a
great success due to low performance.

In our previous works in [18], we proposed an OpenCL-
based FPGA accelerator for 2-D finite-difference time-
domain (FDTD) computation. In this paper, we propose an
OpenCL-based FPGA-platform for stencil computations
that cover a wide range of applications. We also propose an
optimization methodology to find the optimal architecture
for any OpenCL compatible FPGA board. We have evalu-
ated the proposed platform for both 2-D and 3-D stencil

" The authors are with the Graduate School of Information Sciences, Tohoku
University, Aoba 6-6-05, Aramaki, Aoba, Sendai, Miyagi 980-8579, Japan.
E-mail: {hasitha, hariyama}@tohoku.ac.jp, {takei, s_tatsumi}@ecei.tohoku.
ac.jp.

Manuscript received 7 Mar. 2016; revised 20 Sept. 2016; accepted 29 Sept.
2016. Date of publication 4 Oct. 2016; date of current version 12 Apr. 2017.
Recommended for acceptance by R. Cumplido.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2016.2614981

1390 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 5, MAY 2017

1045-9219! 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

computations in single-precision and achieved better per-
formance compared to multicore CPUs and GPUs. We also
achieved more than 60 percent of the peak performance pro-
vided by the FPGA. Although the proposed method can be
applied for the double-precision computation, the perfor-
mance using the current generation FPGAs is not good com-
pared to the single-precision computation.

2 RELATED WORKS

Stencil computation is a grid-based iterative computation
method that has a large number of parallel operations. Fig. 2
shows the computations in two iterations using an N #M
grid. There is a data dependency for the computations
among multiple iterations and no data dependency for the
computations in the same iteration. Therefore, we can com-
pute the cells in the same iteration in parallel as shown in
Fig. 2a and we call this “cell-parallel” computation. The
number of cells computed in parallel in the same iteration is
called the “degree of cell-parallelism”. Fig. 2b shows the
computations of two consecutive iterations. To compute
CellTþ1

1;1 in the iteration T þ 1, data of its surrounding cells

belongs to the iteration T are required. When the computa-
tion of CellT2;2 is in progress in the iteration T , all the data

required for the computation of CellTþ1
1;1 are available. There-

fore, the computations of CellT2;2 and CellTþ1
1;1 can be done in

parallel. We call this “iteration-parallel” computation. The
number of iterations computed in parallel is called the
“degree of iteration-parallelism”.

2.1 CPU/GPU Implementations
The most straightforward stencil computation method is to
use cell-parallel iteration-serial computation. To implement
this method successfully, we have to access the data in paral-
lel. However, the grid size is usually very large and it is not
possible to store the data of one whole iteration in the inter-
nal memory. Therefore, the data are written to the external
memory and accessed in each iteration. As a result, the per-
formance is restricted by the external memory bandwidth.
The GPU implementations [19] give better results due to
their largememory bandwidth compared tomulticore CPUs.

Temporal blocking can be used to remove the external
memory bandwidth bottleneck by offloading some of the
data to the cache or the internal memory. There are many
temporal blocking techniques such as split tiling [10], over-
lapped tiling [9], [20], diamond tiling [21], time skewing
[22], [23], multicore-aware wavefront temporal blocking
[24], [25], etc. Different techniques can be suitable for

different devices and significant improvements can be
achieved for some applications.

2.2 FPGA Implementations
The cell-parallel computation is not suitable for FPGAs due
to smaller external memory bandwidth. The overlapped til-
ing method has been implemented on FPGAs in [17], [26],
[27]. However, the performances are restricted by the
redundant computations in large overlapped regions. The
most successful FPGA implementations such as [12], [13],
and [28] use iteration-parallel computation by caring data
between multiple iterations through shift-register arrays.
Since FPGAs contain a large amount of registers compared
to CPUs and GPUs, very long shift-register arrays can be
implemented.

The research in [13] is the most comprehensive and
recent work done on FPGA-based stencil computation. It
proposes a scalable custom FPGA accelerator. It is re-pro-
grammable for different stencil computations using an
instruction set. However, the data paths and the connec-
tions between the processing elements (PEs) are fixed.
Therefore, re-programming it for complex stencil computa-
tions such as FDTD [3] could be a difficult task due to the
data dependencies and the boundary conditions exist
among electric and magnetic field computations. Additional
pipeline registers are required to solve the data dependen-
cies and conditional branches are required to implement
various boundary conditions. To implement such changes,
re-designing of the entire data path is required. Moreover,
the evaluation in [13] only considers Jacobi computation,
and the performance of the other types of stencil computa-
tions are not clear.

The research in [28] is another recent work that proposes
an FPGA-based stencil computation accelerator and its opti-
mization methodology. It uses a high level design tool
called MaxCompiler [29]. However, [28] has not done any
experiments to compare their results with any other works
that use FPGAs, GPUs or CPUs. Moreover, MaxCompiler
can be used in very limited number of FPGA environments
that are usually the products of the Maxeler Technologies.

Fig. 1. Stencil. Computation using a four-point 2-D stencil. The computa-
tions of the cells in a new iteration are done using the computation
results of the cells in the previous iteration.

Fig. 2. Computations in two iterations using anN #M grid.

WAIDYASOORIYA ET AL.: OPENCL-BASED FPGA-PLATFORM FOR STENCIL COMPUTATION AND ITS OPTIMIZATION METHODOLOGY 1391

3 OPENCL-BASED STENCIL COMPUTATION

ARCHITECTURE

OpenCL is a framework to write programs to execute across
heterogeneous parallel platforms [30]. It views a system as a
number of computing devices (OpenCL devices) connected
to a host. The host is usually a CPU while the devices can be
any of OpenCL capable CPUs, GPUs, FPGAs, etc. A device
contains one or more compute units and such compute units
contain one or more processing elements. Kernels are the
functions that are executed on an OpenCL device. The unit of
the concurrent execution of a kernel is called a work item.
Work items are organized intowork groups. The entire collec-
tion of work items is called the NDrange, where work groups
andwork items can be divided into different dimensions.

Since OpenCL-based FPGA design is a very recent topic,
we briefly discuss how the “Altera offline compiler (AOC)”
converts an OpenCL code in to an FPGA design. The most
important and significant difference between OpenCL for
FPGA and OpenCL for CPU/GPU is that, AOC distin-
guishes a kernel executed by a single work item from that of
multiple work items. In FPGAs, a kernel executed with no
reference to the work item ID, or a kernel declared with the
“task” attribute is called a “single work item kernel”. On
the other hand, a kernel executed by multiple work items is
called an “NDrange kernel”. Fig. 3 shows these two types of
kernels. The execution of NDrange kernel shown in Fig. 3a
is similar to GPU processing. This is very effective when the
work items are completely independent. However, when
there are data dependencies, users have to explicitly insert
barriers at different stages of the execution so that every
work item must complete their operations up to the barrier
stage, before proceeding to the next stage. This synchroniza-
tion mechanism costs a lot of hardware and decreases the
performance. In single work item kernels, the data depen-
dent operations are performed one after the other as shown
in Fig. 3b. The parallelism is achieved by pipelining. AOC
analyses loops and generates pipeline stages automatically
for different operations in the loop. When there are nested
loops, we can unroll the inner-loops using “#pragma
unroll” directive. When the inner-loops are unrolled, proc-
essing elements are generated for each loop-iteration for
parallel processing. AOC also generates a separate hard-
ware for each conditional branch so that the branches are

processed in parallel. This is a major difference compared to
CPU or GPU based OpenCL implementations. We use sin-
gle work item kernels since there are data dependencies
among iterations as explained in Section 2.

In the proposed FPGA-platform, we mainly use iteration-
parallel computation where multiple iterations are proc-
essed in parallel. The degree of iteration-parallelism is given
by d. We can also use cell-parallel computation similar to
GPUs and CPUs. Note that, only the adjacent cells are proc-
essed in parallel. The degree of cell-parallelism is given by
Pcell. Increasing either d or Pcell increases the performance.
We use vector data types such as float2; float4; . . . in the
OpenCL code and process all data in a vector in one step
using SIMD computation on FPGA. To process multiple
cells, we have to access multiple data in parallel. That
requires more external memory bandwidth. Therefore, we
can only increase Pcell until the required memory band-
width reaches its limit. Increasing Pcell beyond the maxi-
mum bandwidth does not increase the performance.

Fig. 4 shows the FPGA-platform for stencil computation.
It consists of a DRAM and d “pipelined computation mod-
ules” (PCMs). Each PCM process the stencil computation
belonging to one iteration. A PCM consists of shift-registers
and multiple processing elements. The computation of a cell
is done in a PE. Multiple PEs in a PCM compute multiple
cells belonging to the same iteration in parallel. Shift-regis-
ters are used to transfer the computed data of one iteration to
the next iteration.Multiple PEs are used to process Pcell num-
ber of cells per an iteration in parallel. Based on this platform,
we design the architecture for a given stencil computation
application by determining the values of d and Pcell and also
the computation of a PE. Therefore, d and Pcell are the design
parameters. Please note that, since we used only the OpenCL
code and not the HDL code, we cannot confirm that the com-
piler-generated accelerator is exactly the same as the one in
Fig. 4. However, referring the OpenCL for FPGA program-
ming manual, optimization guide and other reference mate-
rials [31] and also observing the behavior of the accelerator,
we can say that the architecture of the compiler-generated
accelerator must be very similar to the one shown in Fig. 4.

Algorithm 1 shows the pseudo code of the stencil compu-
tation accelerator (computation kernel). Shift-registers are
generated according to the code from lines 6 to 13. The com-
putations in each PCM are defined from lines 14 to 29. All

Fig. 3. Different kernel execution models in OpenCL for FPGA. (a) Since
the parallelism is exploited by executing the same operation on multiple
data simultaneously, this model is suitable when there are no data
dependencies. (b) Since the parallelism is exploited by executing multi-
ple operations on different data simultaneously, this model is suitable
when there are data dependencies.

Fig. 4. The FPGA-platform for stencil computation. A PCM is a pipelined
computation module and d PCMs are used to compute d iterations in
parallel.

1392 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 5, MAY 2017

the loops are unrolled completely to produce an output in
every clock cycle. As shown in line 22, the computation of
each PCM is delayed for a certain number of clock cycles
until all required inputs are stored in the shift-registers.

Algorithm 1. Pseudo Code of the Stencil Computation
Kernel

1 __kernel stencil (din, dout)
2 shiftreg[d][size];
3 result[size];
4 Loop iterations = x;
5 while count 6¼ x do
6 #pragma unroll
7 for i ¼ ðsize' 1Þ ! i ¼ 1 do
8 #pragma unroll
9 for j ¼ 0 ! j ¼ d do
10 shiftreg[j][i] = shiftreg[j][i' 1];
11 end
12 end
13 shiftreg[0][0] = din[count];
14 #pragma unroll
15 for j ¼ 0 ! j ¼ ðd' 1Þ do
16 //Boundary conditions
17 V1 = (condition 1) ? shiftreg[j][2] : 0.0;
18 V2 = (condition 2) ? shiftreg[j][N þ 1] : 0.0;
19 ...
20 //Computation
21 result[j] = c1:V1 þ c2:V2 þ :::;
22 if count > ðjþ 1Þ # latency then
23 if j ¼¼ ðd' 1Þ then
24 dout[count] = result[j];
25 else
26 shiftreg[jþ 1][0] = result[j];
27 end
28 end
29 end
30 countþþ;
31 end
32 end
33

4 OPTIMIZATION METHODOLOGY

4.1 Processing Time Estimation
Fig. 5 shows the time-chart of the stencil computation. The
total processing time composed of the data transfer time,
the computation time and the control overhead by the host.

The total processing time (ttotal) is given by Eq. (1) where
Itotal is the total number of iterations and d is the degree of
iteration-parallelism. That is the number of iterations proc-
essed in the FPGA during a kernel execution

ttotal ¼ tHF þ Itotal
d

ðtctrl þ tcompÞ þ tFH: (1)

The measured data transfer times from host-to-FPGA and
FPGA-to-host are given by tHF and tFH respectively. The data
transfer is done only at the start and the end of the computa-
tion. The control overhead per kernel execution by the host is
given by tctrl. These processing times do not depend on the
design parameters d and Pcell. However, the computation
time tcomp (or the kernel execution time) varieswith the design
parameters.

To estimate the computation time, we consider the fol-
lowing two scenarios.

1) Scenario 1: The memory access is faster than the
computation. The computation pipeline does not
stall due to the memory access such as waiting for
the inputs and outputs.

2) Scenario 2: The memory access is slower than the
computation. The computation pipeline stalls until
the data are read from or written to the memory.

Therefore, it is important to identify the correct scenario
that an accelerator belongs to. This can be done by compar-
ing the required memory bandwidth of an accelerator with
the maximum practical memory bandwidth of the FPGA
board. The required memory bandwidth Breq is given by

Breq ¼ ðSinput þ SoutputÞ # Pcell # fcore: (2)

The sizes (in bytes) of the input and output data accessed in
one clock cycle are given by Sinput and Soutput respectively. The
clock frequency of the accelerator is given by fcore and the
degree of cell-parallelism is Pcell. Note that, estimating fcore is
also a difficult task and we will discuss this in Section 5. The
maximumpractical memory bandwidthBprac is given by

Bprac ¼ Sbus # fmem #Nmem # Ecoef : (3)

The memory controller bus width (in bytes), the memory
controller frequency and the number of memory banks
(modules) accessed in parallel are given by Sbus, fmem and
Nmem respectively. The efficiency coefficient of the memory
controller is given by Ecoef . The theoretical memory band-
width of the FPGA board is Sbus # fmem #Nmem. Since no
memory controller has 100 percent efficiency, the practical
maximum memory bandwidth is smaller than the theoreti-
cal one. To calculate Ecoef , we can simply divide the theoret-
ical processing time by the measured processing time to
access a large amount of data. If Breq < Bprac, the accelera-
tor belongs to scenario 1. If Breq) Bprac, the accelerator
belongs to scenario 2. The computation time of one kernel
execution is given by Eq. (4), where tScenario1comp and tScenario2comp

are the computation times in scenarios 1 and 2 respectively

tcomp ¼
tScenario1comp when Breq < Bprac

tScenario2comp when Breq) Bprac

8
<

: : (4)

Fig. 5. Time chart of the stencil computation on FPGA.

WAIDYASOORIYA ET AL.: OPENCL-BASED FPGA-PLATFORM FOR STENCIL COMPUTATION AND ITS OPTIMIZATION METHODOLOGY 1393

We first explain how to estimate the computation time
per kernel execution when the accelerator belongs to sce-
nario 1. We consider an N #M grid and a p# q stencil as
shown in Fig. 6a. For the simplicity, we consider a rectan-
gular stencil. Since a stencil computation is completed in
every clock cycle after the pipeline is filled, the computa-

tion time equals to 1
Pcell

#N #M þ pipeline latency
n o

clock

cycles. The degree of cell-parallelism is given by Pcell. The
pipeline latency refers to the number of clock cycles
required to write the first computation result to the exter-
nal memory. To estimate the pipeline latency, let us con-
sider the different tasks we have to go through in order
to do the stencil computation. As shown in Fig. 5, data
are read from the external memory, and go through a
series of shift-registers and PEs corresponding to multiple
iterations. After that, the computed data are written to
the external memory. The number of clock cycles spent in
the shift-registers is the dominant component of the pipe-
line latency. Usually, the length of the shift-registers is
several thousands, while the computation cycles are less
than a few tens. Since the memory access is required only
at the start and the end, it is very small compared to the
time spent on shift-registers. Therefore, we consider only
the number of clock cycles spent on the shift-registers to
estimate the pipeline latency.

Fig. 6b shows how the sequentially read data are
stored in shift-registers. For example, to compute Celltþ1

1;1 ,
we have to store all data in Cellt0;0 ! Cellt2;2. Another reg-

ister is required to store the newly read value of Cellt3;3.

Therefore, ðq ' 1ÞN þ pþ 1 shift-registers are required
per a PCM to compute a p# q stencil. The computation

of the first cell (Celltþ1
0;0) is delayed by q'1ð Þ

2 #N þ pþ1
2 þ 1

cycles. When Pcell number of data are read sequentially
and d iterations are computed, the pipeline latency is

d ðq'1ÞNþpþ1
2#Pcell

þ 1
! "

. The computation time in scenario 1 is

given by

tScenario1comp ¼ 1

Pcell # fcore
#

d
ðq ' 1ÞN þ pþ 1

2
þ Pcell

$
þN #M

% &
:

(5)

We next explain how to estimate the computation time
per kernel execution when the accelerator belongs to sce-
nario 2. In this scenario, an output is not produced in every
clock cycle due to slow memory access. For example, let us
assume that Breq is twice as large as Bprac. In this case, two
clock cycles are required to access one data set (input and
output). Therefore, an output is written in every two clock
cycles, and the processing time is two times larger than that
in scenario 1. In general case, the processing time is
Breq=Bprac times larger than that in scenario 1. The computa-
tion time in scenario 2 is given by

tScenario2comp ¼ Breq

Bprac
1

fcore # Pcell
#

d
ðq ' 1ÞN þ pþ 1

2
þ Pcell

$
þN #M

% &
:

(6)

Note that, if we substitute Breq and Bprac from Eqs. (2) and
(3) to Eq. (6), we can rewrite it as

tScenario2comp ¼ Sinput þ Soutput

Sbus # fmem #Nmem # Ecoef
#

d
ðq ' 1ÞN þ pþ 1

2
þ Pcell

$
þN #M

% &
:

(7)

From Eq. (7), we can see that tScenario2comp depends on fmem, and
it does not depend on fcore. Therefore, if Breq) Bprac, the
computation time per kernel execution only depends on the
memory access and we cannot decrease it by increasing par-
allel computations or the clock frequency (fcore).

4.2 Resource Estimation
The resource constraint is given by Eq. (8). The amount of
resources used by the accelerator and the maximum resour-
ces available in the FPGA are given by Rdesign and Rfpga

respectively. The resources could be logic elements, block
RAMs (internal memory), DSPs (multipliers), registers, etc

Rdesign * Rfpga: (8)

The accelerator is composed of PCMs and I/O interfaces
used to communicate with DRAM and host computer. The
amount of resources used by the PCMs increases with the
degree of iteration-parallelism. The I/O interfaces are com-
posed of DRAM controllers, PCIe controllers and their data
paths. Those are pre-determined in the “board support
package” given by the FPGA board vendor. Therefore, the
amount of resources used by the I/O interfaces is a constant
for a given board. As a result, the amount of resources used
by the accelerator is given by

Rdesign ¼ d#RPCM þRbase: (9)

The amount of resources used by a PCM and I/O interfaces
are given by RPCM and Rbase respectively.

A PCM is composed of PEs and a shift-register array.
When Pcell increases, the number of PEs and their resources

Fig. 6. Temporary data storage required in the computation of Celltþ1
1;1 .

1394 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 5, MAY 2017

increase. However the amount of resources used by the
shift-register array does not change with Pcell. It only
depends on the grid size of the stencil computation. There-
fore, the amount of resources used in a PCM is determined
by Eq. (10), where Rshift and RPE are the resources used by
the shift-register array and PEs respectively

RPCM ¼ Pcell #RPE þRshift: (10)

4.3 Processing Time Minimization
By using Eqs. (1), (4), (5), and (7), the total processing time
can be written in the form as

ttotal /

Itotal
Pcell:fcore

ðq'1ÞN
2 þ NM

d

! "
Breq < Bprac

Itotal
fmem

ðq'1ÞN
2 þ NM

d

! "
Breq) Bprac

8
>><

>>:
: (11)

From Eq. (11), we can say that the total processing time can
be reduced by increasing the degree of iteration-parallelism.
For large grid sizes and small d, NM

d is very large compared

to ðq'1ÞN
2 . Therefore, the processing time is decided by NM

d

and the processing speed linearly increases with d. When d
increases, the term NM

d gradually decreases and becomes

comparable with ðq'1ÞN
2 . At this time, although the process-

ing speed increases with d, the relationship is not a linear
one. When d is very large, the term NM

d moves towards zero.
Therefore, the processing time becomes almost a constant
and we cannot increase the processing speed further by
increasing d. If there is no resource constraint, the minimum
processing time is achieved when d equals ITotal. Therefore,
even the work in [13] claims of linear processing speed
increase, it is only true when the grid size is very large and
the degree of iteration-parallelism is small. Moreover, if
Breq < Bprac, we can decrease the processing time by
increasing Pcell.

The design flow is shown in Fig. 7. It has two phases. In
phase 1, we determine the resource usage, the data transfer

times and the control overhead practically by compiling a
few kernels that have different d and Pcell values. The data
transfer times between the host and the FPGA (THF ; TFH) and
the control overhead tctrl can be determined by measuring
them directly. The resource usage values (Rbase; RPE;Rshift)
can be determine by using Eqs. (9) and (10). For this purpose,
we have to compile at least two kernels. The phase 1 takes a
few hours to complete due to the large compilation time. In
phase 2, we solve the optimization problem to find the opti-
mal architecture that has the minimum processing time
under the resource constraint.We do an exhaustive search on
a CPU for all the values of d and Pcell. The range of the values
of Pcell is very small. Therefore, the search time does not
increase exponentially and a solution can be found in a few
seconds even the range of d is very large. After the optimal
architecture is found, we compile it to get the bit stream for
the FPGA. This compilation also takes a few hours. Proposed
optimization method drastically reduces the FPGA accelera-
tor design time. Otherwise, we have to compile many differ-
ent architectures and measure their processing times to find
the optimal solution, whichwould take days tomonths.

The synthesis flow proposed in [28] that uses MaxCom-
piler is very similar to ours. However, [28] reports that there
are many mismatches between the estimation and the mea-
sured results. There are cases that some of the optimized
kernels are failed in the compilation process due to resource
constraint violation. As a result, the designer has to compile
the next best solution until a successful compilation is
achieved. The reason could be that the designed architec-
ture in MaxCompiler may not fully agree with the resource
estimation in [28]. However, the optimized kernel provided
by our design flow is always passes the compilation process
and the estimated results match with the measured ones.
We will discuss the accuracy of the optimization methodol-
ogy in Section 5.

5 EVALUATION

For the evaluation, we use two FPGA boards, three GPUs
and two CPUs. FPGAs are configured using Quartus 16.0
with OpenCL SDK. GPUs are programmed using CUDA
7.5 and the multicore CPUs are programmed using Intel C
compiler 2016 (Intel Parallel Studio XE 2016). The operating
system is CentOS 6.7. We used the stencil computation
examples shown in Table 1. All computations are done for
15,360 iterations.

5.1 Accuracy of the Estimation
Fig. 8 shows the measured resource usage for Laplace equa-
tion computation using different design parameters. Fig. 8a
shows the logic resource usage measured by adaptive logic
modules (ALMs). The amount of ALMs increases linearly
with d. It also increases with Pcell. When Pcell increases,
more PEs are used to compute data in parallel and that
requires more logic resources. Fig. 8b shows the memory
usage. It increases linearly with d, but remains the same for
Pcell. For example, when Pcell is two, the lifetime of the data
in the shift-registers are reduced by half. Therefore, a
shorter pipeline is required. However, two of such pipelines
are required for parallel processing. Therefore, the internal
memory usage does not change. Fig. 9 shows the estimated

Fig. 7. The FPGA architecture design flow. The phase 1 is done manu-
ally while the optimization in phase 2 is done automatically.

WAIDYASOORIYA ET AL.: OPENCL-BASED FPGA-PLATFORM FOR STENCIL COMPUTATION AND ITS OPTIMIZATION METHODOLOGY 1395

and measured ALM usages. The estimation is highly accu-
rate and gives very similar results compared to the mea-
sured ones. We achieved similar results for the other values
of the design parameters and also for the other types of
resources.

Fig. 10 shows the clock frequency against the logic utiliza-
tion percentage.When the logic utilization is less than 75 per-
cent, the clock frequency is around 300 MHz. From 75
percent to 85 percent of utilization, the clock frequency drops
from 300 to 270MHz. From 85 to 90 percent of utilization, the
clock frequency stays around 270 MHz. Architectures of
over 90 percent logic utilization are difficult to compile while
maintaining a sufficient clock frequency. Therefore, we con-
sider 90 percent logic utilization as the resource constraint.
The lower and the higher limits of the clock frequency
depend on the FPGA board. According to the results in
Fig. 10, the difference between the frequency limits can be
considered as small. Moreover, we use the assumption that,
when d increases, the processing time decreases until the
architecture reaches the resource limit. Since the frequency is
a function of the resource usage, architectures that use a lot
of resources have a low frequency. Usually, the optimal

architecture requires a lot of resources to perform a large
amount of parallel computations. Therefore, the optimal
architecture tends to have a low frequency. Since our goal is
to find the optimal architecture, we use the lower frequency
limit to estimate the processing time.

Fig. 11 shows the estimated and the measured processing
times. Figs. 11a, 11b, and 11c shows the processing times
when Pcell is 1, 2 and 8 respectively. Those architectures
belong to the scenario 1 explained in Section 4.1. Fig. 11d
shows the processing time when Pcell is 16 and those archi-
tectures belong to the scenario 2. The processing time esti-
mation is done using both 270 and 300 MHz frequency
limits. According to the results, the measured processing
time stays in between the two curves of estimated process-
ing times. When d is large, the measured processing time
gets closer to the estimated one based on 270 MHz. This
shows that, it is safe to use only the lower limit of the fre-
quency to estimate the processing time to find the optimal
architecture.

TABLE 1
FPGA Boards Used for the Evaluation

Application Computation

Laplace equation 0:25 V t
i;j'1 þ V t

i'1;j þ V t
iþ1;j þ V t

i;jþ1

! "

4;096# 32;768 grid

2-D 5-point Jacobi c1:V t
i;j'1 þ c2:V t

i'1;j þ c3:V t
i;j þ c4:V t

iþ1;j

4;096# 32;768 grid þc5:V t
i;jþ1

2-D 9-point Jacobi c1:V t
i'1;j'1 þ c2:V t

i;j'1 þ c3:V t
iþ1;j'1

4;096# 32;768 grid þc4:V t
i'1;j þ c5:V t

i;j þ c6:V t
iþ1;j

þc7:V t
i'1;jþ1 þ c8:V t

i;jþ1 þ c9:V t
iþ1;jþ1

Ezti;j ¼ Ezt'1
i;j ' C1i;j: Hx

t'1
2

i;jþ1
2
'Hx

t'1
2

i;j'1
2

$

2-D FDTD
þC2i;j: Hy

t'1
2

iþ1
2;j

'Hy
t'1

2

i'1
2;j

$

1;024# 16;384 grid
Hx

tþ1
2

i;jþ1
2
¼ Hx

t'1
2

i;jþ1
2
' C3i;j: Ezti;jþ1 ' Ezti;j

! "

Hy
tþ1

2

iþ1
2;j

¼ Hy
t'1

2

iþ1
2;j

' C4i;j: Eztiþ1;j ' Ezti;j

! "

3-D 7-point Jacobi c1:V t
i;j'1;k þ c2:V t

i'1;j;k þ c3:V t
i;j;k'1

128# 128# 8;192 þc4:V t
i;j;k þ c5:V t

iþ1;j;k þ c6:V t
i;jþ1;k

grid þc7:V t
i;j;kþ1

Fig. 8. Measured resource usage for Laplace equation computation using different design parameters.

Fig. 9. Estimated and measured logic (ALM) usage for Laplace equation
computation when Pcell ¼ 1.

Fig. 10. Clock frequency against resource utilization percentage for DE5
board. The higher and the lower frequency limits are 300 and 270 MHz
respectively.

1396 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 5, MAY 2017

Table 2 shows the comparison of the architectures
obtained using different design parameters. The sample
application is Laplace equation and the resource constraint
is 90 percent of the total ALMs (ALM is the critical
resource). According to the results, the processing time
changes for different design parameters. The optimal archi-
tecture is found when Pcell equals 4 and d equals 40. The
estimated and measured processing times are very similar
so that the optimal architecture can be obtained by the
estimation.

5.2 Evaluation of the Optimization Methodology
We use board support packages (BSPs) of three FPGA
boards, DE5 [32], 395-D8 [33] and 395-AB [34] to evaluate
the optimization methodology. Table 3 shows the specifica-
tions of the boards. A large amount of DSPs is available in
395-D8 while a large amount of ALMs is available in 395-
AB. The peak performances of the FPGAs are calculated
according to the method given in [35].

Table 4 shows the optimal architectures found using the
proposed optimization methodology for different stencil

Fig. 11. Estimated and measured processing time for Laplace equation computation.

TABLE 2
Comparison of Different Architectures That Use the Same Amount of Logic Resources But Have Different Design Parameters

Design
parameters Resource usage (%) Frequency Processing time (s)

Pcell d Logic elements Internal memory Registers DSPs (MHz) Measured Estimated

1 146 90.0 76.1 40.7 0 262 54.1 52.9
2 80 89.9 43.2 40.2 0 277 47.4 47.9
4 40 87.6 23.2 38.8 0 285 46.9 47.8
8 21 89.7 13.6 39.4 0 283 44.8 45.6
16 10 85.7 8.2 38.4 0 268 83.2 80.7

TABLE 3
Specifications of the FPGA Boards Used for the Evaluation

FPGA board DE5 395-D8 395-AB

FPGA 5SGXEA7N2F45C2 5SGSED8N2F46C2LN 5SGXEABN2F46C2LN
ALMs (adaptive logic modules) 234,720 262,400 359,200
Registers 938,880 1,049,600 1,436,800
Internal memory 50.0 Mbits 50.1 Mbits 51.5 Mbits
DSP 256 1,963 352
Peak performance 196.0 Gflop/s 1,502.9 Gflop/s 269.5 Gflop/s

External memory frequency DDR3 1,600 MHz DDR3 1,066 MHz DDR3 1,066 MHz
External memory size 4 GB 32 GB 32 GB
External memory bandwidth 25.6 GB/s 34.1 GB/s 34.1 GB/s

WAIDYASOORIYA ET AL.: OPENCL-BASED FPGA-PLATFORM FOR STENCIL COMPUTATION AND ITS OPTIMIZATION METHODOLOGY 1397

computations. The optimal design parameters are quite dif-
ferent from application to application. Even for the same
application, the optimal design parameters are quite differ-
ent for different FPGA boards. Since the computations of
the applications and the resources on the boards are differ-
ent, we cannot use the same architecture for different appli-
cations or on different boards. Using the proposed
optimization methodology, we can find the optimal archi-
tecture for any FPGA board and for many stencil computa-
tion applications. The clock frequency of the accelerator is
fcore and it varies with different FPGAs.

The required external memory bandwidth (Breq) of the
optimal architecture of each application is shown in Fig. 12.
We used 395-D8 FPGA board for this evaluation. The perfor-
mance of the FDTD computation is constrained by the mem-
ory bandwidth due to Breq) Bprac. In all other applications,
Breq < Bprac and the performances are not constrained by
the memory bandwidth. Note that, d has no relationship
with the memory bandwidth so that we can increase the per-
formance by increasing d to the resource limit, even for the
memory bandwidth bounded applications.

5.3 Comparison with Other Devices and Methods
Table 5 shows the processing time comparison among
FPGAs, multicore CPUs and GPUs. We used two FPGA
boards, DE5 and 395-D8 and the stencil computation archi-
tecture is optimized for each board. (Note that, we could
not measure the performance of 395-AB FPGA board since
we have only the BSP and not the actual board). All applica-
tions are optimized for CPUs and GPUs using temporal
blocking. We used both non-blocking and temporal block-
ing methods for all applications and select the fastest imple-
mentation on each device. The performances of both FPGAs
are better than those of CPUs. The difference between the
performances of FPGAs and GPUs greatly varies with the
application. Both 395-D8 FPGA and GTX960 GPU provide

similar performance for 2-D nine-point Jacobi stencil. Since
GPUs perform an addition and a multiplication in one clock
cycle, the performance are better for the applications that
have nearly 1:1 addition-to-multiplication ratio such as 2-D
nine-point stencil. However, 2-D FDTD and Laplace equa-
tion have an addition-to-multiplications ratios of 2:1 and 3:1
respectively. As a result, the performances of the GPUs are
not high. Unlike GPUs, FPGAs are re-configurable devices
where we can design the most suitable architecture for a
given application considering its operations. We can use the
resources efficiently by designing computing units that do
only the required operations. As a result, we can get consis-
tent performances in FPGAs for a wide range of
applications.

Fig. 13 shows the CPU and GPU performances compared
to the performance limit obtained by the roofline model. We
use 80 percent of the theoretical bandwidth to calculate the
roofline model performance. Experimental results and pre-
vious works [11] show that it is extremely hard to obtain
more than 80 percent of the theoretical bandwidth. The
operational intensity is calculated by dividing the total com-
putations in an iteration by the total data amount accessed.
For example, the operational intensity of 2-D five-point
Jacobi is calculated as follows:

4;048# 32;768# 9

4;048# 32;768# sizeofðfloatÞ # 2 ½read & write, ¼ 1:125:

According to the results, we achieved around 90 percent of
the roofline model performance limit for both CPUs without
using any temporal or spatial blocking techniques. When
the temporal blocking is used, the performances of some
applications exceed the roofline limit. The Maxwell architec-
ture based GTX960 GPU gives around 80 percent of the
roofline limit without using any blocking techniques. The
performances of the older Fermi and Kepler based GPUs
are smaller than the newer ones. We achieved extremely
good results for GTX960 and relatively good results for Kep-
ler architecture based GTX760 by using temporal blocking.
Since temporal blocking reduces the external memory
access, the operational intensity is increased. As a result, a
large performance improvement is obtained. According to
these results, we can say that a fair comparison is done in
Table 5 since we have shown optimized performance for all
FPGAs, GPUs and CPUs.

Fig. 14 shows the performances of different devices mea-
sured in Gflop/s. We achieved 133!181 Gflop/s using DE5
and 143!237 Gflop/s using 395-D8. We achieved 73!228
Gflop/s in GTX960. The performances of the other GPUs
are smaller than 122 Gflop/s. As shown in Table 5, the clock

TABLE 4
Comparison of the Design Parameters of the Optimal Architectures of Different Applications

Example
DE5 395-D8 395-AB

architecture Constrained fcore architecture Constrained fcore architecture Constrained fcore
Pcell d resource (MHz) Pcell d resource (MHz) Pcell d resource (MHz)

Laplace equation 8 21 ALM 283 4 44 ALM 253 8 32 ALM 248
2-D 5-points Jacobi 2 25 DSP 296 4 27 ALM 256 4 17 DSP 248
2-D 9-points Jacobi 1 28 DSP 283 4 14 ALM 234 2 19 DSP 226
2-D FDTD 1 44 Memory 291 2 30 ALM 227 2 34 Memory 247

Fig. 12. Required memory bandwidth of the optimal architectures of dif-
ferent applications using 395-D8 FPGA board.

1398 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 5, MAY 2017

frequency, the external memory bandwidth and the peak
performance of FPGAs are many times smaller compared to
those of GPUs. However, the performances are better than
or equals to GPUs due to the efficient implementation of the
iteration-parallel computation.

Fig. 15 shows the “effective to peak performance ratio
(EPR)” given by Eq. (12). Although GPUs have a very high
peak performance, less than 10 percent is utilized by the
stencil computation. Compared to that, FPGA in the DE5
board uses over 68 percent of its peak performance. Such a
high utilization is achieved by designing the most suitable

architecture for a given application considering its opera-
tions. However, 395-D8 FPGA provides less than 15 percent
of its peak performance. The peak performance of 395-D8 is
large due to the large amount of DSP units. However, DSPs
can be used only for multiplications, and we need more
multiplications in an application to extract the full potential
of 395-D8

EPR ¼ Actual performance

Peak performance
100%: (12)

Table 6 compares the proposed method with the work in
[11]. It is one of the latest and very comprehensive work

TABLE 5
Comparison with GPUs and CPUs

FPGA GPU Multicore CPU

DE5 395-D8 C2075 GTX760 GTX960 E5-1650 v3 i7-4960x

Specifications

Number of cores1 - - 448 1,152 1,024 6 6
Core clock frequency (MHz) -270 -230 1,150 980 1,127 3,500 3,600
Memory bandwidth (GB/s) 25.6 34.1 144 192 112 59.7 51.2
Peak performance (Gflop/s) 196 1,502.9 1,030.4 2,257.9 2,308.1 672 345.6

Processing time (s)

Laplace equation 45.3 46.9 232.4 176.5 111.7 258.9 260.2
2-D 5-point Jacobi 139.2 78.0 263.5 213.3 113.0 262.8 281.5
2-D 9-point Jacobi 259.8 164.6 391.9 289.2 153.1 339.7 419.9

2-D FDTD 20.5 21.6 95.1 71.6 41.3 265.1 290.7

1 GPU: CUDA cores, Multicore CPU: CPU cores.

Fig. 13. GPU and CPU performances against the roofline model performance. The roofline model performance is based on 80 percent of the theoret-
ical memory bandwidth.

Fig. 14. Comparison of the performance of FPGAs, CPUs and GPUs in
Gflop/s. Fig. 15. Comparison of EPR.

WAIDYASOORIYA ET AL.: OPENCL-BASED FPGA-PLATFORM FOR STENCIL COMPUTATION AND ITS OPTIMIZATION METHODOLOGY 1399

done on stencil computation acceleration using GPUs. We
evaluate the performance of 395-D8 FPGA using 3-D seven-
point Jacobi stencil in single-precision. The same stencil
computation is used in [11]. We achieved 192 Gflop/s in
FPGA while [11] achieved 131.4 and 287.1 Gflop/s using
M2075 and K20X GPUs respectively. The performance of
395-D8 FPGA is 1.4 times larger compared to M2075 GPU.
However, the performance is 1.4 times smaller compared to
K20X. Note that, K20X is a high-end GPU, where the exter-
nal memory bandwidth and peak performance are 7.3 and
2.6 times larger compared to 395-D8. Therefore, the better
performance in K20X is understandable. However, we
could expect significantly improved performance using
next generation Stratix 10 FPGAs where the amount of
resources are more than 10 times larger compared to the
current generation Stratix V FPGAs.

Table 7 shows the performance of 3-D stencil computa-
tion using 3-D seven-point Jacobi stencil. In 3-D stencils,
we have to store the data of a few planes instead of a few
lines in the case of 2-D stencils. As a result, the register
and the internal memory requirements could be larger
than those for the 2-D stencils. Even for the same grid
size, the amount of resources required depends on the
smallest plane. For a 128# 128# 8;192 grid, the smallest
plane is only 128# 128 large. Therefore, the internal
memory is not a bottleneck and we achieved over 193
Gflop/s. When the smallest plane is 256# 128, more
memory is required. As a result, the frequency is reduced
due to the large resource usage. When the plane size is
further increased to 256# 256, the internal memory
becomes a bottleneck. Therefore, we have to reduce the
number of PCMs in order to fit the architecture on to the
FPGA board. Since the number of PCMs corresponds to
the degree of parallelism, the processing speed decreases
drastically. Using multiple FPGAs in a deep pipeline may
solve this problem. This method has been demonstrated
using HDL-based manual designs in [13] and shows a
near linear performance increase against the number of

FPGA boards. In OpenCL, it is possible to use the channel
attribute to manage the connections among multiple
FPGAs. The SFP+ ports that have over 100 Gbps band-
width can be used for inter FPGA data transfers. Such
methods should be considered in future works.

Table 8 shows the performance of double precision
stencil computation. The older GTX580 GPU used in [36]
gives better performance compared to the FPGAs. Dou-
ble-precision performance in FPGA is less than 25 percent
of the single-precision performance. The current genera-
tion FPGAs (Stratix V series), does not contain dedicated
floating-point units. Multiplications are done in DSPs and
the additions are done using ALMs. Due to the large
ALM requirement for double precision computation, the
performances are reduced. However, the next generation
FPGAs such as Stratix 10 and Aria 10 devices contain
dedicated floating-point units and that will significantly
reduce the ALM requirement and increase the processing
speed.

The GPU optimization considers many different parame-
ters such as shared memory, warp size, external memory
bandwidth, cache size, registers, threads per block, etc.
Therefore, the programmer’s skill and experience are
required for a good implementation. Similarly, writing the
optimized OpenCL code for FPGAs also depends on the
programmer. However, if the applications are restricted to
stencil computation, writing the optimized code is very
easy using the proposed method. In fact, we used almost
the same kernel and host codes on different FPGA boards in
this paper. The only difference is the two design parame-
ters, d and Pcell which are defined as constants in a header
file. Moreover, even for different applications, the changes
done to the kernel code is minimum such as changing the
computation equation and writing the boundary conditions.
Therefore, if we use the proposed method, the pro-
grammer’s responsibility is minimum and anyone can find
the optimal architecture for any OpenCL capable FPGA
board.

TABLE 6
Comparison with GPUs Using 3-D Seven-Point Jacobi Stencil in Single-Precision Floating Point

Device This paper (FPGA) Work in [11] (GPU)

DE5 395-D8 M2075 K20X

Specifications
Memory bandwidth (GB/s) 25.6 34.1 150.0 250.0
Peak performance (Gflop/s) 196 1,502.9 1,030.2 3,950.0

Measured results
Performance (Gflop/s) 111.3 193.3 131.4 287.1

EPR (%) 59.3 12.8 12.7 7.2
performance/roofline # 100 (%) 1 - - 63.4 83.1

1 Roofline model performance is calculated under the assumption that the achievable memory bandwidth is smaller than 80 percent of the
theoretical maximum.

TABLE 7
Performance of the 3-D Stencil Computations

Using 395-D8 FPGA

Grid size
Number
of PCMs

Bottleneck
resource

Frequency
(MHz)

Performance
(Gflop/s)

128# 128# 8;192 9 ALM 230.3 193.3
256# 128# 4;096 9 ALM 196.2 167.7
256# 256# 2;024 6 Memory 180.1 111.5

TABLE 8
Comparison with a GPU Using Double-Precision

Stencil Computation

Application
This paper (FPGA) Work in [36] (GPU)

DE5 395-D8 GTX580

3-D 7-point Jacobi 27.2 40.7 50.0
2-D 5-point Jacobi 27.3 40.9 49.5

1400 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 5, MAY 2017

Table 9 shows the performances of the other recent FPGA
based approaches. A custom accelerator is designed using
Verilog HDL in [37] while the MaxCompiler (a high level
design tool using a C-like language) is used in [38]. The per-
formance are 103 and 19.5 Gflop/s respectively for single-
precision computations. Compared to those, we achieved
higher performances upto 193 Gflop/s for 3-D and upto 212
Gflop/s for 2-D stencils. Note that, [38] has given the perfor-
mance in number of cells computed per second and we con-
vert it to Gflop/s by multiplying it with the number of
computations per a cell.

Table 10 compares our method with [13] that proposes a
custom accelerator designed using HDL. We achieved 61.1
percent EPR compared to 87.5 percent in [13]. However, we
believe that this EPR is sufficient for a software-based
design where the design time is only a few hours. Com-
pared to that, HDL-based design flow usually requires
many months of design time. The higher Gflop/s value in
the proposed method is quite obvious since we used a
larger and advanced FPGA.

6 CONCLUSION

We proposed an OpenCL-based FPGA-platform for sten-
cil computation. The proposed FPGA-platform reduces
the design, testing and debugging times significantly
compared to custom HDL-based accelerator design. The
same program code can be reused by recompiling it for
any OpenCL capable FPGA board, irrespective of the
FPGA type or I/O resources such as different external
memory specifications. The proposed architecture is
designed to utilize iteration-parallelism instead of cell-
parallelism to minimize the external memory access. It
contains deep pipelines to carry the computation results
between iterations. We achieved maximum of 14.1 and
5.1 times larger processing speeds compared to CPU and
GPU implementations respectively. We also achieved 119
! 237 Gflop/s of performances.

ACKNOWLEDGMENTS

This work is supported by MEXT KAKENHI Grant Number
15K15958.

REFERENCES

[1] G. Roth, J. Mellor-Crummey, K. Kennedy, and R. G. Brickner,
“Compiling stencils in high performance fortran,” in Proc. ACM/
IEEE Conf. Supercomputing, 1997, pp. 1–20.

[2] G. Karniadakis and S. Sherwin, Spectral/hp Element Methods for
Computational Fluid Dynamics. London, U.K.: Oxford Univ. Press,
2013.

[3] K. S. Yee, “Numerical solution of initial boundary value problems
involving Maxwell’s equations in isotropic media,” IEEE Trans.
Antennas Propag., vol. 14, no. 3, pp. 302–307, May 1966.

[4] W. M. Kahan, “Gauss-Seidel methods of solving large systems of
linear equations,” Ph.D. dissertation, Univ. Toronto, Toronto, ON,
1958.

[5] L. A. Hageman and D. M. Young, Applied Iterative Methods. North
Chelmsford, MA, USA: Courier Corporation, 2012.

[6] S. Williams, A. Waterman, and D. Patterson, “Roofline: An
insightful visual performance model for multicore architectures,”
Commun. ACM, vol. 52, no. 4, pp. 65–76, 2009.

[7] S. M. F. Rahman, Q. Yi, and A. Qasem, “Understanding stencil
code performance on multicore architectures,” in Proc. 8th ACM
Int. Conf. Comput. Frontiers, 2011, pp. 30:1–30:10.

[8] T. Malas, G. Hager, H. Ltaief, H. Stengel, G. Wellein, and
D. Keyes, “Multicore-optimized wavefront diamond blocking for
optimizing stencil updates,” SIAM J. Sci. Comput., vol. 37, no. 4,
pp. C439–C464, 2015.

[9] J. Meng and K. Skadron, “A performance study for iterative sten-
cil loops on GPUs with ghost zone optimizations,” Int. J. Parallel
Program., vol. 39, no. 1, pp. 115–142, 2011.

[10] T. Grosser, A. Cohen, P. H. J. Kelly, J. Ramanujam, P. Sadayappan,
and S. Verdoolaege, “Split tiling for GPUs: Automatic paralleliza-
tion using trapezoidal tiles,” in Proc. 6th Workshop Gen. Purpose
Processor Using Graph. Process. Units, 2013, pp. 24–31.

[11] N. Maruyama and T. Aoki, “Optimizing stencil computations for
NVIDIA Kepler GPUs,” in Proc. 1st Int. Workshop High-Performance
Stencil Comput., 2014, pp. 89–95.

[12] W. Luzhou, K. Sano, and S. Yamamoto, “Domain-specific lan-
guage and compiler for stencil computation on FPGA-based sys-
tolic computational-memory array,” in Reconfigurable Computing:
Architectures, Tools and Applications. Berlin, Germany: Springer,
2012, pp. 26–39.

[13] K. Sano, Y. Hatsuda, and S. Yamamoto, “Multi-FPGA accelerator
for scalable stencil computation with constant memory
bandwidth,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 3,
pp. 695–705, Mar. 2014.

[14] T. S. Czajkowski, et al., “OpenCL for FPGAs: Prototyping a
compiler,” in Proc. Int. Conf. Eng. Reconfigurable Syst. Algorithms,
2012, Art. no. 1.

[15] S. Tatsumi, M. Hariyama, M. Miura, K. Ito, and T. Aoki,
“OpenCL-based design of an FPGA accelerator for phase-based
correspondence matching,” in Proc. Int. Conf. Parallel Distrib. Pro-
cess. Techn. Appl., 2015, pp. 90–95.

[16] N. Suda, et al., “Throughput-optimized OpenCL-based FPGA
accelerator for large-scale convolutional neural networks,” in
Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, 2016,
pp. 16–25.

[17] Y. Takei, H. M. Waidyasooriya, M. Hariyama, and M. Kameyama,
“FPGA-oriented design of an FDTD accelerator based on over-
lapped tiling,” in Proc. Int. Conf. Parallel Distributed Process. Techn.
Appl., 2015, pp. 72–77.

[18] H. M. Waidyasooriya and M. Hariyama, “FPGA-based deep-pipe-
lined architecture for FDTD acceleration using OpenCL,” in Proc.
15th IEEE/ACIS Int. Conf. Comput. Inform. Sci., 2015, pp. 109–114.

[19] J. M. Cecilia, J. M. Garc!ıa, and M. Ujald!on, “CUDA 2D stencil
computations for the Jacobi method,” in Proc. 10th Int. Conf. Appl.
Parallel Sci. Comput., 2010, pp. 173–183.

[20] J. Guo, G. Bikshandi, B. B. Fraguela, and D. Padua, “Writing pro-
ductive stencil codes with overlapped tiling,” Concurrency Com-
put. Practice Experience, vol. 21, no. 1, pp. 25–39, 2009.

[21] V. Bandishti, I. Pananilath, and U. Bondhugula, “Tiling stencil
computations to maximize parallelism,” in Proc. Int. Conf. High
Perform. Comput. Netw. Storage Anal., 2012, pp. 40:1–40:11.

[22] D. Wonnacott, “Achieving scalable locality with time skewing,”
Int. J. Parallel Program., vol. 30, no. 3, pp. 181–221, 2002.

[23] R. Strzodka, M. Shaheen, D. Pajak, and H. P. Seidel, “Cache accu-
rate time skewing in iterative stencil computations,” in Proc. Int.
Conf. Parallel Process., 2011, pp. 571–581.

TABLE 9
Performance of Other FPGA-Based Approaches

Using 3-D Stencils in Single Precision

Previous work FPGA Performance

Work in [37] Virtex-4 103 Gflop/s
(3-D Jacobi using manual design) XC4VLX200

Work in [38] Virtex-6 19.5 Gflop/s
(3-D FDTD using MaxCompiler) XC6VSX475T

TABLE 10
Comparison with the Work in [13] Using 2-D Four-Point

Jacobi Stencil Computation

FPGA board Performance
(Gflop/s)

EPR
(%)

Work in [13] DE3 (Stratix III) 28.94 87.5
This paper DE5 (Stratix V) 119.82 61.1

WAIDYASOORIYA ET AL.: OPENCL-BASED FPGA-PLATFORM FOR STENCIL COMPUTATION AND ITS OPTIMIZATION METHODOLOGY 1401

[24] G. Wellein, G. Hager, T. Zeiser, M. Wittmann, and H. Fehske,
“Efficient temporal blocking for stencil computations by multi-
core-aware wavefront parallelization,” in Proc. 33rd Annu. IEEE
Int. Comput. Softw. Appl. Conf., 2009, vol. 1, pp. 579–586.

[25] M. Wittmann, G. Hager, and G. Wellein, “Multicore-aware paral-
lel temporal blocking of stencil codes for shared and distributed
memory,” in Proc. IEEE Int. Symp. Parallel Distrib. Process. Work-
shops PhD Forum, 2010, pp. 1–7.

[26] A. A. Nacci, V. Rana, F. Bruschi, D. Sciuto, I. Beretta, and D.
Atienza, “A high-level synthesis flow for the implementation of
iterative stencil loop algorithms on FPGA devices,” in Proc. 50th
Annu. Des. Autom. Conf., 2013, pp. 52:1–52:6.

[27] G. Deest, N. Estibals, T. Yuki, S. Derrien, and S. Rajopadhye,
“Towards scalable and efficient FPGA stencil accelerators,” in Proc.
6th Int.Workshop Polyhedral Compilation Techn., 2016, pp. 1–11.

[28] K. Dohi, K. Okina, R. Soejima, Y. Shibata, and K. Oguri,
“Performance modeling of stencil computing on a stream-based
FPGA accelerator for efficient design space exploration,” IEICE
Trans. Inf. Syst., vol. E98-D, no. 2, pp. 298–308, 2015.

[29] MaxCompiler. (2016). [Online]. Available: https://www.maxeler.
com/products/software/maxcompiler/

[30] The open standard for parallel programming of heterogeneous
systems, (2015). [Online]. Available: https://www.khronos.org/
opencl/

[31] Altera SDK for OpenCL, (2016). [Online]. Available: https://www.
altera.com/products/design-software/embedded-software-devel

[32] Altera development and education boards. (2016). [Online].
Available: https://www.altera.com/support/training/university/
boards.html#de5

[33] Nallatech 395-with stratix V D8. (2016). [Online]. Available:
http://www.nallatech.com/store/uncategorized/395-d8/

[34] Nallatech 395-AB-with stratix V AB. (2016). [Online]. Available:
http://www.nallatech.com/store/pcie-accelerator-cards/395-ab/

[35] Achieving one TeraFLOPS with 28-nm FPGAs, 2010. [Online].
Available: https://www.altera.com/content/dam/altera-www/
global/zh_CN/pdfs/literat

[36] J. Holewinski, L.-N. Pouchet, and P. Sadayappan, “High-perfor-
mance code generation for stencil computations on GPU
architectures,” in Proc. 26th ACM Int. Conf. Supercomputing, 2012,
pp. 311–320.

[37] M. Shafiq, M. Perics, R. de la Cruz, M. Araya-Polo, N. Navarro,
and E. Ayguad!e, “Exploiting memory customization in FPGA for
3D stencil computations,” in Proc. Int. Conf. Field-Programmable
Technol., 2009, pp. 38–45.

[38] K. Okina, R. Soejima, K. Fukumoto, Y. Shibata, and K. Oguri,
“Power performance profiling of 3-D stencil computation on an
FPGA accelerator for efficient pipeline optimization,” ACM
SIGARCH Comput. Archit. News, vol. 43, no. 4, pp. 9–14, 2015.

Hasitha Muthumala Waidyasooriya received
the BE degree in information engineering, the MS
degree in information sciences, and the PhD
degree in information sciences from Tohoku Uni-
versity, Japan, in 2006, 2008, and 2010 respec-
tively. He is currently an assistant professor in
the Graduate School of Information Sciences,
Tohoku University. His research interests include
reconfigurable computing, processor architec-
tures for big-data applications, and high-level
design methodology for VLSIs. He is a member
of the IEEE.

Yasuhiro Takei received the BE degree in elec-
tronic engineering, the MS degree in information
sciences, and the PhD degree in information sci-
ences from Tohoku University, Japan, in 2011,
2013, and 2016 respectively. His research inter-
est include heterogeneous multicore processor
architectures.

Shunsuke Tatsumi received the BE degree in
information engineering and the MS degree in
information sciences from Tohoku University,
Japan, in 2012 and 2014, respectively. He is cur-
rently working toward the PhD degree in the
Graduate School of Information Sciences,
Tohoku University. His research interests include
reconfigurable computing and image processing.

Masanori Hariyama received the BE degree in
electronic engineering, the MS degree in informa-
tion sciences, and the PhD degree in information
sciences from Tohoku University, Japan, in 1992,
1994, and 1997, respectively. He is currently a
professor in the Graduate School of Information
Sciences, Tohoku University. His research inter-
ests include real-world applications such as
robotics and medical applications, big data appli-
cations such as bio-informatics, high-perfor-
mance computing, VLSI computing for real-world

application, high-level design methodology for VLSIs, and reconfigurable
computing. He is a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1402 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 5, MAY 2017

