
Evaluation of an FPGA-Based Shortest-Path-Search Accelerator

Yasuhiro Takei, Masanori Hariyama and Michitaka Kameyama
Graduate School of Information Sciences, Tohoku University

Aoba 6-6-05, Aramaki, Aoba, Sendai, Miyagi, 980-8579, Japan
Email: {takei, hariyama, kameyama}@ecei.tohoku.ac.jp

Abstract— Shortest-path search over large scale
graphs is widely used in various applications. However,
shortest path algorithms such as Dijkstra’s algorithm
include complex processing. It is difficult for accel-
erators such as GPUs to accelerate these algorithms
efficiently. This paper presents an FPGA-based accel-
erator with SIMD architecture for the shortest-paths
algorithm. In the proposed architecture, processing of
the Dijkstra’s algorithm is done with a high degree of
parallelism, and the memory usage is reduced by the
replacement of the node data. According to the evalu-
ation, the processing time of the proposed architecture
is about a half of that of a CPU, and the amount of the
node data stored in on-chip memory is about one-third
of all nodes when the input graph is a lattice graph.

Keywords: Shortest-path search, Dijkstra’s algorithm, Sin-
gle instruction multiple data (SIMD), FPGA

1. Introduction

Recently, there is a huge demand of processing
large-scale graphs. Especially, finding the shortest-path
in large scale graphs is used in many applications
such as traffic simulation, social networking service
and bioinformatics. To solve the shortest-path problem,
various algorithms has been proposed. Dijkstra’s algo-
rithm [1] and Bellman-Ford algorithm [2] were pro-
posed to solve the single-source shortest-path problem
(SSSP). Warshall-Floyd Algorithm [3] was proposed to
solve the all-pair shortest-path problem (APSP).

To accelerate processing speed of solving shortest-
path problem, there have been many software-based
studies in terms of improving a data structure and
reducing a computational amount. In order to process
the shortest-path problem for large scale graphs, PC
clusters with many CPUs are often used [4] because of
their large memory capacity. However, these computing
systems need very large space and power consumption.

Some studies used GPUs for solving shortest-path
problem. Harish [5] and Katz [6] have implemented
shortest-path search on the GPU. GPUs are suitable
for simple and parallelized processing. However, it is
difficult to accelerate shortest-path searching efficiently
when the shortest-path algorithm includes serial and
complex data-flows.

Other studies used the FPGA-based accelerator for
solving shortest-path problem. FPGAs can implement
application-specific data-paths by reconfiguration af-
ter fabrication. Moreover, the power consumption of
FPGAs are less than one-tenth of that of CPUs and
GPUs. Tommiska [7], Fernandez [8], and Sridharan [9]
have designed the FPGA-based architecture for SSSP
with the Dijkstra’s algorithm. Bondhugula [10] has
designed the FPGA-based architecture for APSP with
the Warshall-Floyd algorithm. However, their works
did not consider processing large-scale graphs since the
memory usage of the input graph is not considered.

To solve these problems, we design an FPGA-based
accelerator for the Dijkstra’s algorithm on large scale
graphs. In order to accelerate processing and memory
access, we design the SIMD (single instruction mul-
tiple data) architecture. We explain how to search the
shortest path with a high degree of parallelism, and
how to replace the node data on a limited memory
space. In this paper, we implement the improved archi-
tecture from our previous work [11], and we evaluate
the memory usage and processing time of the shortest
path search.

2. Dijkstra’s algorithm and its imple-
mentation on an FPGA

The Dijkstra’s algorithm is one of the most popular
algorithms to solve SSSP. Because it is easy to im-
plement, this algorithm is used in various applications
such as analysis of the internet, traffic simulation and
so on. LetS be the node where we are starting. Let

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 613

d(y) be the distance fromS to nodey. The flow of
the Dijkstra’s algorithm is represented by the following
steps.

Step1: Assign to every node a tentative distance: set it
to zero forS, and to infinity for all other nodes. Mark
all nodes"unvisited".

Step2: Select theunvisitednode which has the smallest
tentative distance and make it the"current node".

Step3: For thecurrent node, consider all ofunvisited
neighbor nodes and update their tentative distance.
If the current nodeis A , and one of theunvisited
neighbor node isB, set the tentative distance ofB
(td(B)) to min(td(B), d(A) + lAB) ,wherelAB is the
length of the edge betweenA andB. When considering
all of unvisitedneighbor nodes of thecurrent node,
mark thecurrent node "visited".

Step4: Until all nodes are markedvisited, go back to
Step2.

The processing time of the Dijkstra’s algorithm de-
pends on searching the minimum distance in Step2 and
updating tentative distances in Step3. In these process-
ing, there are many comparison operations on multiple
node data. Hence, a parallelized architecture such as
the SIMD architecture is suitable for accelerating the
processing of the Dijkstra’s algorithm.

Since tentative distances and paths are read and
updated frequently, on-chip memory on an FPGA is
suitable for storing these data. However, the capacity
of the on-chip memory is small. The memory man-
agement is required for reducing the on-chip memory
usage and the total processing time. In the Dijkstra’s
algorithm, tentative distance of nodes that connects
current or visited nodes is only used in the processing.
As shown in Fig.1, the current node (C) and unvisited
nodes connected to current or visited nodes (D,E)
are only used in the processing until the next current
node is determined. As shown in Fig.2, after the next
current node (D) is determined, a previous current node
(C) data is unnecessary in the processing. Hence the
memory space for the previous current node data (C)
can be reused for the new node data (F).

�

��

��

�

���������	���

	������������������	���

����������	���

����������	�

	������������������	���
	�������������	���

Fig. 1: The current node (C) and unvisited nodes
connected to current or visited nodes (D,E)

�

��

��

�

���������	���

	������������������	���

����������	���

����������	�

	������������������	���
	�������������	���

Fig. 2: The current node (D) and unvisited nodes
connected to current or visited nodes (E,F)

3. Architecture

Figure 3 shows the overall architecture. This archi-
tecture consists of an external memory, a CPU core
and a Dijkstra module. An external memory such as a
DDR2 SDRAM stores the adjacency list of the input
graph. The Dijkstra module consists of processing
elements (PEs), selectors, a decoder, a current node
register, and an address generation unit (AGU). The
current node register stores the current node number
and the distance from the start to the current node.

Figure 4 shows the architecture of the processing
element in the Dijkstra module. This architecture con-
sists of a node memory, modules for searching for

614 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

��������	�
��	���
���

�������� ������
� ��
� ��
� ��
� �

���

��	
�����

 ��� �����		
��
�
�����

��������
	
�
���
�

�������
�
�
���

�����
�
���

�

�����		
��
�
�����

�����		
��
�
�����

�����	
� �
����

� �

���������� �������
����

����
���

����

��

���	�
��	����	

�
�����

Fig. 3: Overall architecture

minimum distance, for matching the node number and
for updating the tentative distance. These modules
consist of comparators, registers and adders. The node
memory stores the values of node number, the tentative
distance and the previous node number of the shortest
path.

For updating the tentative distances in node memo-
ries, the neighbor node number is searched by matching
node modules in parallel as shown in Fig.5. In this case,
the node number 8 is searched for. Then the tentative
distance at node 8 is compared with the sum of the
distance at the current node 6 and the length of the edge
6 to 8 by the update module. If the sum of the distance
at the current node and the length the edge is smaller
than the tentative distance, the tentative distance and
the previous node number are updated as shown in
Fig.6.

For the searching for the minimum distance in node
memories, minimum distance modules and minimum
selector are connected as shown in Fig.7, and searching
in parallel. In this case, node 7 has the minimum
distance, and node 7 is selected as the new current
distance. When the minimum distance searching is
completed, the new minimum distance and the node
number are stored in the current node register.

After these data are stored in the current node
register, the memory space for the current node can
be overwritten to the first unvisited neighbor node data
that have not existed in node memories as shown in
Fig.8. If the number of these new neighbor nodes is
more than two, the empty space in node memories is
used for storing subsequent unvisited neighbor node
data.

���� ������������	

���
���������	
 ���������	
��

��
����������
�

�
��
��
�����

���	
��

���������
���
 ���� ��
�

� ��� �
� ��� �
� ��� �

� � �

������

����
����	
 ���
���������	

�����
�����	
��		

���
��
������

���������	
���
��
��
�����

Fig. 4: Architecture of the PE

���� ���� �	�

� �

 �

�

� �

�

���

���

���

��
��

��

��

����
������

������������	

���
���������	

�����
�����	

��������
	
�
���

����
������

������������	

���
���������	

�����
�����	

����

��������
��	�

� �

 �
� ��
 �
� ��
 �

� � �

����
������

������������	

���
���������	

�����
�����	

Fig. 5: Searching a node number data in node memories

4. Evaluation of the proposed architec-
ture

In this evaluation, we use the Terasic DE4 FPGA
board [12]. This board includes an Altera Stratix IV
GX EP4SGX530, and a DDR2 SDRAM (4GB). Altera
Quartus 13.1 is used for the FPGA implementation.
For a proto-type design, we implement the proposed
architecture with 8 PEs. 4,096 nodes can be processed
in the implemented architecture. NiosII soft-core pro-
cessor [13] is used for the CPU core as shown in Fig.3.
It is designed using Altera Qsys 13.1 and programmed
by C language using Nios II EDS 13.1. Table 1 shows
the resource usage of the proposed accelerator. The
usage of memory bits of NiosII is larger than that
of the Dijkstra module since the programming code
for storing the graph is large. Considering with the
resource usage of the on-chip memory, about 300,000
nodes can be implemented on the FPGA board if the
programming code on the NiosII is improved.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 615

���� ���� �	�

� �

 �

�

� �

�

���

�������

���

��
��

��

	�
����

������
������������	

���
���������	

�����
�����	

����
������

������������	

���
���������	

�����
�����	

��
�����������
�

��������
��	�

� �

 �
� ��
 �
� ��
 �

� � �

����
������

������������	

���
���������	

�����
�����	

Fig. 6: Updating node data in the node memory

����
������

������������	

���
���������	

�����
�����	

����
������

������������	

���
���������	

�����
�����	

����
������

������������	

���
���������	

�������
����	
��

�����
�
�����

�����
��

�

� �

�

���

���

���

��
��

��

��

��������
��	�

������ ���
���������	

�����
�����	

�����
��

Fig. 7: Searching the minimum distance in node mem-
ories

Let us compare the performance of the FPGA-based
accelerator with that of Intel Core2 Quad processor.
We implement the shortest-path problem on a lattice
graph as shown in Fig.9. The Dijkstra’s algorithm is
implemented on the Core2 Quad processor by using
C++ language. Microsoft Visual studio 2010 is used for
compiling. Table 2 shows the processing time compar-
ison. The processing time of the proposed architecture
is about half of the CPU. The performance of the
proposed architecture can increase when more PEs are
implemented on the FPGA. Moreover, FPGAs with
hard-core CPUs, such as Xilinx Zynq [14] and Altera
Cyclone V SoC [15] can be used in order to reduce
the control overhead. These FPGAs includes multicore
CPUs such as the ARM Cortex-A9. The performance
of these CPU cores is more than ten times as much as
that of the NiosII core.

Let us consider the memory usage of the node
memories. Table 3 shows the number of node data
in node memories in the processing of the Dijkstra’s

���� ���� �	�

� �

 �
� ��
 �
� ��
 �

� � �

�������������
��		���������

���� ���� �	�

�
 �

 �
� ��
 �
� ��
 �

� � �

Fig. 8: Overwriting the current data to a new node data
in the node memory

Fig. 9: Lattice graph

algorithm.　 According to the ratio of nodes in the
node memories to all nodes in the graph, the memory
usage is about one-third of the all nodes data when the
input graph is a lattice graph. As a result, about three
times nodes of the node memories can be processed on
the FPGA board when the input graph is as sparse as
the lattice graph, such as a map data. Memory usage
depends on a structure of the input graph. When the
input graph is sparse, usage of the node memories
becomes small. On the other hand, usage of the node
memories becomes at maximum when the start node
connects to all other nodes. In this case, (All nodes -
1) nodes are stored in the node memories.

5. Conclusions
We have proposed an FPGA-based accelerator for

shortest-path search. We designed for processing the
Dijkstra’s algorithm in parallel and we explained the
replacement of the node data to reduce the memory
usage. According to the evaluation, the processing time
of the proposed architecture is about half of the CPU,
and the usage of the on-chip memory is about one-third
of the all nodes when the input graph is a lattice graph.

The suitable architecture of the shortest-path-search
accelerator depends on the structure of a input graph.
The proposed architecture is suitable for sparse graphs.
However, this architecture is not suitable for dense
graphs since the usage of the node memories cannot
reduce so mach. Hence, we should design another

616 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

Table 1: Resource usage
LUT Register Memory bit DSP

Dijkstra module 1509 607 196608 0
NiosII (CPU) 9298 12507 1832318 4

Table 2: Processing time(ms)
FPGA Core2Quad

Input graph (50MHz) (2.83GHz)
1024Nodes,3968Edges 9.38 16.00
4096Nodes,16130Edges 50.40 94.00

architecturefor dense graphs, such as the GPU-like
architecture for processing an adjacency matrix.

Moreover, to process a very large scale graph, it is
important to reduce the bottleneck of the data-transfer
of the graph data from the external storages such as
SSDs to FPGA boards. We are going to implement the
framework for graph compressing such as WebGraph
[16] or Graphillion [17] on the FPGA board.

Acknowledgement
This work is supported by JSPS KAKENHI grant

number 24300013 and Grant-in-Aid for JSPS Fellows
grant number 15J04973.

References
[1] E. W. Dijkstra, "A Note on Two Problems in Connexion with

Graphs", Numerische Mathematik, 1(1): pp.269–271, 1959.
[2] R. Bellman, "On a Routing Problem", Technical report, DTIC

Document, 1956.
[3] R. W. Floyd, "Algorithm 97: Shortest Path", Commun. ACM,

5(6) pp.345–346, June 1962.
[4] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,

N. Leiser, and G. Czajkowski. "Pregel: a System for Large-
Scale Graph Processing", In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of data,
pp. 135–146, 2010.

[5] P. Harish, and P. J. Narayanan, "Accelerating large graph
algorithms on the GPU using CUDA", High performance
computing-HiPC 2007, Springer, pp.197-208, 2007.

[6] G. J. Katz and J. T. Kider Jr, "All-Pairs Shortest-Paths for
Large Graphs on the GPU", In Proceedings of the 23rd
ACM SIGGRAPH/EUROGRAPHICS symposium on Graph-
ics hardware, 2008.

[7] M. Tommiska and J.Skytta. "Dijkstra’s Shortest Paths Al-
gorithm in Reconfigurable Hardware", In Proc. Field Pro-
grammable Logic and Applications, pp. 653–657, 2001.

[8] I. Fernandez, J. Castillo, C. Pedraza, C. Sanchez, and J. I.
Martinez, "Parallel Implementation of the Shortest Path Al-
gorithm on FPGA" In Proc. 4th Southern Conf. on Pro-
grammable Logic., pp. 245–248, 2008.

[9] K. S. T.K.Priya and P. Kumar, "Hardware Architecture for
Finding Shortest Paths", In Proc. IEEE Region 10 Conf., pp.
1–5, 2009.

Table 3: The number of node data in node memories
All nodes in a graph 256 1024 4096

Nodesdata in node memories 87 316 1329
Ratio of the node data 0.340 0.309 0.324

[10] U. Bondhugula, A. Devulapalli, J. Fernando, P. Wyckoff,
and P. Sadayappan, "Parallel FPGA-Based All-Pairs Shortest-
Paths in a Directed Graph", In Proceedings of Parallel and
Distributed Processing Symposium, 2006.

[11] Y. Takei, M. Hariyama and M. Kameyama, "An SIMD Ar-
chitecture for Shortest-Path Search and Its FPGA Implemen-
tation ", International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA), pp.53–56,
2014

[12] Terasic, "Altera DE4 Development and Education
Board", http://www.terasic.com.tw/cgi-bin/page/archive.pl?
Language=EnglishNo=501.

[13] Altera, "Nios II Processor", http://www.altera.com/
devices/processor/nios2/ni2-index.html.

[14] Xilinx, "Zynq-7000 All Programmable SoC",
http://www.xilinx.com/products/silicon-devices/soc/zynq-
7000/index.htm.

[15] Altera, "Cyclone V SoCs: Lowest System Cost and Power",
http://www.altera.com/devices/processor/ soc-fpga/cyclone-v-
soc/cyclone-v-soc.html.

[16] P. Boldi and S. Vigna. ,"The Webgraph Framework I: Com-
pression Techniques". In Proc. of the 13th international con-
ference on World Wide Web, pp. 595–602. ACM, 2004.

[17] T. Inoue, H. Iwashita, J. Kawahara, and S. Minato.
"Graphillion: Software Library for Very Large Sets of La-
beled Graphs", International Journal on Software Tools for
Technology Transfer, 2014.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 617

