
Implementation of a Custom Hardware-Accelerator for Short-read
Mapping Using Burrows-Wheeler Alignment

Hasitha Muthumala Waidyasooriya, Masanori Hariyama and Michitaka Kameyama

Abstract— The mapping of millions of short DNA fragments
to a large genome is a great challenge in modern computational
biology. Usually, it takes many hours or days to map a large
genome using software. However, the recent progress of pro-
grammable hardware such as field programmable gate arrays
(FPGAs) provides a cost effective solution to this challenge.
FPGAs contain millions of programmable logic gates to design
massively parallel accelerators. This paper proposes a hard-
ware architecture to accelerate the short-read mapping using
Burrows-Wheeler alignment. The speed-up of the proposed
architecture is estimated to be at least 10 times compared to
its equivalent software application.

Keywords: FPGA, short-read mapping, sequence alignment

I. INTRODUCTION

Next-generation sequencing machines provide millions of
short DNA fragments called short-reads. Mapping such a
large volume of short-reads is a fundamental aspect in
modern computational biology. Complete mapping of an
organism gives the possibility to understand genetic diseases,
identifies cancer genomes and explores the possibilities of
new drugs and personalized medicine.

Short-read mapping has been already performed using
software tools such as Maq [1], Bowtie [2], BWA [3], etc
using a cluster of general purpose processors (CPUs). As
shown in Fig.1, short-reads with few tens to hundreds of
bases are mapped to a reference genome sequence con-
sidering SNPs, insertions and deletions (indels). However,
mapping of short-reads to a genome as large as a human is
still a great challenge to software applications.

Recent progress of programmable hardware such as field
programmable gate arrays (FPGAs) provide a cost effective
solution to this challenge. FPGAs contain millions of pro-
grammable logic gates and are connected to large memories
such as 4GB DDR2 and DDR3. In this paper, we propose
an FPGA-based architecture to accelerate the short-read
mapping using “Burrows-Wheeler alignment (BWA)” [3].
We choose BWA since it is a one of the fastest mapping
tool among software methods and it provides a massive
parallelism. Therefore, BWA is one of the ideal algorithm
to be implemented in FPGA. The proposed architecture
provides about 10 times of speed-up compared to its software
implementation.

II. RELATED WORKS

There are many short-read mapping software tools such as
Maq [1], Bowtie [2], BWA [3] BFAST [4], SOAP2 [5], etc.

Authors are with the Graduate School of Information Sciences, Tohoku
University, Aoba 6-6-05, Aramaki, Aoba, Sendai, Miyagi, 980-8579, Japan
(e-mails:{hasitha, hariyama, kameyama}@ecei.tohoku.ac.jp

Fig. 1: Short-read mapping

Maq and BFAST use the fact that individual genomes differ
only slightly and some shorter subsequences called “seeds”
of a short-read will exactly match the seeds of the reference
genome. In these methods, an index of the reference genome
is compiled, which maps every seeds to the location where
they occur. To align a short-read, all the seeds in the short-
read are looked up in the index. These methods are usually
more accurate but take a large processing time. Bowtie,
SOAP2 and BWA use “Burrows-Wheeler Transform (BWT)”
[6]. These methods are usually fast but have a less accuracy.

FPGA-based short-read mapping is proposed in [7] and
[8]. The work in [7] uses a very simple method that directly
compares a short-read with the reference sequence to give a
position under a given number of mismatches. The reference
sequence is streamed in to the FPGA and the comparison
with short-reads is done in parallel. However, this method
does not support indels and the processing speed is similar
to some of the fast software approaches. The work in [8]
implements the algorithm used in BFAST software [4] on
FPGA. BFAST is more accurate than BWA but takes a large
processing time.

Among the short-read mapping methods, BWA is one of
the fastest in software and also gives a very good accuracy
comparable to Maq. It also supports indels and contains
very simple calculations such as addition, subtraction and
comparisons of 32bit data. Since the calculations are very
simple, it is such a waste to use CPUs or GPUs that are
designed for more complex calculations such as floating-
point operations, etc. Moreover, we could hardly found an
article that proposes a hardware acceleration of BWA. In
this paper, we propose a very simple but highly parallel
architecture that uses BWA for short-read mapping.

III. ARCHITECTURE OF THE HARDWARE-ACCELERATOR

A. Burrows-Wheeler alignment (BWA) algorithm

In this section, we briefly describe the BWA algorithm
given in [3]. It uses the “exact matching” method explained
in [9]. According to [9], if a string W is a substring of the

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 651

Input: BWT string B for reference string X
Array C(.) and O(., .) from B
BWT string B′ for the reverse of reference X
Array O′(., .) from B′

Output: Suffix-array intervals
Procedures:
Calculated(W)
begin

Calculate D(i) that gives a lower bound for the
number of mismatches in W

end
InexRecur(W, i, z, k, l)
begin

if z < D (i) then
return ϕ

end
if i < 0 then

return [k, l]
end
I = ϕ
I = I ∪ InexRecur(W, i− 1, z − 1, k, l)
for each b ∈ {A,C,G, T} do

kb = C (b) +O (b, k − 1) + 1
lb = C (b) +O (b, l)
if kb ≤ lb then

I = I ∪ InexRecur(W, i, z − 1, kb, lb)
if b = W [i] then

I = I ∪ InexRecur(W, i− 1, z, kb, lb)
else

I = I ∪
InexRecur(W, i− 1, z − 1, kb, lb)

end
end

end
return I

end
main(W, z)
begin

Calculated(W)
InexRecur(W, i, z, k, l)

end
Algorithm 1: Short-read mapping algorithm

string X and k(aW) ≤ l(aW), string aW is also a substring
of X where aW equals the string {a,W}. The terms k and
l, given by Eqs.(1) and (2) respectively, are the lower and
upper bounds of the suffix array (SA) interval of X .

k(aW) = C(a) +O(a, k(aW)− 1) + 1 (1)

l(aW) = C(a) +O(a, l(aW)) (2)

The number of symbols that are lexicographically smaller
than a is given by C(a). The number of occurrence of a
in string B[0, i] is given by O(a, i). The BWT array of the
string X is given by B and the part of the string B that
includes i number of symbols from the beginning is given
by B[0, i].

(a) Reference sequence X ,
short-read W and C(a) of X

(b) Rotation of X

(c) Sorting result

Fig. 2: Mapping example

Algorithm 1 shows the short-read mapping method in [3].
To explain the algorithm, let us consider the example shown
in Fig.2. We have a reference sequence X and a short-read
W as shown in Fig.2(a). According to the Algorithm 1, the
inputs are the BWT of X and X ′, occurrence arrays O(., .),
O′(., .) and C(.). The array C(.) and the rotation of X are
shown in Figs.2(a) and 2(b) respectively. The sorting result
is shown in Fig.2(c). We can see the BWT and occurrence
arrays B and O(., .) in Fig.2(c). Similarly, we calculate
B′ and O′(., .) for X ′, which is the reverse sequence of
X . We skip the explanation of procedure “Calculated” in
Algorithm 1 that gives a lower bound D(.) for the number
of mismatches in W . For more details, please refer [3].

Figure 3 shows the mapping of the short-read W . The
procedure “InexRecur(W, i, z, k, l)” is called after calculating
the lower bound D(i). The search position of W , the number
of mismatches allowed (SNP and indel), the lower and
upper bounds of the suffix array are given by i, z, k and
l respectively. Figure 3 shows all executions of the proce-
dure “InexRecur”. Note that, the term “(i, z, k, l)” in Fig.3
represents the procedure “InexRecur(W, i, z, k, l)”. After the
mapping is finished, we get the position of the short-read and
its SNP and indel data. In this example, we get the result
in Fig.4 considering both SNPs and indels as mismatches.
The result with one insertion has an SA interval of (5, 5)
as shown in Fig.3. According to Fig.2(c), SA interval (5, 5)

652

Fig. 3: Mapping of short-read W

(a) SA interval : (5,5), position : 3
Insertion @ X(3)

(b) SA interval : (6,6), position : 2
SNP @ X(2)

(c) SA interval : (3,3), position : 1
Deletion @ X(2)

Fig. 4: Mapping results after allowing one mismatch

refers to the position 3 in reference X . Therefore, we map
W at 3 as shown in Fig.4(a). The result with one SNP has
a SA interval of (6, 6). Therefore, we map W at 2 as shown
in Fig.4(b). Similarly, one deletion with SA interval (3, 3)
is mapped at 1 as shown in Fig.4(c). As shown in Fig.3,
procedure “InexRecur” can be executed in “depth-first” or
“breadth-first” or a hybrid of both. We use this behavior in
our hardware architecture explained in the next section.

B. FPGA accelerator architecture

In practical problems, the same reference genome se-
quence is used to map different short-reads. Therefore, in
this paper, we perform the Burrows-Wheeler transform and
calculate the occurrence array offline and just transfer the
data to the FPGA for different mappings. Figure 5 shows
the accelerator architecture. It consists of a very simple
1-dimensional 128 processing element (PE) array and two
DDR2 memories. The parallelism is achieved by mapping
different short-reads on 128 PEs simultaneously. The oc-
currence array and short-reads are transferred to the DDR2
memory and the FPGA internal memory respectively.

Structure of a PE is given in Fig.6. It consists of a 32bit
adder, a comparator and pipeline registers to perform the
calculations explained in Eqs.(1) and (2). After finishing
one “InxRecur” procedure, a new one is loaded from the

Fig. 5: Accelerator architecture

Fig. 6: Structure of a PE

register file. In each “InxRecur” procedure, new calls to
the same procedure are generated as explained in Algorithm
1. The parameters of such recursive calls are stored in the
register file, so that we can keep a track of all the recursive
calls. The “ADD/SUB” unit in PE is used to calculate the
Eqs.(1) and (2). The comparator and the control path do all
the conditional branches in the “InxRecur” procedure. New
short-reads are fed to the PEs after the old short-reads are
mapped. The mapping result is read by the CPU. Note that,
CPU reads and empties the output buffer before it overflows,
so that new mapping results can be written to it. Moreover,
CPU transfers short-read data gradually while there are being
mapped. Unlike the CPU that has a complex floating-point
ALU and very complicated control circuit, PE is a very
simple unit that specialized only to map a short-read. It is
designed using minimum resources. Therefore, we can have
a lot of PEs in the same FPGA to provide a comparable
performance to a super computer that has many CPUs.

If the accelerator has many PEs, at least one PE wants to
access the DDR2 memory in each clock cycle as shown in
Fig.7. Therefore, the total performance depends on the DDR2
access speed. Note that, the memory access in short-read
mapping is random since it heavily depends on the short-read
data. Although CPUs have a theoretical bandwidth of over
50MBps, it is drastically reduced when the memory access
is random. However, in FPGAs, we can maintain a very high
memory access speed even in random access by designing
custom address generation units and pipelined data-paths. As
a result, the memory access in FPGAs could be faster by the
factor of few tens.

653

Fig. 7: Memory access in FPGA

Fig. 8: Computing system

IV. EVALUATION

For the evaluation, we used DE4 board [10] that contains
“Altera EP4SGX530KH40C2 FPGA” and two 4GB DDR2-
SDRAMs. The system shown in Fig.8 contains a core i7-
3960x CPU and a DE4 board connected through the PCI
express port. The operating frequency of the accelerator is
100MHz. Table I shows the resource usage of a PE. As
shown in Table I, the PE size is limited by the registers
and we can have more than 400 PEs on a single FPGA.

Table II shows the memory bandwidth comparison of the
CPU-based system and the FPGA-based system. Although
CPU has a better theoretical bandwidth, it reduces drastically
for random data access. Since the memory access in short-
read mapping is random, small bandwidth is a big problem
in CPU or GPU based accelerations. However, in FPGA,
we can design custom address generation units for random
access. Therefore, even in random access, we can achieve
5.15GB/s bandwidth which is very close to the theoretical
one. Since there are two DDR2 memories in FPGA, we can
achieve a bandwidth of over 10GB/s by accessing them in
parallel. Therefore, the memory access speed is more than 10
times in the FPGA compared to the CPU. Therefore, we can
assume the proposed system is at least 10 times faster than
a CPU-based system. Note that, we can use up to 3 FPGA
boards in one computer to increase the processing power.
We can also connect many such computers to design a super
computer with FPGAs. Moreover, different FPGAs can be

TABLE I: Resource usage of a PE

Resource name Usage usage/total_ available_resources ×100%
LUTs 844 0.20
Registers 1015 0.24
Onchip memory 1.25kB 0.05

TABLE II: Memory access speed

Bandwidth (GB/s)
Theoretical Random access

CPU (i7-3960x) 51.2 1.06
FPGA (EP4SGX530KH40C2) 6.4× 2 5.15× 2

connected directly to decrease the communication overhead.
Therefore, this FPGA-based system has a great potential to
dramatically increase the processing speed.

Currently, we have successfully mapped 100 short-reads
by using small reference string that have few thousands
of symbols. The speed-up factor compared to software is
measured around 10 times and the accuracy is as the same
as that in BWA software. With these results, we can say that
the proposed system works without any problem. In future
works, we are expecting to provide experimental results
using large references such as a human genome.

V. CONCLUSION

We have proposed a hardware accelerator architecture
for BWA algorithm to increase the processing speed. The
algorithm is successfully implemented on FPGA with an
estimated 10 times speed-up compared to the software. The
FPGA used is a mid-range less expensive one. It is possible
to increase the processing power by choosing a latest FPGAs
such as Altera Stratix V. Moreover, we can use multiple
FPGAs in a single PC and also a cluster of such PCs to
increase the processing speed massively.

ACKNOWLEDGMENT

This work is supported by MEXT KAKENHI Grant
Number 12020735.

REFERENCES

[1] H. Li, “Maq: Mapping and assembly with qualities”,
http://maq.sourceforge.net/, 2008.

[2] B. Langmead, C. Trapnell, M. Pop, and S. Salzberg, “Ultrafast and
memory-efficient alignment of short dna sequences to the human
genome”, Genome Biology, Vol.10, No.3, p.R25, 2009.

[3] Heng Li and Richard Durbin, “Fast and accurate short read align-
ment with Burrows-Wheeler transform”, Bioinfomatics, Vol.25, No.14,
pp.1754-1760, 2009.

[4] N. Homer, B. Merriman and S. F. Nelson, “BFAST: An Alignment
Tool for Large Scale Genome Resequencing”, PLoS ONE, vol.4,
No.11, p.e7767, 2009.

[5] R. Li, C. Yu, Y. Li, T. Lam, S. Yiu, K. Kristiansen and J. Wang,
“Soap2: an improved ultrafast tool for short read alignment” Bioin-
formatics, Vol.25, No.15, p.1966, 2009.

[6] M. Burrows and D. J. Wheeler, “A block-sorting lossless data com-
pression algorithm”, Digital Equipment Corporation, Palo Alto, CA,
Technical report 124, 1994.

[7] O. Knodel, T. B. Preuser and R. G. Spallek, “Next-Generation Mas-
sively Parallel Short-Read Mapping on FPGAs”, IEEE Int’l Conf. on
Application-Specific Syst., Archi. and Processors, pp.195-201, 2011.

[8] C. B. Olson, M. Kim, C. Clauson, B. Kogon, C. Ebeling, S. Hauck, and
W. L. Ruzzo, “Hardware Acceleration of Short Read Mapping”, IEEE
20th Annual Int’l Symp. on Field-Programmable Custom Computing
Machines, pp.161-168, 2012.

[9] P. Ferragina and G. Manzini, “Opportunistic data structures with
applications”, Proc. of 41st Symp. on Foundations of Computer
Science, pp.390-398, 2009.

[10] http://www.altera.com/education/univ/materials/boards/de4/unv-de4-
board.html

654

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

