
Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 15

An Area-Efficient Asynchronous FPGA Architecture for
Handshake-Component-Based Design

Yoshiya Komatsu, Masanori Hariyama, and Michitaka Kameyama
Graduate School of Information Sciences, Tohoku University

Aoba 6-6-05, Aramaki, Aoba, Scndai, Miyagi, 980-8579, Japan

Abstract—This paper presents an area-efficient FPGA
architecture for handshake-component-based design. The
handshake-component-based design is suitable for large-
scale, complex asynchronous circuit because of its un
derstandability. However, conventional FPGA architecture

for handshake-component-based design is not area-efficient
because of its complex logic blocks. This paper proposes
an area-efficient FPGA architecture that combines complex
logic blocks (LBs) and simple LBs. Complex LBs implement
handshake components that implement data path controller,
and simple LBs implement handshake componentthat imple
ment data path. The FPGA based on the proposed architec
ture is implemented in a 65nm process. Its evaluation results
show that the proposed FPGA can implement asynchronous
circuits efficiently.

Keywords: FPGA, Reconfigurable LSI, Self-timed circuit, Asyn
chronous circuit

1. Introduction

Field-programmable gate arrays (FPGAs) are widely used
to implement special-purpose processors. FPGAs are cost-
effective for small-lot production because functions and
interconnections of logic resources can be directly pro
grammed by end users. Despite their design cost advan
tage, FPGAs impose large power consumption overhead
compared to custom silicon alternatives [1]. The overhead
increases packaging costs and limits integrations of FPGAs
into portable devices. In FPGAs, the power consumption of
clock distribution is a serious problem because it has an
enormously large number of registers than custom VLSIs.
To cut the clock distribution power, some asynchronous
FPGAs has been proposed [2], [3], [4], [5], [6]. How
ever, the problem is that it is difficult to design asyn
chronous circuits and few CAD tools or design flow for
asynchronous FPGAs have been introduced. To solve the
problem, we proposed an FPGA architecture for handshake-
component-based asynchronous circuit design (HCFPGA)
[7]. In handshake-component-based design, asynchronous
circuits are designed by connecting handshake components.
Since various handshake components such as for data pro
cessing and data path control are defined, it is easy to design
asynchronous data path and its controller. Besides, there are
hardware description languages and circuit synthesis tools

for handshake-component-based design [8], [9]. Therefore,
handshake-component-based design is suitable for complex
large-scale asynchronous circuits. However, the problem of
the previous HCFPGA is its large transistor count because
each FPGA cell is complex to support various handshake
components.

This paper proposes an area-efficient HCFPGA architec
ture that combines complex LBs and simple LBs. As the
proposed architecture implements handshake components
efficiently, CAD tools such as Balsa [9] are utilized to design
asynchronous applications. Data path and its controller are
implemented by simple LBs and complex LBs respectively.
Therefore, the proposed architecture can implement applica
tions efficiently.

2. Architecture

2.1 Handshake-component-based
methodology

In asynchronous circuits, the handshake protocol is used
for synchronization instead of using the clock. Figure 1
shows a four-phase handshake sequence. First, active port
sets the request wire to "1" as shown in Fig. 1(a). Second,
passive port sets the acknowledge wire to "1" as shown in
Fig. 1(b). Third, active port sets the request wire to "0" as
shown in Fig. 1(c). Finally, passive sets the acknowledge
wire to "0" as shown in Fig. 1(d) and wire values return to
initial state. Data signals are sent along with request signals
or acknowledge signals.

Handshake components were proposed for use in the
synthesis of the language Tangram [8] created by Philips Re
search. An asynchronous functional element such as a binary
operator is denoted by a handshake component. There are 46
handshake components [10] and each handshake component
is used for data processing or data path control. Figure
2 shows handshake components. Handshake components
constitute a handshake circuit. Figure 3 shows an example
of a handshake circuit. Each handshake component has ports
and is connected to another handshake component through a
channel. Communication between handshake components is
done by sending request signal from the "active" port and ac
knowledge signal from the "passive" port. Depending on the
kind of handshake components, data signals are sent along
with request signals or acknowledge signals. The number of

design



16 Int'l Conf. Reconfigurable Systems and Algorithms \ ERSA'13

(a)
Sender

fbl Sender

(c) Sender

(d) Sender

Requcst=l

! New (lala >

Acknowledged

Request=l

1 "S
V

AcknowledRe=l

Request=0

1 >
V

Acknowledged

Request=0

1 >
Acknowledged

Receiver

Receiver

Receiver

Receiver

Fig. 1: A four-phase handshake sequence.

Request Acknowledge

Acknowledge

Active

port

Channel

Fig. 2: Handshake components and channels.

ports of a handshake component and thewidth of data signal
can bevaried. Each handshake components execute complex
handshake sequences through channels. However, handshake
circuits are easily understandable and manageable because
a function of each handshake component is clear and each
handshake is symbolized by a channel and ports. Also, there
are tools that translate high-level circuit description into
handshake circuit to synthesize asynchronous circuit. Thus,
handshake-component-based design is suitable for complex
and large-scale asynchronous circuits. Asynchronous circuit
synthesis is done by replacing each handshake component
with corresponding circuit.

2.2 Overall architecture

As mentioned in preceding section, circuit synthesis is
done by replacing each handshake component with corre
sponding circuit. Thus, asynchronous circuits can be imple
mented by replacing each handshake component witha com
bination of LBs. Figure 4 shows the overall architecture of
the proposed FPGA. The FPGA consists of mesh-connected
cells like conventional FPGAs.Each cell includes an LB, two
Connection Blocks (CBs) and a Switch Block (SB). There
are two types of LBs. One is complex LB and the other is

Fig. 3: A simple handshake circuit (4 bit counter).

ata

Control

(Request signaland
acknowledge signal)

LB:Logic Block

CB: Connection Block

SB: Switch Block

Fig. 4: Overall architecture.

simple LB. The upper CB connects SBs to Nl, N2 and S
terminals of two LBs, and the bottom CB connects SBs to
El, E2 and W terminals. In the proposed architecture, each
LB includes dedicated circuits for implementing handshake
components. Therefore, the proposed architecture can im
plement handshake circuits efficiently. The proposed archi
tecture can implement 39 out of 46 handshake components
defined in Balsa manual [10]. Handshake components that
have multiple ports or wide data path can be implemented
using several LBs. In the proposed FPGA architecture, the
Four-Phase Dual-Rail (FPDR) encoding is employed for
asynchronous data encoding. The FPDR encoding encodes
a bit and a request signal onto two wires. Table 1 shows
the code table of the FPDR encoding. The main feature is
that the sender sends a spacer and a valid data alternately
as shown in Fig. 5. FPDR circuits are robust to the delay
variation. Hence, the FPDR encoding is the ideal one for
FPGAs in which the data path is programmable. Because
the FPDR encoding is employed, three wires are required
for a data bit. Two wires are used for the data encoded in
FPDR encoding, and one wire for the acknowledge signal.



Int'l Conf. Reconfigurable Systems and Algorithms \ ERSA'13 17

Table 1: Code table of the FPDR encoding.

Data

Value
0

Code word
(T.F)

DataO (0.1)

Datal (1.0)

Spacer (0,0)

Spacer q Spacer \ Spacer

Data
Value

0

Value

1

Time

Fig. 5: Example of the FPDR encoding.

2.3 Logic block structure
As mentioned in 2.2, there are complex LB and simple

LB. Figure 6 and 7 show the structures of a complex LB
and simple LB. Complex LB consists of a BinaryFunction
module, a Variable module, a Sequence module, a CallMUX
module, a Case module, an Encode module, an Input switch
box and an Output switch box. Simple LB consists of a
BinaryFunction module, a Variable module, a C-element, an
Input switch box and an Output switch box. An Input switch
box and an Output switch box connect modules to CBs. Each
module is used to implement a handshake component. Table
2 shows correspondence relation between modules and hand
shake components. Complex LB can supports 39 handshake
components because it has all the modules. On the other
hand, simple cell can implement 22 handshake components
including Variable component and BinaryFunction compo
nent. Therefore, complex LB is suitable for implementing
data path controller and simple LB can implement data path
efficiently.

3. Evaluation

The proposed FPGA is implemented in e-Shuttle 65nm
CMOS process with 1.2V supply. The circuits are evaluated
using HSPICE simulation. Table 3 shows the comparison

Table 2: Handshake components and its corresponding re
sources.

Module Handshake component

Variable BuiltinVariable, Variable

Sequence Concur, Loo;i, Sequence, While

CallMUX Call, CallMUX, Continue. ContinuePush

Case

CaNDEMUX.Case,

CaseFctch, DecisionWait,
PassivatorPush, SynchPush

Encode Encode

BinaryFunction

and Variable
BinaryFunc, BinaryFuncConstR, UnaryFunc

Variable and

Sequence

FalseVariable,

ActiveEagerFalseVariable,

PassiveEagerFalseVariabe

Programmable

Interconnect

resources

Adapt, Combine, CombineEqual,
Constant. Fetch, Fork, ForkPush,

Halt, HaltPush, Passivator, Slice, Split.
SplitEqual, Synch, SynchPull, WireFork

NlO

wO

*0

ElO

Input

Switch

box

LUTIrO
Binary

Function

module

Data_spacer

Data valid

LUTout.T

LUTout.F

Varln r>
Var_readyO

Sequence

Activate.req

FalseVariable

Out.req

FalseVariable_
readyjnterim

falllnO >

Cnlllnl >

Callln3 >

Passivator

Push.ack

Encodelno">

Encodelnl~>

Encodeln2>

Encodein3 ;>

Sequence

module

CallMUX

module

Case module

Encode

module

1_LUT ready

|V.-]rOuiQ>

Variable

module

K'jrOut!>

JVar_readyl

LoopActivateQut

I SequenceO y
Concurl

Sequence!,req
FalseVariable.ack

CaspOutf)

cV.pQutf >

CaseOut2

Passivator

Push.req

EncodeOut

Output

switch

box

Fig. 6: Structure of a complex LB.

NlO

wO

sO

ElO

Input

switch

box

LUTIrO
Binary

Function

module

Data_spacer

Data valid

LUTout.T

UTout.F ,

>

1LUT ready

Variable

module

|vnrOutQ>

lVarOuti>

Var_readyO Var_readyl

^ FalseVariable.ack

Fig. 7: Structure of a simple LB.

Output

switch

box

0N1

0N2

Os

O"

O"

0N1

0N2

Os

0E2

result of cells of the conventional asynchronous FPGA,
the conventional HCFPGA and the proposed HCFPGA.
Compared to the conventional asynchronous FPGA cell, the
transistor count of the complex cell is increased by 63.0%
because the complex cell is the same as the conventional
HCFPGA cell. The transistor count of the simple cell is
reduced by 31.0% compared to the complex cell.

The next evaluation shows the implementation results of
a 4-bit counter. Table 4 shows the comparison of transistor
counts, energy consumptions per operation and through
puts. Compared to the conventional asynchronous FPGA,
the number of transistors and the energy consumption per
operation are reduced by 4.4% and 19.8% respectively. This
is because handshake-component-based design method is
suitable for designing not only controllers but also area-



18 Int'l Conf. Reconfigurable Systems and Algorithms \ ERSA'13

efficient data paths. On the other hand, the throughput is
decreased by 47.6% because each handshake components
execute complex handshake sequence. Compared to the
conventional HCFPGA, the number of transistors and the
energy consumption per operation are reduced by 25.3% and
11.8% respectively and the throughput is increased by 7.9%.
This is because the data path is implemented using the cells
with simple LB.

Table 3: Transistor count of a cell and its breakdown.

Conventional

Asynchronous
FPGA

Conventional

HCFPGA

Proposed

HCFPGA

Complex cell Simple cell

Cell 2423 3949 3949 2726

LB 611 1311 1311 611

SB and CBs 1812 2638 2638 2115

Table 4: Evaluation results of 4-bit counter.

Conventional

Asynchronous
FPGA

Conventional

HCFPGA

Proposed
HCFPGA

Number of

transistors
33922 43439 32432

Energy
Consumption [pJ] 5.14 4.68 4.13

Throughput
[M operations/sec]

160.63 77.93 84.09

4. Conclusions

This paper presented an area-efficient asynchronous
FPGA architecture for handshake-component-based design.
In the proposed HCFPGA architecture, simple LB and
complex LB are used to implement a data path and its
controller respectively. Therefore, the proposed architecture
implements applications efficiently. As a future work, we
are evaluating the proposed FPGA architecture on some
practical benchmarks.

Acknowledgment
This work is supported by VLSI Design and Education

Center (VDEC), the University of Tokyo in collaboration
with STARC, e-Shuttle, Inc., Fujitsu Ltd., Cadence Design
Systems Inc. and Synopsys Inc.

References

[1] V. George H. Zhang, and J. Rabaey, "The design of a low energy
FPGA," in Proceedings of 1999 International Symposium on Low
Power Electronics andDesign, California, USA, Aug 1999, pp. 188—
193.

[2] J. Teifel and R. Manohar, "An asynchronous dataflow FPGA architec
ture," IEEE Transactions onComputers, vol. 53,no. 11,pp. 1376-1392,
2004.

[3] R. Manohar, "Reconfigurable Asynchronous Logic," in Proceedings of
IEEE Custom Integrated Circuits Conference, Sep. 2006, pp. 13-20.

[4] M. Hariyama, S. Ishihara, and M. Kameyama, "Evaluation of a Field-
Programmable VLSI Based on an Asynchronous Bit- Serial Architec
ture," 1EICE Trans. Electron, vol. E91-C, no. 9, pp. 1419-1426, 2008.

[5] M. Hariyama, S. Ishihara,. and M. Kameyama, "A Low-Power Field-
Programmable VLSIBased on a Fine-Grained Power-Gating Scheme,"
in Proceedings of IEEE International Midwest Symposium on Circuits
andSystems (KIWSCAS), Knoxvillc(USA), Aug 2008, pp. 430-433.

[6] S. Ishihara, Y. Komatsu, M. Hariyama and M. Kameyama, "An Asyn
chronous Field-Programmable VLSI Using LEDR/4-Phase-Dual-Rail
Protocol Converters," in Proceedings of The International Conference
onEngineering of Reconfigurable Systems andAlgorithms (ERSA), Las
Vegas(USA), Jul 2009, pp. 145-150.

[7] Y. Komatsu, M. Hariyama and M. Kameyama, "Architecture of an
Asynchronous FPGAfor Handshake-Component-Based Design," Proc.
International Conference on Engineering of Reconfigurable Systems
andAlgorithms (ERSA), pp. 133-136, July 2012

[8] K. van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij,
" The VLSI-programming language Tangram and its translation into
handshake circuits," in Proc. EDAC, 1991, pp. 384—389.

[9] A. Bardsley, "Implementing Balsa Handshake Circuits," Ph.D. thesis,
Dept. of Computer Science, University of Manchester, 2000.

[10] DougEdwards and Andrew Bardsley and Lilian Janin and Luis Plana
and Will Toms, "Balsa: A Tutorial Guide", 2006.


