Int] Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 47

Heterogeneous Multicore Platform with Accelerator Templates and
Its Implementation on an FPGA with Hard-core CPUs

Yasuhiro Takei, Hasitha Muthumala Waidyasooriya, Masanori Hariyama and Michitaka Kameyama
Graduate School of Information Sciences, Tohoku University
Aoba 6-6-05, Aramaki, Aoba, Sendai, Miyagi, 980-8579, Japan
Email: {takei, hasitha, hariyama, kameyama}@ecei.tohoku.ac.jp

Abstract— Heterogeneous multi-core architectures with
CPUs and accelerators attract many attentions since they
can achieve power-efficient computing in various areas from
low-power embedded processing to high-performance com-
puting. Since the optimal architecture is different from appli-
cation to application, finding the most suitable accelerator
is very important. In this paper, we propose an FPGA-based
heterogeneous multi-core platform with custom accelerator
templates. Accelerator templates can be reused after optimiz-
ing for different applications. According to the evaluation,
the proposed platform gives comparable performance to the
industrial heterogeneous multicore processors at around 1W
of power.

Keywords: Heterogeneous multicore processor, FPGA, Multime-
dia processing, High-performance-computing

1. Introduction

Applications used in low-power embedded processing to
high performance computing have different tasks such as
data-intensive tasks and control-intensive tasks. Therefore,
optimal architecture is different from application to ap-
plication. Heterogeneous multicore processing is proposed
to execute applications power-efficiently. It uses different
processor cores such as CPU cores and accelerator cores as
shown in Fig.1. If the tasks of an application are correctly
allocated to the most suitable processor cores, all the cores
work together to increase the overall performances.

Examples of low-power heterogeneous multi-core proces-
sors are [1] and [2]. The former has multiple cores of CPUs
and ALU arrays. The latter has multiple cores of CPUs, a
micro-controller and SIMD (single-instruction multiple-data)
type processors. Such commercially available processors are
partially programmable so that a part of the data path and
computations of processing elements (PEs) can be changed
to some extent. However, due to the wide variety of tasks and
their different memory requirements, this programmability
is not enough to extract sufficient performance. Moreover,
the programming environments in various heterogeneous
architectures. Therefore, each time the architecture changes,
large design time is required to re-map the application into
the new architecture.

CPU | | CPU
core core Memory

} | }

< Interconnection network >

1

Accelerator Accelerator
core core

Fig. 1: Heterogeneous multi-core processor architecture

To solve these problems, we propose an FPGA-based
platform for heterogeneous multicore processors to explore
accelerator architectures suitable for applications. Recently,
speed and power consumption of FPGAs are greatly im-
proved, and it would be very practical to use the FPGA-
based platform for real applications. The proposed platform
consists of CPU cores suitable for control-intensive tasks and
custom accelerator cores suitable for data-intensive tasks.
The use of the architecture templates reduces the design
effort to explore the architectures suitable for applications.
It would also make it easy to re-use the same software on
different accelerators derived from the same template. More-
over, the high reconfigurability of FPGAs enables to adopt
the different types of accelerators for a single application
depending on the nature of tasks. The major disadvantage
of FPGA-based processors over the commercially available
once is the low-performance of CPU cores since CPU cores
are generated using look-up tables. Such “soft-core CPUs”
cause large computation time and large data transfer time.
However, recent FPGAs such as Xilinx Zynq and Altera
Cyclone V contain “hard-core CPUs” operating at about 8
times faster than the soft-core CPUs.

This paper is an extension of the work done in [3]
which explains the basic idea of the heterogeneous multicore
platform. However, the soft-core CPU in [3] is replaced by
a low-power hard-core CPU (“Cortex-A9 dual core ARM
processor”) using Xilinx Zynq so that the processing and
data transfer time are significantly reduced. In this paper,
as a typical architecture templates, we consider two types
of custom accelerators: SIMD one-dimensional PE array
(SIMD-1D) and MIMD two-dimensional PE array (MIMD-
2D). The SIMD-1D accelerator is suitable for executing sim-
ple operations at a high degree of parallelism. The proposed

48

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

SIMD-1D accelerator is designed similar to the GPU data
path to use the CUDA (compute unified devise architecture)
[4] programming language. The MIMD-2D accelerator is
suitable for executing complex operation at a medium degree
of parallelism. To increase the memory access speed, we
introduce a custom hardware called address generation unit
(AGU). We can also reconfigure the data path, the number of
PEs, the number of memory modules, and memory capacity
according to the requirements of a given task to optimize the
performance. The evaluation demonstrates that the proposed
FPGA-based platform achieves good performance and low-
power consumption comparable to industrial heterogeneous
processors such as RP1 [1].

2. Heterogeneous multicore platform

2.1 Overall architecture

This section explains the architecture of the heterogeneous
multi-core platform. Figure 2 shows the overall architecture.
An external DDRII SDRAM is connected to the CPU core
through the FPGA board. The custom accelerators have
different architectures such as SIMD-1D and MIMD-2D.

It is important to reduce data-transfer time between cores
for processing faster in heterogeneous multicore. In pre-
vious work [5], window-based image processing time and
memory capacity are reduced by using optimal memory
allocation and a data-transfer scheme. For further reduction
the processing time, we overlap the data-transfer with data
processing on different cores as shown in Fig.3. In FPGAs,
We can determine the optimal number of accelerator cores
and PEs so as to minimize the processing time.

"DDRII

SDRAM :| Extemal memory
U |e—s] Onichip
- |7 7| memory

| Data transfer

Fig. 3: Overlapping data-transfer and processing

Fig. 5: Architecture of the PE

2.2 SIMD-1D accelerator

The proposed SIMD-1D accelerator is designed similar
to the GPU accelerator so that we can use the same CUDA
code. The basic idea of the SIMD-ID accelerator is dis-
cussed in [6]. It has a 1-dimensional array of PEs connected
to the shared memory as shown in Fig.4. AGUs are included
to increase the address generation speed. To execute an
application, we have to divide it into independent threads
where several of them can be executed in parallel. After
the execution is finished, new threads are fed. When all the
threads are executed, the resulting data are read by the CPU.

Figure 5 shows the architecture of a PE. It consists of a
16bit fixed-point ALU and a multiplier. Operations such as
addition, accumulation subtraction, comparison and absolute
difference computation are done in the ALU, and multiplica-
tion is done in the multiplier. Multiply-accumulation is done
by a pipelining the multiplier and the adder.

In CPUs, the address calculation and data processing are
done in the same ALU as shown in Fig.6(a). Therefore, when
the addresses are calculated, we cannot do data processing.
In the proposed architecture, the address calculation is done
in the AGU shown in Fig.6(b). The address calculation and
data processing are done in parallel so that we can reduce the
total processing time. A detailed description about AGUs is
given in [5]. As shown in Fig.2, accelerators in the proposed
heterogeneous platform contain AGUsS.

2.3 MIMD-2D accelerator

The proposed MIMD-2D accelerator is designed based
on the FE-GA accelerator [1] that has a dynamically recon-
figurable PE array. Figure 7 shows the proposed MIMD-
2D accelerator. It consists of a 2-dimensional array of PEs,

ALU <

time

(a) Address processing on ALU

(b) Address processing on AGU

o. 6: Address processing

Shared memory

S

Interconnection network

Interconnection network
Interconnection network

&
=

Interconnection Network

Fig. 7: MIMD-2D architecture model

local memory modules and AGUs. In order to simplify the
interconnection network while still meeting the streaming
applications, we limit the interconnection network; only left-
most PEs can directly retrieve data from local memory mod-
ules, and only rightmost PEs can directly write data to local
memory modules. PEs, AGUs and interconnection network
are dynamically reconfigurable. To implement applications,
we have to divided it into multiple contexts that execute
sequentially. Within a context, we can perform parallel com-
putations. The computation starts after the configuration data
of multiple contexts are written to the configuration memory
of the accelerator. When the computation is finished, the
resulting data are read by the CPU.

3. Evaluation

We implement the proposed heterogeneous multicore plat-
form on Xilinx Zyng-7000 EPP ZC702 evaluation kit [7].
Since SIMD-1D and MIMD-2D architectures have differ-
ent topologies, we perform two comparisons to evaluate
the architectures. In the first comparison, the number of
look-up-tables (LUTs) in both accelerators is a constant.
In the second comparison, the degree of parallelism of
the memory access is a constant. As shown in Table 1,
SIMD9 and MIMDI12 accelerators have almost the same
number of LUTs. SIMD4 and MIMDI12 accelerators have
the same number of memory modules. Therefore, the de-
gree of parallelism of the memory access is the same. In
parallel processing, both the number PEs and the degree of
parallelism with the memory are equally important.

We compare the processing time of filter computation and
SAD-based template matching [8]. The image and window

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 49

Table 1: Specification of accelerator cores

Accele- Number | Number Number Degree
rator of of of of para-
core PEs LUTs memories llelism
SIMD4 Ix1 3301 8 (16kB) 7
SIMD9 9 x 1 7354 | 18 (18kB) 9
MIMD12 4 x3 7322 8 (16kB) 4

sizes and the operating frequency are 256 x 16, 16 x 16
and 100MHz respectively. Table 2 shows the comparison of
SIMD-1D (SIMD9) and MIMD-2D (MIMD12) accelerators
when the number of LUTs is a constant. For the filter com-
putation, the processing time of the SIMD-1D accelerator
is less than half of that of the MIMD-2D accelerator. The
SIMD-1D accelerator has a one-dimensional PE array, where
all 9 PEs are dircctly connected to the memory as shown in
Fig.4. The MIMD-2D architecture has a two-dimensional PE
array of 4x 3 where only leftmost 4 PEs can directly retrieve
data from the local memory as shown in Fig.7. Therefore, the
SIMD-1D accelerator has the higher degree of parallelism of
memory access than the MIMD-2D accelerator. In the SAD
computation, SIMD-1D accelerator is slightly faster than
MIMD-2D accelerator. SAD computation requires two types
of operations: absolute difference and addition. the MIMD-
2D accelerator can perform these two operations at the
same time by pipelining while SIMD-1D accelerator cannot.
However, the processing time of the SIMD-1D accelerator is
still smaller due to its high degree of parallelism. If we use
an application that have three or more types of operations,
the MIMD-2D accelerator could give much better results.

Table 2: Comparison 1 : The same number of LUTs
Application | Accelerator core | Processing time (ms)
Filter SIMD9 0.069

MIMD12 0.154
SIMD9 0.139
i MIMDIZ 0.154

Table 3 shows the comparison of SIMD-1D (SIMD4)
and MIMD-2D (MIMD12) accelerators when the degree
of parallelism of the memory access is a constant. In the
filter computation, the processing times of the SIMD-1D
and MIMD-2D accelerators are the same. This is because,
multiplication and addition operations are pipelined in both
accelerators, so that two operations are performed in one
cycle. Moreover, both accelerators have the same degree of
parallelism. In the SAD computation, the processing times
in MIMD-2D accelerator is about half of that in SIMD-1D
accelerator. As described above, the MIMD-2D accelerator
can pipeline different type of operations (absolute difference
and addition in SAD computation). Hence, MIMD-2D can
obtain higher degree of parallelism of operations compared
to the SIMD-1D accelerator under the condition of the same
number of memory modules.

Let us compare the FPGA-based platform with conven-
tional industrial heterogeneous multicore processors. Figure
8 shows the implemented architecture. There are MIMD-

Int! Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

Table 3: Comparison 2 : The same d of parallelism
Application | Accelerator core | Processing time 'imsi

. SIMD4 0.156
Filter MIMDTZ 0154
SAD SIMD4 0318

[~ MIMDi2 0.154

2D accelerator cores which process the filter computation
in parallel. Table 4 shows the resource utilization on the
FPGA with four MIMDI16 cores. Since the FPGA design
tool removes unused units on the implemented architecture
automatically, the resource utilization is smaller than ex-
pected. Note that the number of accelerator cores and the
number of PEs in one core can be selected depending on
the applications.

Table 5 shows the comparison of the filter computation
time for the proposed FPGA-based platform and RPI 1.
The image size is 640 x 480. The number of PEs on
FPGA is 64, and it is equal to using two FE-GAs in RP1.
When the number of FE-GA cores is two, the processing
time on the proposed platform is very similar to that of
RP1. The power consumption of both processors is around
IW. In conclusion, the FPGA-based heterogeneous multicore
architecture provides comparable performance to the RP1
heterogeneous multicore processor.

reeeeceeceeea LOA(IOOMHZ)
i start/stop signal i
P | —— ;
! | Accelerator Accelerator | | Control AXIL
' L_corel |'"7[coreN Unit Timer | !
: 3 y 3 7 L
()
SO B) T i

Cortex-A9 DDR3

(666. 667MHz) f———] SDRAM

Fig. 8: Implemented architecture

Table 4: Resource utilization of four MIMD16 cores

Module LOT Register | Block RAM | DSP
Accelerators 1044 1604 18 16
Control unit 28 28 0 0

AXI timer 312 217 0 0
AXI Interconnect 397 182 0 0
Total 1781(3%) | 2031(2%) | 18(13%) | 16(7%)
Table 5: Comparison of processing time
Processing time (ms)
. . Zynq RP1 |5]
Window Si2¢ | |y Cortex-A9(666.66TMHz) | 1xSH-4A(600MHz)
+ FPGA(100MHz) + 2xFE-GA(300MHz)
12x 12 46.51 36.24
18 x 18 70.50 72.94
24 X 24 115.89 96.55

4. Conclusion

We have proposed an FPGA-based heterogeneous mul-
ticore platform with custom accelerators. The accelera-
tor cores are customizable for each application. Dedicated
AGUs are used to increase the processing speed and to
reduce the area and power. We evaluate the proposed plat-
form using several examples and show that the proposed
platform has performance comparable to industrial hetero-
geneous processors. To select the best accelerator for a
given application, we have to match the requirements of
the application with the properties of the accelerator under
the design constraints. Most of the application requirements
and accelerator properties can be parameterized and repre-
sented. The design constraints are the operating frequency,
amount of hardware resources such as LUTs and memories,
power consumption, etc. Our next step would be to find a
relationship between those application requirements and the
accelerator properties to satisfy the design constraints. Then
we can automatically optimize the proposed heterogeneous
platform for given applications.

Acknowledgment

This work is supported by MEXT KAKENHI Grant
Number 12020735.

References

[1) H. Shikano, M. Ito, M. Onouchi, T. Todaka, T. Tsunoda, T. Kodama,
K. Uchiyama, T. Odaka, T. Kamei, E. Nagahama, M. Kusaoke, Y,
Nitta, Y. Wada, K. Kimura, H. Kasahara, “Heterogeneous Multi-Core
Architecture That Enables 54x AAC-LC Stereo Encoding”, JEEE
Journal of Solid-State Circuits, Vol.43, No.4, pp.902-510, 2008.

(2] H Kondo, M. Nakajima, N. Masui, S. Otani, N. Okumura, Y. Takata,
T. Nasu, H. Takata, T. Higuchi, M. Sakugawa, H. Fujiwara, K. Ishida,
K. Ishimi, S. Kancko, T. Itoh, M. Sato, O. Yamamoto and K. Arimoto,
“Design and Implementation of a Configurable Heterogeneous Multi-
core SoC With Nine CPUs and Two Matrix Processors”, IEEE Journal
of Solid-State Circuits, Vol.43, No.4, pp.892-901, 2008.

[3] H M. Waidyasooriya, Y. Takei, M. Hariyama and M. Kameyama,
“FPGA implementation of Heterogeneous Multicore Platform with
SIMD/MIMD Custom Accelerators”, [EEE Intemational Symposium
on Circuits and Systems (ISCAS), pp.1339-1342, 2012,

[4] NVIDIA Corporation, “NVIDIA CUDA Programming Guide”
Ver2.2.1, 2609.

[5] H. M. Waidyasooriya, Y. Ohbayashi, M. Hariyama and M. Kameyama,
“Memory Allocation Exploiting Temporal Locality for Reducin;
Data-Transfer Bottlenecks in Heterogeneous Multicore Processors”,
IEEE Transactions on Circuits and Systems for Video Technology,
Vol.21, No.10, pp.1453-1466, 2011.

[6) H M. Waidyasooriya, M. Hariyama and M. Kameyama, “Architec-
ture of an FPGA-Oriented Heterogeneous Multi-core Processor with
SIMD-Accelerator Cores”, International Conference on Engineering
of Reconfigurable Systems and Algorithms (ERSA), pp.179-186,
2010,

[7] http:/fwww.xilinx.com/products/boards-and-kits/
EK-Z7-ZC702-G.htm

[8] M. Hariyama, H. Sasaki, and M. Kameyama, “Architecture of a stereo
matching VLSI processor based on hierarchically parallel memory
access”, IEICE Trans. Inform. Syst., Vol.E88-D, No.7, pp.1486.1491,
2005.

