Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 55

Reducing Floating-Point Error Based on Residue-Preservation and
Its Evaluation on an FPGA

Hasitha Muthumala Waidyasooriya, Hirokazu Takahashi, Yasuhire Takei,
Masanori Hariyama and Michitaka Kameyama
Graduate School of Information Sciences, Tohoku University
Aoba 6-6-05, Aramaki, Aoba, Sendai, Miyagi, 980-8579, Japan
Email: {hasitha, hirokazu, takei, hariyama, kameyama}@ecei.tohoku.ac.jp

Abstract—Although scientific computing is gaining many
attentions, calculations using computers always associated
with arithmetic errors. Since computers have limited hard-
ware resources, rounding is necessary. When using iterative
compulations, the rounding errors are added and propagated
through the whole computation domain so that the final
results can be completely wrong. In this paper, we propose
a floating-point error reduction method and its hardware
architecture for addition. The proposed method is based on
preserving the residue coursed by rounding and reusing the
preserved value in next iteration. The evaluation shows that
the proposed method gives almost the same accuracy as the
conventional double-precision floating point computation.
Moreover, using the proposed method is 24% area efficient
than using a conventional double-precision adder.

Keywords: Precise arithmetic, floating-point, FPGA.

1. Introduction

Scientific computing is an area where mathematical mod-
els are executed in computers to analyze and simulate
various physical behaviors. Such simulations are used in
many fields such as fluid dynamics, molecular analysis and
even in rocket science. Many of such models use repeated
calculations spans many iterations. For example, finite-
difference time-domain (FDTD) [1] used in fluid dynamics is
such a well know method that deals with solving differential
equations in a time-domain.

Although scientific computing is gaining many attentions
due to the introduction of multicore CPUs and many core
GPUs, calculations using computers are always associated
with arithmetic errors. Due to the limited hardware re-
sources in computers, rounding of the computation results
is necessary. This gives a small error in many computations.
Although such errors are negligible in a single calculation,
they are a very big problem in scientific computing. The
simulation models use repeated calculations with thousands
of iterations to produce a result. Therefore, small error in
each iteration add up and propagated through the whole
computation domain. Due to this, the final results obtained
after thousands of iterations might be completely wrong.
Computation errors are been discussed in many works such

as [2] and [3). Accepting those results could bring devastat-
ing effects since many simulations are connected with real
world application such as air plane designing, power plant
controlling etc.

Easiest way of reducing computation error is to add
more precision [4]. However, that comes with an increased
hardware cost. Using software libraries such as “multiple
precision integers and rationals (MPIR)” [5] is another way
of dealing with this problem. However, when the precision
increases the processing time also increases exponentially. In
this paper, we focus on floating-point addition and propose
a error-reduction method and its area-efficient hardware
implementation. The proposed method based on a very
simple idea of preserving the residue due to rounding and
reuse it in recursive computation. We propose an efficient
method implement this algorithm in smaller number of time
steps. According to the evaluation using FPGA, the proposed
single-precision floating-point adder gives almost the same
accuracy of the double-precision floating-point adder, but
requires 24% less area compared to the conventional double-
precision adder.

2. Floating-point error reduction using

residue-preservation

In this section, we focus on reducing the floating-point
error due to normalization and rounding in iterative compu-
tations. In these computations, the output of the iteration ¢
is used as an input of iteration i + 1. Therefore, the etror is
propagated from iteration to iteration. However, if we can
keep the residue of rounding in one iteration, we can use it
in the next iteration. Even if the residue is very small during
a single iteration, it will become large if we keep storing it.
Therefore, after many iterations, the residue of rounding is
also add up to the result and that will reduce the error. The
algorithm to reduce the floating-point error in summation is
given as follows.

Step : R=S0=0
Step2: U=R+ X;
Step 3: Siy1 =Si +U
Step4: V =Si41— S;
StepS: R=U-V



Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

e

+ +)

[Sitt e wesene
Step 3

N v |

ey W

Step 5

:

H

Step 2
Si+1
-) Si
d
patel 0

Step 4

Fig. 1: Floating-point error reduction method

Step 6: if(i < n), increase ¢ by 1 and go to Step 2
else, finish

Figure 1 explains this algorithm using the computation of

Z;é X; as an example. In the first iteration, the value X
is added with the residue R of the previous step. The result
is saved as U as shown in Step 2. In this calculation, we
loose a part of R due to rounding. Then we add U to the
sum S; to get the new summation Si41. Due to the rounding,
only a part of U is added. This part V is found in Step 4.
To find the non-added part of U/, we subtract V from U in
Step 4. Since this part is not added to the summation yet,
we preserve it as R and use it in the next iteration.

Figure 2 shows the evaluation of this method. When
the number of computations are large, this error reduction
method with single precision computation gives extremely
better results compared to conventional single-precision
computation as shown in Fig.2(a). Moreover, the error re-
duction method gives very similar results to the conventional
double precision computation. Note that, we calculate the er-
ror compared to the double-precision computation so that the
error of doable-precision becomes zero. Figure 2(b) shows
the graphs of the error reduction method and conventional
double precision method to see the difference more clearly.
There are two reasons for this difference. The first one is
the rounding occurs in the conventional double precision
computation. The second one is the unused residue occurs
in the addition of X; and R in Step 2 as shown in Fig.1.

Although this method gives a very good computation
results, it has so many steps and need two additions and
two subtractions. Therefore, if available, it is better to use a
high-precision computation than using the error reduction
method with low-precision computation. However, in the
next section, we propose an improved algorithm combined
with a new floating-point adder architecture to get the same
error reduction under less additional computation and small
hardware overhead.

|,.A.1_,:),f\\__h\ll;,‘—\v‘\4 . \ . RS S
il ’ \"*. Double-precision i

A Error-reduction
\ method
A ‘1-'\.

)

Absolute error

Single-precision 1,

- ey | C—— 4 - T— L L L
s i E]) ) W ) 09 ] w3 )

 Number of additions ( x 103

(a) Computation error vs. number of additions

[——wsniAnE

Absolute error

i g . .
Double-precision
Error-reduction method

L ' s L N N PE——
0% £ E [ £ £ (] 5 il ey

Number of additions ( x 103 )
(b) Enlarged capture of Fig.2(a)

Fig. 2: Evaluation of the computation error

3. Proposed error reduction algorithm
and its FPGA implementation

In the error-reduction algorithm explained in Section 2,
the processing time is wasted in Steps 4 and 5 to calculate
the residue occurs due to the rounding of Si+1. However,
if we can preserve all the bits of Sit+1 before rounding, we
can find the residue easily. This method is show as follows.

Step 1: R=5y=10

Step2: U =R+ X;

Step 3: Siy1=8;+U
R = residue of rounded S;;

Step 4: if(é < n), increase i by 1 and go to Step 2
else, finish



point adder. To explain the architecture and the proposed
algorithm, let us consider single-precision floating point
addition. The “Add” unit shown in Fig,3 is the same one used
in conventional single-precision adder. The only difference
is that it produces two outputs; the normalized addition
result and the residue after normalization and rounding.
Since no extra adders are included, this architecture can be
implemented area efficiently.

4. Evaluation

We implement the proposed floating-point adder on “Cy-
clone 11 EP2C35F6°2C6” FPGA to evaluate the error-
reduction method. We used “Quartus II” software tool
to calculate the number of logic elements (LEs) and the
clock frequency. In the evaluation, the proposed method
is compared with conventional single-precision and double-
precision floating-point computations. Note that, we did not
use any pipelines when implementing different adders. It is
difficult to compare adders with different precisions with
different pipeline stages.

Table 1 shows the evaluation results. According to the
results, the proposed method requires less area than conven-

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 57
X l Operands y
bigns Exponents UnpaCk Significands
¢
b L34 |Seléctive iwa |
\Mux/4=\Sub/ ==¢ vap
[ Pre-shifter |
Control | !
& sign Add
logic
| __distributor i
¥
| Post-shifter | ==
¥ i »| Sign : Normalizz'
Add/ [ _ & exp
{ Normalize | logic
‘L A A
»pigns  Exponents PaCk Significands signs  Exponents PaCk Sigri‘ﬁcands_
}sum Residue ¥
Fig. 3: Architecture of the proposed floating-point adder
Note that the residue calculation in Steps 4 and 5 are Table 1: FPGA evaluation of floating-point adders
removed and the residue is preserved in Step 3. Conventional Conventional _ Proposed
X ¥ i . " single-precision | double-precision | single-precision
To execute this algorithm, we proposes a new floating- floating-point floating-point floating-point
point adder architecture as shown in Fig.3. The gray arcas in Frequency 38 MHz 31 MHz 27 MHz
Fig.3 shows the units we added to the conventional floating- Num. LEs 61l 1336 1014

tional double-precision floating-point method. However, the
clock frequency is slightly lower than that of the double-
precision method. As discussed in the previous section, the
accuracy of the proposed method is much better than the
single-precision and almost the same as the double-precision.
Therefore, using the proposed method with single-precision
is area-effective than using double-precision. However, as
shown in 2(b) , if the number of iterations are extremely large
as few millions, the difference between the proposed method
and conventional double-precision method gets larger.

5. Conclusion

We have proposed a floating-point error reduction method
and its hardware architecture for addition. The proposed
method based on preserving the residue coursed by rounding
and reusing the preserved value for the calculation. The
proposed adder store the residue in registers so that re-
calculating of residue is not required. The evaluation shows
that the proposed method gives almost the same accuracy as
the double-precision floating point computation and more



Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

area efficient than the double precision adder. In future
works, we will extend the proposed method of other com-
putations such as multiplication and division.

Acknowledgment

This work is supported by MEXT KAKENHI Grant
Number 12020735.

References

[1]1 H. S. Yee, “Numerical Solution of Initial Boundary Value Problems
Involving Maxwell’s Equations in Isotropic Media”, IEEE Transac-
tions on Antennas and Propagation, Vol.14, No.3, pp.302-307, 1966.

[2] B. Parhami, “Computer Arithmatic”, Oxford University Press, 2010,

[3]1 M. Sofroniou and G. Spaletta, “Precise numerical computat”, The
Journal of Logic and Algebraic Programming, Vol.64, Issue 1, pp.113-
134, 2008,

[4] Y. Hida , X. S. Li and D. H. Bailey, "Algorithms for Quad-Double
Precision Floating Point Arithmetic”, 15th Symposium on
Computer Arithmetic, pp.155-162, 2001.

[S] http://’www.mpir.org/



